
Amelia Bellamy-Royds,
Kurt Cagle & Dudley Storey

Using SVG
 with CSS3
& HTML5
VECTOR GR APHICS FOR WEB DESIGN

Amelia Bellamy-Royds, Kurt Cagle,
and Dudley Storey

Using SVG with CSS3
and HTML5

Vector Graphics for Web Design

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-92197-5

[LSI]

Using SVG with CSS3 and HTML5
by Amelia Bellamy-Royds, Kurt Cagle, and Dudley Storey

Copyright © 2018 Amelia Bellamy-Royds, Kurt Cagle, Dudley Storey. All rights
reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com/safari). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Editor: Meg Foley
Production Editor: Kristen Brown
Copyeditor: Rachel Monaghan
Proofreader: James Fraleigh

Indexer: Amelia Bellamy-Royds
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

November 2017: First Edition

Revision History for the First Edition
2017-10-17: First Release
2018-03-09: Second Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491921975 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Using SVG with
CSS3 and HTML5, the cover image, and related trade dress are trademarks of
O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the authors disclaim all responsibility for errors or omissions, including without
limitation responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is sub‐
ject to open source licenses or the intellectual property rights of others, it is your
responsibility to ensure that your use thereof complies with such licenses and/or
rights.

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781491921975

Table of Contents

Preface. xiii

Part I. SVG on the Web

1. Graphics from Vectors. 3
Defining an SVG in Code 4
Simple Shapes 7
Standalone SVG 12
Style and Structure 17
Repetition Without Redundancy 21
Graduating to Gradients 25
Activating Animation 28
Talking with Text 33
The SVG Advantage 37
Summary: An Overview of SVG 39

2. The Big Picture. 41
SVG and the Web Platform 42
The Changing Web 43

Future Focus: A Crystal Ball 47
JavaScript in SVG 48
Embedding SVG in Web Pages 56

SVG as an HTML Image 56
Interactive Embedded SVG 60

Using SVG in HTML5 Documents 61
Using SVG with CSS3 70

iii

CSS Versus SVG: Style Versus Graphics 71
Summary: SVG and the Web 72

3. A Sense of Style. 75
CSS in SVG 75

Style Declarations 76
Overriding Styles 80
Conditional Styles 84

SVG in CSS 87
Using SVG Images Within CSS 87
Making Every File Count 94
Using SVG Effects Within CSS 96

CSS Versus SVG 98
Styling Documents Versus Drawing Graphics 98
CSS as a Vector Graphics Language 99
Which to Choose? 103

Summary: Working with CSS 105

4. Tools of the Trade. 107
Ready-to-Use SVG 108
Click, Drag, Draw: Graphical SVG Editors 113

Adobe Illustrator 114
Adobe Photoshop 115
Sketch 116
Inkscape and Sodipodi 117
Draw SVG 119
Boxy SVG 120

Bringing SVG Alive: SVG in the Web Browser 121
Gecko for Firefox 122
WebKit for Safari and iOS Devices 122
Blink for Newer Versions of Chrome, Opera, and

Android Devices 123
Presto for Older Opera Versions and Opera Mini 123
Trident for Internet Explorer and Other Windows

Programs 124
EdgeHTML for Microsoft Edge and Windows 10+

Programs 125
Servo 125
Other Dynamic SVG Viewers 126

Markup Management: Code Editors 127
Atom Plus SVG Preview 127

iv | Table of Contents

Brackets Plus SVG Preview 128
Oxygen XML SVG Editor 129
Online Live Code Sites 130

Ready-to-Use Code: JavaScript Libraries 131
Raphaël and Snap.svg 132
D3.js 132
GSAP 133
SVG.js 133

Processing and Packaging 133
Summary: Software and Sources to Make SVG Easier 135

Part II. Drawing with Markup

5. Building Blocks. 139
Drawing Lines, from Here to There 140

Future Focus: More Measurements and Calculations 148
It’s Hip to Be Square (or Rectangular) 149

Future Focus: Geometry as Style 154
Cutting Corners 155

CSS Versus SVG: Curved Corners 158
Circular Logic 160

CSS Versus SVG: Shapes in Stylesheets 165
Summary: Basic Shapes 167

6. Following Your Own Path. 169
Giving Directions: The d Attribute 170

Future Focus: Piecewise Paths 172
Straight Shooters: The move-to and line-to Commands 173
Finishing Touches: The close-path Command 176
Hole-y Orders and Fill Rules 178
Following the Grid: Horizontal and Vertical Lines 182
Crunching Characters 183
Short and Sweet Shapes: Polygons and Polylines 185

CSS Versus SVG: Polygon Points 186
Curve Balls: The Quadratic Bézier Command 188

Future Focus: Beyond Simple Coordinates 192
Smooth Operators: The Smooth Quadratic Command 193

CSS Versus SVG: Paths Beyond SVG 198
Wave Motion: The Cubic Bézier Commands 198

Future Focus: Closing Curves 203

Table of Contents | v

Building the Arcs 203
Future Focus: New Directions in Path Commands 208

Summary: Custom Shapes 208

7. The Art of the Word. 211
When Text Isn’t Text 213
Working with Web Fonts 215
Typewriter Text 216

Future Focus: Positioning Text with CSS 219
Colorful Language 220

CSS Versus SVG: Filling and Stroking Non-SVG Text 221
Responsive Text Scaling 221
Anchors and Alignment 225
Switching Styles with <tspan> 232
Adjusting the Typewriter 234

Future Focus: Automatically Positioned Multiline SVG
Text 237

Full-Control Characters 237
Twists and Turns: The <textPath> Element 240
Sliding Text Along a Path with startOffset 246

Future Focus: More Flexible Text Paths 249
Measuring the Message 250
Summary: Graphical Text Layout and Fonts 251

Part III. Putting Graphics in Their Place

8. Scaling Up. 255
Coordinated Efforts 256
Framing the View, with viewBox 260

Future Focus: Selective Scaling 268
Calibrating the Scales 268
Scaling to Fit 269
A Poor Fit (and How preserveAspectRatio Fixes It) 273

CSS Versus SVG: Scaling to Fit 279
Just-Right Sizing 280

Autosizing Embedded SVG 281
Resizing Inline SVG 284
Preserving Aspect Ratios, with CSS Padding 286

Future Focus: Aspect-Ratio Control in CSS 295
Summary: Defining Coordinate Systems 296

vi | Table of Contents

9. A New Point of View. 299
Alternate Takes, with the <view> Element 300
Rescaling on the Fly, with SVG View Fragments 306

Future Focus: Cropping Any Image in a URL 309
Interactive Views 310
Packaged Deals 313
Flat Pack Stacks 324
Summary: Cropping Embedded SVG Files 328

10. Seeing Double. 331
Reduce, Reuse, Recycle 332

Future Focus: The <use> Element Shadow DOM 337
Symbolic Usage 338

Future Focus: Pinpointing a Symbol 341
File Management 341

Future Focus: Enabling Cross-Origin SVG Assets 351
Picture Perfect: Raster Images in SVG 351
Smooth Scaling Photographs 355

Future Focus: Easier Embedded Content 360
Summary: Reusing Content 360

11. Transformative Changes. 363
A Simpler Scale 364
Unbalanced Scales 370
Reflecting on Transformations 374

Future Focus: Transforming the transform Attribute 377
New Origins 378

Future Focus: Transformations with Units 383
Turning Things Around 385

Future Focus: Rotation Units and Adaptable Origins 391
Skewed Perspective 393
Enter the Matrix 400
Summary: Coordinate System Transformations 404

Part IV. Artistic Touches

12. Filling Up to Full. 409
Coloring Between the Lines 410

The Rainbow Connection 410
Future Focus: Controlling Colors, Consistently 413

Table of Contents | vii

Coordinating Colors 414
Variables for Every Property 420
Water Colors 423

Future Focus: Percentage Alpha 428
Filling with More Than Solid Colors 429

Future Focus: Serving Up New Paint 431
Fallbacks for Fills 433

Future Focus: New Fill Effects 434
Picturing Paint 435
Scaling Paint Servers 437
The Boundaries of the Box 439

Great Gradients 441
Shared Structures 441
Aligning Linear Gradients 444
Transforming Gradients 450
Radiating Radial Gradients 452
Switching Focus 455

CSS Versus SVG: CSS Gradients 457
Patterns of Possibility 461

All the Units to Use 462
Dividing the Box 464
Picture Perfect 467
Patterned Prints 470

Summary: The fill Property, Gradients, and Patterns 475

13. Drawing the Lines. 477
Different Strokes 478

A Simple Stroke to Start 478
Future Focus: Layered Lines 483

Making the Connection with Line Joins 483
Future Focus: New Line-Join Options 487

Capping It Off with Line Caps 488
Adjusting Stroke Appearance 492

Anti-Anti-Aliasing for Crisp Lines 492
Swapping Stroke and Fill 494

Future Focus: Controlling Stroke Position 496
Scaling Shapes Without Scaling Strokes 496

A Dashing Design 499
A Wide Array of Dashes (and Gaps Between Them) 499

Future Focus: Better References for Dash Lengths 503
Turning Dashes into Dots 504

viii | Table of Contents

CSS Versus SVG: Dashed Borders Versus Dashed
Strokes 505

More Pleasing Dash Patterns, Made with Math 506
Future Focus: Greater Control of Dash Position 509

Starting Mid-Stride 509
Painting Lines 515

Future Focus: Painting in a Stroke Bounding Box 520
Summary: Stroke Effects 521

14. Marking the Way. 523
Emphasizing Points 524
Scaling to Strokes 530
Orienting Arrows 535

Future Focus: Automatically Coordinating Markers with
Their Shapes 539

Defining Dimensions 540
Future Focus: Expanded Marker Position Options 544

Summary: Line Markers 546

15. Less Is More. 547
Fading Away with the opacity Property 548
The Clean-Cut Clip 550

Future Focus: Clipping Paths Everywhere 552
Creating a Custom Clipping Path 552
Intersecting Shapes 555
Clipping a clipPath 561
Stretch-to-Fit Clipping Effects 564
Shorthand Shapes 569

CSS Versus SVG: clip Versus clip-path 572
Hiding Behind Masks 573

Future Focus: More Masks for More Content 576
Who Was That Masked Graphic? 577
Making a Stencil 583

Future Focus: Easier Image Masks 589
Summary: Clipping and Masking 593

16. Playing with Pixels. 595
The Filter Framework 596

A Basic Blur 598
CSS Versus SVG: Blurred Elements Versus Blurred

Shadows 603

Table of Contents | ix

Fast Filters from CSS Alone 603
Future Focus: Filtering Images Within CSS 605

Mixing Multiple Filter Operations 606
The Chain of Commands 607
Mixing and Merging 610
Building a Better Blur 615
Morphing Shapes into Strokes 620

Drawing Out of Bounds 624
We’re Going to Need a Bigger Boom 624
Half-and-Half Filter Effects 628

Blending with the Backdrop 633
Blending Basics 633
Premade Mixes 639
Isolating the Blend Effect 641

Future Focus: Filtering the Backdrop 645
Summary: Filters and Blend Modes 646

Part V. SVG as an Application

17. Beyond the Visible. 651
Titles and Tips 651

Future Focus: Multilingual Titles 658
Linking Labels 660
Roles and Relationships 663

Future Focus: Roles for Graphical Documents 666
1,000 Words Are Worth a Picture 667
Machine-Readable Metadata 674
Summary: Metadata for Accessibility and Added

Functionality 677

18. Drawing on Demand. 679
Linking It All Together 680
Interactive Style Switches 684
A Better Image Map 685
Getting the Point(er) Across 693
Targeting the Interaction 698
The Big Event 701

Counting Clicks 702
Bubbling Out of Shadows 708
Measuring Mouse Positions 712

x | Table of Contents

Capturing the Keyboard with JavaScript-Enhanced Links 717
Controlling the Keyboard with tabindex and focus() 720

Summary: Interactive SVG 722

19. Transitioning in Time. 725
Scalable Vector Animations 726
Smoothly Switching Styles 728

CSS Transitions 729
CSS Keyframe Animations 732
Benefits and Limits of Animating SVG with CSS 738

Future Focus: Additive CSS Declarations 741
Animations as Document Elements 741

Animating Attributes, Declaratively 743
Complex Animations 745

CSS Versus SVG: Motion Paths in CSS 750
Benefits and Limits of SVG/SMIL Animation Elements 751

Scripting Every Frame 752
Future Focus: Declarative Scripted Animations 754
Triggering Regular Updates 754
Calculating the Current Value 758

Summary: Animation 763

20. Good Manners. 765
Planning Your Project 765

Does Your Project Need SVG at All? 765
Identify Your Browser Support Requirements 766
Decide How SVG Will Integrate in Your Website 768
Design for All Users 769

Working with Graphical Editors 773
Define Your Artboard or Drawing Size 774
Structure Your Graphic 775
Name Things 776
Set Up Color Preferences for Web Use 777
Simplify Paths 777
Test Text Fallbacks, or Convert to Paths 781
Consider the Backdrop 781
“Unset” Styles 782
Learn the Limits of Your Tool’s SVG Output 782
Learn the Limits of SVG, Compared to Your Tool 783

Coordinating Code 786
Structuring Styles 786

Table of Contents | xi

Sharing SVG Assets 789
Selecting a JavaScript Library 790

Test, Test, Test! 792
Final Thoughts 794

Index. 797

xii | Table of Contents

Preface

Scalable Vector Graphics (SVG to its friends) has many applications.
It is used by graphic designers and by technical drafters. But this
book is specifically about its use in web design and development.

Using SVG with CSS3 and HTML5 is, essentially, using SVG on the
web. But more than that, it’s about using SVG in complex web appli‐
cations. This is SVG not only as illustrations, but as graphical docu‐
ments that can be integrated in HTML web pages, and styled with
custom CSS. Many chapters will be useful to designers creating
images for the web, but the focus is on developers who are adapting
designs to add data-based graphics, dynamic styles, interaction, or
animation.

A Winding Path
This book traces its origins to 2011, when Kurt started work on a
book called HTML5 Graphics with SVG and CSS3. At the time,
HTML5 and CSS3 were brand new, and SVG was just starting to get
decent support in web browsers.

But life, as it often does, got in the way. The book took much longer
than planned to complete. And time introduced its own complica‐
tions.

When Kurt handed off the manuscript to Amelia in late 2014, the
state of graphics on the web had changed considerably since when
he’d started it. HTML had acquired competely new graphics formats
(the Canvas2D API and WebGL), which were completely separate
from SVG and CSS. And CSS3 was becoming a bigger and bigger
topic every year, quickly outgrowing the one chapter planned for it.

xiii

So the decision was made to focus on SVG. However, this book is
still all about the intersection of the three web languages—and Java‐
Script, too! The driving goal for the rewrite was to create a practical
guide to using SVG on the web, in complex web pages, with full
awareness of the need for cross-browser, multidevice support.

That turned out to be easier said than done. It’s taken a few more
years (and one more coauthor, Dudley) to complete this manuscript.
It’s also a considerably larger book than initially planned. We hope it
was worth the wait.

The Road Ahead
SVG is a complex topic, but we have tried to arrange this book in a
logical progression. Part I begins with the wide view, discussing how
—and why—you use SVG in web design:

• The possibilities of SVG as an independent image format, in
Chapter 1

• SVG on the web, with a focus on how it interacts with other
coding languages, in Chapter 2

• How CSS can be used to style your SVG, and how SVG graphics
can be used with CSS to style other documents, in Chapter 3

• Useful software for creating and testing SVG images, as well as
some sources of ready-to-use SVG for less artistically inclined
web developers, in Chapter 4

The remainder of the book will narrow in on each of the main fea‐
tures of SVG one chapter at a time. Part II concentrates on the core
drawing elements in SVG, and how to control their geometry and
layout:

• Sizing and positioning basic shapes, in Chapter 5
• Defining custom shapes and lines, in Chapter 6
• Text layout, in Chapter 7

xiv | Preface

Part III dives into the technical details of how SVG documents are
constructed and how vector shapes are positioned:

• Establishing coordinate systems and scale, in Chapter 8
• Redefining coordinate systems when embedding graphics in

web pages, in Chapter 9
• Reusing content and embedding images, in Chapter 10
• Transforming coordinate systems to reposition and distort

graphics, in Chapter 11

Part IV focuses more on the graphical side of the language:

• Filling the area of shapes and text, including gradients and pat‐
terns, in Chapter 12

• Drawing outlines around shapes and text, in Chapter 13
• Adding line markers (repeated symbols on the ends or corners

of custom shapes), in Chapter 14
• Clipping and masking of graphics, in Chapter 15
• Filter effects and blend modes, in Chapter 16

Part V looks at how the basic structure of SVG images can be
enhanced to create complete web applications, focusing on three
main areas:

• Accessibility and metadata, in Chapter 17
• Interactive SVG, links, and event handling, in Chapter 18
• Animation using CSS, XML, or JavaScript, in Chapter 19

Once you have all the pieces in place, Chapter 20 returns to the big
picture, discussing best practices for working with SVG.

Before You Begin
This book focuses on “using SVG” in web pages. It assumes that you,
the reader, are already familiar with creating web pages using
HTML, CSS, and a little bit of JavaScript. When the examples use
relatively new features of CSS3 and HTML5, we’ll explain them
briefly, but we’ll assume you know a <div> from a , and a font-
family from a font-style.

Preface | xv

You’ll get the most out of the book by working through the code
samples as you go. It will help if you have a good code editor that
recognizes SVG syntax, and if you know how to use the developer
tools in your web browser to inspect the document structure and
styles that create the visible result.

About This Book
Whether you’re casually flipping through the book, or reading it
meticulously cover-to-cover, you can get more from it by under‐
standing the following little extras used to provide additional
information.

Conventions Used in This Book
The following typographical conventions are used in this book:

Bold
Indicates new terms or concepts.

Italic
Indicates URLs, email addresses, filenames, and file extensions,
or simply emphasizes that a word is really important.

Constant width

Used for code listings, as well as within paragraphs to refer to
code elements such as elements, attributes, keywords, and func‐
tion names.

Constant width italic

Shows a variable or other part of code that should be replaced
with user-supplied values or by values determined by context,
so that "Hello, Name" becomes “Hello, Kurt,” or “Hello, Dud‐
ley,” or “Hello, Amelia.”

Tips like this will be used to highlight particu‐
larly tricky aspects of SVG, or simple shortcuts
that might not be obvious at first glance.

xvi | Preface

Notes like this will be used for more general
asides and interesting background information.

Warnings like this will highlight compatibility
problems between different web browsers (or
other software), or between SVG as an XML file
versus SVG in HTML pages.

In addition, sidebars like the following will introduce complemen‐
tary topics:

A Brief Aside
“Future Focus” sidebars will look at proposed features that aren’t yet standar-
dized, or new standards that aren’t widely implemented.

“CSS Versus SVG” will compare the SVG way of designing a web page with the
CSS way of achieving a similar effect.

Although these sidebars are not absolutely essential for understand‐
ing SVG, they will hopefully add important context when you are
planning a complete web project.

Supplementary Material
There is so much to say about SVG on the web, we couldn’t fit it all
in one book.

We have a couple dozen extra sections, most with extra examples,
that go a little deeper into the ideas from the main text. We’ve also
put together reference sections, to make it easier for you to look up
syntax details later.

This supplementary material is available online, and also includes
the full code for all the examples and figures, and other assets such
as JPEG files:

https://oreillymedia.github.io/Using_SVG

Preface | xvii

https://oreillymedia.github.io/Using_SVG

Whenever there is extra explanatory or reference material available,
a note box like the following will let you know:

More Online
Can’t remember if it is rotate="auto" or orient="rotate"? Good
thing we have all the SVG attributes we mention listed for easy ref-
erence, in the “SVG Elements and Attributes” guide:

https://oreillymedia.github.io/Using_SVG/guide/markup.html

P.S. It’s orient="auto" for <marker>, and rotate="auto" for
<animateMotion>.

The online supplementary material is also available for download as
a zip archive or Git repository:

https://github.com/oreillymedia/Using_SVG

About the Examples
The examples in this book have been tested in common web brows‐
ers in mid-2017. Bugs and inconsistencies are noted throughout.
Hopefully, some of those bugs will be fixed in the future; web brows‐
ers are updated on a monthly basis, and some improvements have
occurred even as this book was being edited. However, there are
likely other problems that we have overlooked. In addition, other
software for manipulating SVG has its own limitations or quirks
which are not outlined here. Test early, test often, test in any soft‐
ware your content needs to be displayed with.

The full example code is available for you to experiment with:

• On GitHub, you can download the entire supplementary repo,
or can find an individual file and view the code. For SVG files
that don’t require JavaScript, the GitHub code view also shows
you what the graphic looks like.

https://github.com/oreillymedia/Using_SVG

xviii | Preface

https://oreillymedia.github.io/Using_SVG/guide/markup.html
https://github.com/oreillymedia/Using_SVG
https://github.com/oreillymedia/Using_SVG

• On the website, you can test out the working versions of each
example in your browser, and use your browser’s developer
tools (or view-source mode) to see the code.

https://oreillymedia.github.io/Using_SVG

This book is here to help you get your job done. In general, if exam‐
ple code is offered with this book, you may use it in your programs
and documentation. You do not need to contact us for permission
unless you’re reproducing a significant portion of the code. For
example, writing a program that uses several chunks of code from
this book does not require permission. Selling or distributing a CD-
ROM of examples from O’Reilly books does require permission.
Answering a question by citing this book and quoting example code
does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation
does require permission.

We appreciate, but do not require, attribution. An attribution usu‐
ally includes the title, author, publisher, and ISBN. For example:
“Using SVG with CSS3 and HTML5 by Amelia Bellamy-Royds, Kurt
Cagle, and Dudley Storey (O’Reilly). Copyright 2018 Amelia
Bellamy-Royds, Kurt Cagle, Dudley Storey, 978-1-491-92197-5.”

If you feel your use of code examples falls outside fair use or the per‐
mission given above, feel free to contact us at permis‐
sions@oreilly.com.

O’Reilly Safari
Safari (formerly Safari Books Online) is a
membership-based training and reference
platform for enterprise, government, educa‐
tors, and individuals.

Members have access to thousands of books, training videos, Learn‐
ing Paths, interactive tutorials, and curated playlists from over 250
publishers, including O’Reilly Media, Harvard Business Review,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft
Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks,

Preface | xix

https://oreillymedia.github.io/Using_SVG
mailto:permissions@oreilly.com
mailto:permissions@oreilly.com
http://oreilly.com/safari

Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, and Course Technology, among
others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
and any additional information. You can access this page at http://
bit.ly/usingSVG_with_CSS3_HTML5.

To comment or ask technical questions about this book, send email
to bookquestions@oreilly.com.

For more information about our books, courses, conferences, and
news, see our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
A book of this size does not get published without contributions
from many people. The authors want to thank the many editors,
reviewers, and other production staff who have worked on this book
over its many-year gestation.

Special thanks go to former O’Reilly editor Meghan Blanchette, who
helped shape the scope and organization of the book; to the final
technical reviewers—Ana Tudor, Gabi, and Taylor Hunt—who sug‐
gested numerous clarifications for tricky topics (and identified many

xx | Preface

http://oreilly.com/safari
http://bit.ly/usingSVG_with_CSS3_HTML5
http://bit.ly/usingSVG_with_CSS3_HTML5
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

additional bug warnings); and to the O’Reilly tools and production
teams, who crafted numerous custom style and layout features for
the print book.

Finally, thanks go to the readers who offered feedback and encour‐
agement based on the early release drafts of the book. In the hyper‐
connected, fast-paced world of web development, writing a book is
still a lonely, long-term endeavor; it is important to be reminded
that the explanations and examples we create are helping real
human beings working on the web.

Thank you, thank you very much.

Preface | xxi

PART I

SVG on the Web

Scalable Vector Graphics (SVG) are drawings and diagrams defined
using an open standard of human-readable XML code. SVG can be
used in print publishing and even in technical drawings. However,
SVG’s true potential resides in the web browser. SVG was designed
to work with HTML, CSS, and JavaScript, the core languages used to
describe, style, and manipulate content on the web.

The following chapters look at SVG as a whole, focusing on how it is
created and used on the web, and how it intersects and overlaps
other web standards.

CHAPTER 1

Graphics from Vectors
An Overview of SVG

There’s a fundamental chicken-and-egg quality to creating SVG that
can make teaching it a challenge. Shapes without styles are not terri‐
bly attractive; styles without shapes cannot be seen. To work with an
SVG, you need to display the graphic on the web; to display a
graphic, you need some SVG code to display!

This chapter presents a rough sketch of the chicken and the egg, so
that subsequent chapters can fill in the details one topic at a time,
without making you feel like large parts of the picture are missing.

The chapter starts with a simple SVG graphic and then adapts it to
use different techniques and to add new functionality. The examples
will introduce many key features of SVG, but will skip over many
others. At the end, you should have a good idea of what an SVG file
looks like, how the key elements relate to each other, and how you
can edit the file to make simple changes.

The graphics in this chapter, and the rest of the book, involve build‐
ing SVG directly as markup code in a text editor, rather than using a
tool such as Inkscape or Adobe Illustrator. There are a couple of rea‐
sons for this:

• It helps you focus on building applications with SVG, rather
than just drawing graphics—you can always extend these prin‐
ciples to more artistic images. To keep from having pages and
pages of SVG markup, the graphics used here are…minimalis‐
tic.

3

• When using graphics editors, it is easy to generate overly com‐
plex code that would distract from the key messages of the
examples. If you use a code editor to view a file created by these
programs, you’ll discover many extra attributes and elements
identified by custom XML namespaces. These are used inter‐
nally by the software but don’t have an effect when the SVG is
displayed in a web browser.

Handcoding SVG from scratch is only practical for simple geometric
drawings. Working with the code, however, is essential for creating
interactive and animated graphics. For more artistic graphics, a
drawing made in a visual editor can be exported to SVG, and then
adapted as code.

Alternatively, some graphics editors, such as
Adobe Illustrator, allow you to copy individual
shapes (or groups of shapes) from the editor and
paste them into your text editor, with the pasted
result being the SVG markup for that shape.

To follow along with the examples in this chapter, it will help if you
have a basic familiarity with HTML and CSS. If you also know XML
—which is similar to HTML, but not the same—you’ll be one step
ahead. In future chapters, we will also assume that you are familiar
with using JavaScript to manipulate web pages. We’ll always try to
explain the purpose of all the code we use, but we won’t discuss the
basic syntax of those other web languages.

If you’re not comfortable with HTML, CSS, and JavaScript, you’ll
probably want to have additional reference books on hand as you
experiment with SVG on the web.

Defining an SVG in Code
SVG is drawing with code. And that code needs someplace to go.
Your SVG exists inside a document, or file, on your computer or on
the internet. When testing out the advanced techniques in future
chapters, you might start with an existing file that you created in a
graphical drawing program or downloaded from a clip-art database.
But in this chapter, we’re starting from scratch, with an empty file.

We’re also going to take it simple, and write markup code.

4 | Chapter 1: Graphics from Vectors

Markup is the code that actually describes the document that the
web browser displays, in a format the web browsers understand. In
contrast, lots of code for the web starts in a preprocessor coding or
template language, which then gets converted (processed) into
markup files by other software (aka the preprocessor). Other web‐
sites don’t send the web browser the final document, instead sending
a bare-bones document with JavaScript instructions for building the
rest. We’ll have examples of building SVG with JavaScript later.

But for now: we’re creating a markup file.

To create that file, you’ll need a text editor. Your favorite code editor
should work. If you don’t have a favorite code editor, we describe
some options in Chapter 4. For now, just make sure that your pro‐
gram can save files as plain, unformatted text, with UTF-8 (Uni‐
code) character encoding.

That text file will be parsed (read and interpreted) by a web browser.
The browser chooses the correct code parser program according to
its file type. On the internet, file types are defined in the HTTP
headers sent with the file. On your computer, file types are defined
by the file extension: the last few letters of the filename, after the
final . (period or full stop) character.

There are two types of files that can contain SVG markup for the
web: SVG files (with filenames like drawing.svg) and HTML files
(with filenames like drawing.html, or sometimes drawing.xhtml).

Depending on your operating system settings,
your computer may hide the file extension in
your file listings, to prevent you from acciden‐
tally changing it when you rename a file. Be
careful that you’re not unintentionally creating
files like drawing.svg.txt, which is a plain-text
file, not an SVG file.

A .svg file is known as a standalone SVG file, because the SVG is an
entire, independent document. When the browser receives a stand‐
alone SVG file, it reads it using the XML parser.

SVG code in a .html or .xhtml file is known as inline SVG, because
the SVG code is written directly “in the lines” of the HTML markup.

Defining an SVG in Code | 5

1 Technically, the decision between the XML and HTML parsers is based on the media
type, not the file extensions. On the web, media type is determined by the HTTP head‐
ers. But on your computer, it’s usually determined by the file extension. And most web
servers use file extensions to determine the media type HTTP headers, too.

The difference between .html and .xhtml is whether the browser will
use the HTML parser or the XML parser.1

We’re going to start with inline SVG in a .html file, because we hope
you’re already somewhat familiar with HTML. Also, the HTML
parser is much more forgiving about how it reads your markup.

To get started: open a new, empty file in your text editor. Save it with
a .html filename. For example, you could call it my-first-svg.html.
Inside that file type the following code, then save it again:

<svg>

Congratulations. You now have an HTML file with an inline SVG,
defined by the opening tag of an <svg> element. That’s all you need.

It’s not a very good HTML file, though. It’s a file that takes full
advantage of that very-forgiving HTML parser.

If you weren’t so lazy, and instead created a good HTML file with an
inline SVG element, it would look like Example 1-1. This is the basic
“boilerplate” code that you can copy and adapt for all the inline SVG
examples in this book. This code is so good, you could even save it
as a .xhtml file, and the much-less-forgiving XML parser should read
it without error. It would still be inline SVG, though—an SVG ele‐
ment inside an HTML document.

Example 1-1. Defining an inline SVG element in an HTML file

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>HTML file with Inline SVG</title>
 <style>
 </style>
 </head>
 <body>
 <svg width="400px" height="400px">
 </svg>
 </body>
</html>

6 | Chapter 1: Graphics from Vectors

More Online
Are there any elements, attributes, or syntax details in Example 1-1
that you don’t understand? Read more about what each part
means, in “HTML Syntax, Lazy or Long”:

https://oreillymedia.github.io/Using_SVG/extras/ch01-HTML-
syntax.html

The code in Example 1-1 includes our first two SVG attributes:
width and height. They set the—surprise, surprise—width and
height of the SVG drawing region within our HTML page.

You can also set the SVG dimensions using the CSS width and
height properties applied to the <svg> element. The benefit of using
attributes is that they set a default value that applies even before CSS
is loaded, preventing a “flash of unstyled SVG” (FOUS, for people
who like acronyms).

A lot of examples in this book will use
width="400px". There’s nothing magical about
that number: it just happens to be a round num‐
ber that is pretty close to the width of a figure in
the printed book. Other examples will use
width="4in" (four inches), which is exactly the
width of a figure in the printed book. When cre‐
ating examples for the web, however, you might
prefer to use width="100%".

So far, we have a valid HTML file with an inline SVG element, but if
you open that file in a web browser you’ll just see a plain white
screen. Time to start drawing.

Simple Shapes
At its most basic, an SVG image consists of a series of shapes that
are drawn to the screen. Everything else builds upon the shapes.

Individual SVG shapes can be incredibly complex, made up of hun‐
dreds of distinct lines and curves. The outline of Australia (includ‐
ing the island of Tasmania) could be represented by a single <path>

Simple Shapes | 7

https://oreillymedia.github.io/Using_SVG/extras/ch01-HTML-syntax.html
https://oreillymedia.github.io/Using_SVG/extras/ch01-HTML-syntax.html

shape on an SVG map. For this introductory overview, however,
we’re keeping it simple. We’re using two shapes you’re probably
quite familiar with: circles and rectangles.

Figure 1-1 is a colored line drawing, such as you might find in a
children’s book, of a cartoon stoplight. This is the SVG we’re going
to create.

Figure 1-1. Primary color stoplight graphic

There are four shapes in Figure 1-1: one rectangle and three circles.
The layout, sizing, and coloring of those shapes creates the image
that can be recognized as a stoplight.

8 | Chapter 1: Graphics from Vectors

Add the following code between the opening and closing <svg> tags
in your file (from Example 1-1) to draw the blue rectangle from
Figure 1-1:

<rect x="20" y="20" width="100" height="280"
 fill="blue" stroke="black" stroke-width="3" />

Save the file in the code editor, and then open the same file in your
web browser (or refesh the browser tab, if the earlier version of the
file was already open). You should now see a tall blue rectangle with
a black outline.

The <rect> element defines a rectangle that starts at the point given
by the x (horizontal position) and y (vertical position) attributes and
has an overall dimension given by the width and height attributes.
Note that you don’t need to include units on the length attributes.
Length units in SVG are pixels by default, although the definition of
a pixel (and of every other unit) will change if the graphic is scaled.

“Pixels” when referring to lengths means CSS
layout px units. These will not always corre‐
spond to the actual pixels (picture elements) on
the monitor. The number of individual points of
color per px unit can be affected by the type of
screen (or printer) and the user’s zoom setting.
In software that supports CSS3, all other meas‐
urement units are adjusted proportional to the
size of a px unit. An in (inch) unit will always
equal 96px, regardless of the monitor resolution
—but it might not match the inches on your
ruler!

The coordinate system used for the x- and y-positions is similar to
many computer graphics and layout programs. The x-axis goes from
the left of the page to the right in increasing value, while the y-axis
goes from the top of the page to the bottom. This means that the
default zero point, or origin, of the coordinate system is located at
the upper-left corner of the window.

The rectangle is drawn starting 20px from the left and 20px from
the top of the window.

Simple Shapes | 9

If you’re used to mathematical coordinates
where the y-axis increases from bottom to top, it
might help to instead think about laying out
lines of text from top to bottom on a page.

The remaining attributes for the rectangle define its presentation,
the styles used to draw the shape:

<rect x="20" y="20" width="100" height="280"
 fill="blue" stroke="black" stroke-width="3" />

The fill attribute indicates how the interior of the rectangle
should be filled in. The fill value can be given as a color name or a
hex color value—using the same values and syntax as CSS—to flood
the rectangle with that solid color. The stroke and stroke-width
attributes define the color and thickness of the lines that draw the
rectangle’s edges.

The <rect> tag is self-closed with a / character, to define a complete
rectangle element.

The / (forward slash) at the end of an SVG
shape tag is required, even in HTML. You could
also use explicit closing tags, like this:

<rect attributes ></rect>

All SVG elements, even shapes, can have child elements. This means
they all must either be self-closing (with />) or have separate closing
tags. Both the XML and HTML parsers will make all new SVG ele‐
ments children of the previous element, until they reach a closing
tag. The HTML parser will sometimes automatically close an SVG
element, but only if it reaches the closing tag of an earlier element—
or the end of the file. The XML parser would report an error in
those cases.

With the basic rectangular shape of the stoplight now visible, it is
time to draw the lights themselves. Each circular light can be drawn
with a <circle> element. The following code draws the red light:

<circle cx="70" cy="80" r="30"
 fill="red" stroke="black" stroke-width="2" />

The first three attributes define the position and size of the shape.
The cx (center-x) and cy (center-y) attributes define coordinates

10 | Chapter 1: Graphics from Vectors

for the center point of the circle, while the r attribute defines its
radius. The fill, stroke, and stroke-width presentation attributes
have the same meaning as for the rectangle (and for every other
shape in SVG).

If you draw a graphic that looks like our stop‐
light in a visual editor, then look at the code
later, you might not see any <circle> elements.
A circle, and every other shape in SVG, can also
be represented by the more obscure <path> ele‐
ment, which we introduce in Chapter 6.

You can probably figure out how to draw the yellow and green
lights: use the code for the red light, but change the vertical position
by adjusting the cy attribute, and set the correct fill color by chang‐
ing the fill presentation attribute. The complete SVG and HTML
markup for the stoplight is given in Example 1-2.

Example 1-2. Drawing a primary color stoplight in inline SVG

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8" />
 <title>Inline SVG Stoplight</title>
 <style></style>
</head>
<body>
 <svg width="140px" height="320px">
 <rect x="20" y="20" width="100" height="280"
 fill="blue" stroke="black" stroke-width="3" />
 <circle cx="70" cy="80" r="30"
 fill="red" stroke="black" stroke-width="2" />
 <circle cx="70" cy="160" r="30"
 fill="yellow" stroke="black" stroke-width="2" />
 <circle cx="70" cy="240" r="30"
 fill="#40CC40" stroke="black" stroke-width="2" />

 </svg>
</body>
</html>

The width and height of the SVG have been adjusted to match
the drawing.

Simple Shapes | 11

#40CC40 is a medium green color, defined in hexadecimal RGB
notation. It’s brighter than the color created by the green key‐
word (#008800), but not quite as intense as lime (#00FF00).
There’s actually a limegreen keyword that is a pretty close
match, but we wanted to emphasize that you could use hexadec‐
imal notation to customize colors. We’ll discuss more color
options in Chapter 12.

The shapes are drawn on top of one another, in the order they
appear in the code. Thus, the rectangle is drawn first, then each suc‐
cessive circle. If the rectangle had been listed after the circles, its
solid blue fill would have completely obscured them.

If you work with CSS, you know you can change
the drawing order of elements using the z-index
property. z-index has been added to the SVG
specifications, too, but at the time of writing it is
not supported in any of the major web browsers.

Inline SVG in HTML files, like this, has many uses on the web. But it
is certainly not the only way to use SVG. Sometimes, you want your
SVG graphic to be in its own file, which you can embed in any web
page—just like you can embed a photograph or video. For those
cases and more, you need SVG markup in an SVG file.

Standalone SVG
To create an independent SVG, separate from the HTML, we need
an SVG file. Create a new file in your code editor and save it—as
unformatted text with UTF-8 encoding—with the .svg file extension.
In that file, include the following code to define the root SVG
element:

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 height="320px" width="140px" >
 <!-- drawing goes here -->
</svg>

The root element both defines the document as an SVG file and
defines the SVG drawing region. All the graphic content will be con‐
tained between the starting <svg> tag and the ending </svg> tag.

12 | Chapter 1: Graphics from Vectors

To confirm that your SVG code is working, copy
your <rect> and <circle> elements from the
inline SVG HTML file, and paste them into the
SVG file instead of the <!-- drawing goes

here --> comment. Then save and open up
the .svg file in your web browser.

The starting tag also contains attributes that modify the SVG
element.

The first and most important of the attributes is the declaration of
the SVG namespace: xmlns="http://www.w3.org/2000/svg".

An SVG in its own file is always treated as XML. Web browsers will
not render (draw) the SVG image without the namespace. The
namespace identifier confirms that this is a Scalable Vector Graphics
document, as opposed to some custom XML data format that just
happens to use the svg acronym for its root element.

Many SVG documents have other namespace
declarations as well, indicated by an
xmlns:prefix attribute, where the prefix will be
reused elsewhere in the document.
Only one such namespace, xlink, is standard in
SVG (we’ll discuss it in “Repetition Without
Redundancy” on page 21). However, you’ll often
see other xmlns:prefix attributes added to
SVGs created by software; these define custom
namespaces to hold software-specific data.

The root SVG element also has height and width attributes, here
defined in pixel units. Again, including these attributes is important
to set a default size for the graphic. We’ll discuss all the complexities
of SVG width and height in Chapter 8.

You may have noticed that the code has
switched from width then height to height
then width: both are equivalent. The order of
attributes does not matter, only their values.

Standalone SVG | 13

There are a few other differences between HTML files and SVG files.
These mostly relate to the fact that standalone SVG files are parsed
as XML.

As we’ve already warned, the XML parser is strict about making sure
you close all your tags. It also expects you to quote all your attributes
(like fill="blue" or fill='blue', but not fill=blue). If you for‐
get either of these points, the browser will display an XML error
instead of your drawing.

In our examples, we mostly follow the stricter syntax for both SVG-
in-HTML and SVG-as-XML. The main difference you’ll notice
between the two is the xmlns attribute.

More Online
There are a few other unique features of XML that you may discover
if you look at SVG code created by a software program. This includes
DOCTYPE and other “prolog” code before the opening <svg> in the
file.

Read more in “XML Prologs and Document Types”:

https://oreillymedia.github.io/Using_SVG/extras/ch01-XML.html

A prolog is not required for SVG if you use a UTF-8 (or UTF-16) char-
acter encoding.

The child content of the <svg> root element—the code that replaces
the <!-- drawing goes here --> comment—can be a mix of shape
elements, text elements, animation elements, structural elements,
style elements, and metadata elements. Unlike in HTML, there is no
requirement that you have a <head> before a <body>. However, it is
often useful to put your metadata first, like in HTML.

One metadata element that you should always include is a title, in a
<title> element. To be recognized as the title of your SVG as a
whole, it should be the first child of your <svg> element. The follow‐
ing code shows how it is added to the SVG file:

14 | Chapter 1: Graphics from Vectors

https://oreillymedia.github.io/Using_SVG/extras/ch01-XML.html

<svg xmlns="http://www.w3.org/2000/svg"
 height="320px" width="140px" >
 <title xml:lang="en">Primary Color Stoplight</title>
 <!-- drawing goes here -->
</svg>

In graphical SVG editors, you can often set the main title using a
“document properties” dialog.

The xml:lang attribute, on the <title> element, is the XML equiv‐
alent to the HTML lang attribute. It defines the human language of
any text content in the file, so that screen readers and other software
can make appropriate adjustments. In this case (and every other
case in this book), that language is English, as indicated by the value
en. We could specify en-US to clarify that we’re using American
spelling, if we preferred.

You don’t need to declare the xml namespace
prefix: it is reserved in all XML files.
To make things even simpler, SVG 2 defines a
plain lang attribute, without XML prefixes, to
replace xml:lang. But keep using the prefixed
version for a while, until all software catches up.

The xml:lang attribute can be set on any element, applying to its
child content. This behavior is directly equivalent to the lang
attribute in HTML. We could have set it on the <svg> element, and
it would still apply to the title text. Most examples in the book will
use this approach. If you have multilingual diagrams, however, you
can set the attribute on individual text and metadata elements.

When an SVG <title> element is included like this—as the first
child of the root <svg>—it will be used in the same manner as an
HTML <title>. The title text is not drawn as part of the graphic,
but if you viewed the SVG in a browser, “Primary Color Stoplight”
would be displayed in the browser tab bar, as shown in Figure 1-2.
Each web browser has a slightly different style, but they all display
the document title, whether the document is SVG or HTML. Docu‐
ment titles are also used for browser bookmarks and history listings.

Standalone SVG | 15

Figure 1-2. SVG and HTML files open in multiple web browser tabs

The SVG <title> element is much more flexible
than its HTML equivalent; you can add titles to
individual parts of a graphic as well, and they’ll
show up as tooltips. We’ll explore titles and
other metadata in depth in Chapter 17.

Putting this code together with our shape elements from the previ‐
ous section, we get the code in Example 1-3. This creates the com‐
plete image we saw in Figure 1-1.

Example 1-3. Drawing a primary color stoplight in a standalone SVG
file

<svg xmlns="http://www.w3.org/2000/svg"
 height="320px" width="140px" >
 <title xml:lang="en">Primary Color Stoplight</title>
 <rect x="20" y="20" width="100" height="280"
 fill="blue" stroke="black" stroke-width="3" />
 <circle cx="70" cy="80" r="30"
 fill="red" stroke="black" stroke-width="2" />
 <circle cx="70" cy="160" r="30"
 fill="yellow" stroke="black" stroke-width="2" />
 <circle cx="70" cy="240" r="30"

16 | Chapter 1: Graphics from Vectors

 fill="#40CC40" stroke="black" stroke-width="2" />
</svg>

We’ve now seen two different ways to draw the same SVG graphic:
as inline SVG and as standalone SVG. However, both files used the
same drawing elements (shapes) and attributes.

In the next section, we explore other ways of creating the same
image with SVG. The graphics will look the same, but they will have
very different structures in the document object model (DOM): the
interconnected software objects that the browser uses to represent
the graphic.

Why is that important? If all you care about is the final image, it
isn’t. However, if you are going to be manipulating the graphic with
JavaScript, CSS, or animations, the DOM structure is very impor‐
tant. Furthermore, if you modify the graphic in the future—maybe
to change the sizes or styles of the shapes—you will be glad if you
used clean and DRY code, where DRY stands for Don’t Repeat
Yourself.

Style and Structure
The drawing code in Examples 1-2 and 1-3 is somewhat redundant:
many attributes are the same for all three circles. If you want to
remove the black strokes or make the circles slightly larger, you need
to edit the file in multiple places.

For a short file like this, that might not seem like much of a prob‐
lem. But if you had dozens (or hundreds) of similar shapes, instead
of just three, editing each one separately would be a headache and
an opportunity for error.

You can remove some of the repetition by defining the circles inside
a <g> element. The <g> or group element is one of the most com‐
monly used elements in SVG. A group provides a logical structure
to the shapes in your graphic, but it has the additional advantage
that styles applied to a group will be inherited by the shapes within
it. The inherited value will be used to draw the shape unless the
shape element specifically sets a different value for the same
property.

Style and Structure | 17

In Example 1-4, the stroke and stroke-width presentation
attributes are specified once for the group containing three circles.
The final graphic looks exactly the same as Figure 1-1.

Example 1-4. Grouping elements within an SVG stoplight

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 height="320px" width="140px" >
 <title>Grouped Lights Stoplight</title>
 <rect x="20" y="20" width="100" height="280"
 fill="blue" stroke="black" stroke-width="3" />
 <g stroke="black" stroke-width="2">
 <circle cx="70" cy="80" r="30" fill="red" />
 <circle cx="70" cy="160" r="30" fill="yellow" />
 <circle cx="70" cy="240" r="30" fill="#40CC40" />
 </g>
</svg>

Groups have other uses. They can associate a single <title> ele‐
ment with a set of shapes that together make up a meaningful part of
the graphic. They can be used to apply certain stylistic effects, such
as masks (Chapter 15) or filters (Chapter 16) on the combined
graphic, instead of the individual shapes. Grouping can also be used
to move or even hide a collection of elements as a unit. Many vector
graphic drawing programs use layers of graphics that combine to
form an image; these are almost always implemented as <g> ele‐
ments in the SVG file.

Why not specify the cx and r attributes on the group, since they are
also the same for every circle? The difference is that these attributes
are specific features of circles—describing their fundamental geome‐
try—not shared styles that apply to any shape. Geometric attributes
are not inherited; if they aren’t specified, they default to zero. And if
a circle’s radius is zero, it won’t be drawn at all.

Using inheritance isn’t the only way to reduce the repetition in the
fill and stroke attributes. These attributes, and all other SVG pre‐
sentation attributes, are actually a way of setting CSS styles on an
element. You can use other CSS notation to set them instead—an
inline style attribute, or CSS rules in a stylesheet, which can refer‐
ence class attributes on your SVG elements. Example 1-5 uses a
mix of both options to set the fill and stroke styles.

18 | Chapter 1: Graphics from Vectors

Example 1-5. Using CSS styles in the SVG stoplight

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 height="320px" width="140px" >
 <title>CSS-Styled Stoplight</title>
 <style type="text/css">
 rect, circle {
 stroke: black;
 stroke-width: 3;
 }
 .light {
 stroke-width: 2;
 }
 </style>
 <rect x="20" y="20" width="100" height="280"
 style="fill:blue;" />
 <g>
 <circle class="light" style="fill:red"
 cx="70" cy="80" r="30" />
 <circle class="light" style="fill:yellow"
 cx="70" cy="160" r="30" />
 <circle class="light" style="fill:#40CC40"
 cx="70" cy="240" r="30" />
 </g>
</svg>

The SVG <style> element, like its HTML counterpart, defines a
stylesheet that applies to the document that contains it. The
type="text/css" attribute isn’t necessary in web browsers
(which assume CSS for all stylesheets), but it increases compati‐
bility in other software, like Inkscape and Illustrator.

The first CSS rule applies a 3-unit-wide black stroke to all
<rect> and <circle> elements.

The second CSS rule corrects the stroke-width to 2 for ele‐
ments that have a class of light.

The fill colors are applied with style attributes on the shape
elements. style="fill:blue;" has the same effect as
fill="blue", but it can’t be as easily changed by other CSS
rules.

In addition to the inline style attribute, the <circle> elements
have the class="light" attribute, which allows them to be
selected by the .light {} CSS rule.

Style and Structure | 19

The actual amount of code in Example 1-5 has increased relative to
Example 1-4, but again we have each style defined in a single place,
so it’s easy to update. You could probably imagine more compact
ways to style the same elements with inline styles or CSS rules, but
one purpose of the example was to demonstrate all the options that
can be combined.

Again, the result of this code is exactly the same as Figure 1-1; it has
just been rewritten to use CSS format for the styles, instead of pre‐
sentation attributes. The interaction between CSS and presentation
attributes will be discussed in more detail in Chapter 3; for now,
think of presentation attributes as default styles to use if CSS styles
aren’t specified.

The group element is no longer used for styling in Example 1-5,
only for structure. However, it could have just as easily been styled
with a style attribute or a class, so that the styles once again inher‐
ited to its children. Just like CSS styles for HTML, many SVG styles
—but not all—are by default inherited from a parent element to its
children, unless the child element is given a different style.

You can force inheritance for any CSS property
by setting the property’s value on the child ele‐
ment to inherit. But there’s usually a logical
reason why certain properties don’t inherit.

What about the geometric attributes? As we’ll discuss in Chapter 5,
SVG 2 allows many geometric attributes to be set with CSS, just like
fill and stroke. However, they still aren’t inherited by default.

Some browsers have started to implement SVG
geometry in CSS, but at the time of writing
(mid-2017), support is not good enough to rely
on it for work on the web. This book therefore
always uses attributes for geometry.

Nonetheless, many graphics contain repeated geometric shapes, and
those shapes are often much more complicated than simple circles.
You cannot (yet) define this shared geometry with a CSS rule, but
that doesn’t mean you need to copy and paste the same attributes on
every element.

20 | Chapter 1: Graphics from Vectors

Repetition Without Redundancy
SVG has its own approach to avoiding redundant geometry: the
<use> element. It allows you to reuse graphics that you’ve already
defined once in your file, to draw the same geometry in multiple
places.

Example 1-6 uses <use> to reduce the geometric redundancy in the
stoplight. The code defines the basic circle once, and then reuses it
three times, with different vertical positions and fill colors. To keep
the code compact, we’ve gone back to using presentation attributes,
but you could just as easily use CSS here.

Example 1-6. Reusing elements to draw an SVG stoplight

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 height="320px" width="140px" >
 <title>Re-usable Lights Stoplight</title>
 <defs>
 <circle id="light" cx="70" r="30" />
 </defs>
 <rect x="20" y="20" width="100" height="280"
 fill="blue" stroke="black" stroke-width="3" />
 <g stroke="black" stroke-width="2">
 <use xlink:href="#light" y="80" fill="red" />
 <use xlink:href="#light" y="160" fill="yellow" />
 <use xlink:href="#light" y="240" fill="#40CC40" />
 </g>
</svg>

Let’s break that example down to clearly explain what’s going on.
The first change is a new attribute on the <svg> itself.

The xmlns:xlink attribute defines a second XML namespace,
"http://www.w3.org/1999/xlink", which will be identified by the
xlink prefix. XLink was a W3C standard for defining relationships
between XML elements or files. The xlink:href attribute is funda‐
mental to many SVG elements in SVG 1, and other XLink attributes
were also adopted to describe hyperlinks. However, XLink isn’t
really used anywhere else on the web other than SVG, so the name‐
space and attributes have been deprecated. When browsers fully
support SVG 2, you’ll be able to use the href attribute without any
namespace.

Repetition Without Redundancy | 21

http://www.w3.org/TR/xlink/

Because a standalone SVG file is XML, you could
use any prefix you choose to represent the
XLink namespace; all that matters is the
"http://www.w3.org/1999/xlink" namespace
URL. However, when you use SVG within
HTML files—which don’t support XML name‐
spaces—only the standard xlink:href attribute
name will be recognized.
At the time of writing (early 2017), skipping the
namespace altogether (and just using href) is
supported in Microsoft Edge, Internet Explorer,
and recent Firefox and Blink browsers. It isn’t
supported in WebKit/Safari, or in many older
mobile browsers.

The next new feature is the <defs> element, which contains defini‐
tions of SVG content for later use. Children of a <defs> element are
never drawn directly. In Example 1-6, one element is defined in this
way: the circle.

<defs>
 <circle id="light" cx="70" r="30" />
</defs>

The cx and r attributes which were previously repeated for each
light are now included only once on this predefined circle. However,
the circle has no cy attribute—it will default to zero—and no styles:
it will inherit styles whenever it is used.

Most importantly of all, the circle has the id attribute, "light".
Without an ID, there would be no way to indicate that this is the
graphic to be reused later. The SVG id attribute has the same role as
id in HTML or xml:id in other XML documents. It should at least
match the requirements for the HTML id:

• completely unique within a document
• non-empty (meaning, have at least one character in the value)
• does not contain any whitespace

22 | Chapter 1: Graphics from Vectors

Ideally, an SVG id should meet the requirements of a valid xml:id:

• start with a letter
• contain only letters, numbers, periods (.), and hyphens (-).

Modern XML software accepts a broad definition of “letter” (any
language is OK), but unaccented English letters will have the best
support.

The final change to the SVG code in Example 1-6 is that each
<circle> in the main graphic has been replaced by a <use> element.
Each <use> refers back to the single predefined circle with the
xlink:href attribute.

<use xlink:href="#light" y="80" fill="red" />

The element referenced by <use> doesn’t have to be inside a <defs>:
it could also be a shape that was drawn directly. For example, we
could draw one <circle>, then <use> it twice. We use a predefined
<circle> (and three <use> elements) because it makes the styling
and positioning easier to understand.

The content of xlink:href is always a URI (Universal Resource
Identifier). To identify another element in the same document, you
use a target fragment: a hash mark (#) followed by the other ele‐
ment’s ID value. This is the same format you would use for same-
page hyperlinks within an HTML document.

The URI format may make you wonder if it is
possible to reuse elements from separate SVG
files. The SVG specifications allow it, but there
are important browser security and support
restrictions, which we’ll discuss in Chapter 10.

The <use> elements have other attributes. The y attribute tells the
browser to shift the reused graphic vertically so that the y-axis from
the original graphic now lines up with the specified y-position. A
similar x attribute could have been used for a horizontal shift. In
both cases, the shifts are in addition to whatever positioning
attributes were set on the original element.

Since the circle in the <defs> is defined with its vertical center (cy)
as the default zero, the effect of the y attribute is to move the center

Repetition Without Redundancy | 23

of the circle to the given value of y. Finally, the fill value specified
on each <use> element becomes the inherited fill color for that
instance of the circle. Since the predefined circle did not define its
own fill color, it is filled with the color inherited from the <use>.

Again, although we’ve made considerable changes to the document
structure, the final graphic still looks the same, as shown in
Figure 1-3.

Figure 1-3. Stoplight drawn with reused elements

24 | Chapter 1: Graphics from Vectors

Exciting, right? Or maybe not. All that fussing with document struc‐
ture and we’ve still got the exact same picture. It is important to
know that you can draw the same graphic many different ways
without changing its appearance. But it is equally important to know
how to dress up that graphic with some new styles.

Graduating to Gradients
If your target audience is over the age of 10, you might find the
blocks of solid color in Figure 1-3 a tad simplistic. One option for
enhancing the graphic would be to draw in extra details with addi‐
tional shapes. Another option is to work with the shapes we have,
but fill them with something other than solid colors.

At first glance, fill would appear to be just another term for color.
However, this is a little misleading. You can fill—and also stroke—
shapes with gradients or patterns (which we’ll discuss more in Chap‐
ter 12) instead of solid colors.

The gradients and patterns are defined as separate elements within
the SVG code, but they are never drawn directly. Instead, the gradi‐
ent or pattern is drawn within the area of the shape that references
it. In a way, this is similar to a web domain serving up an image for a
browser to draw within a specified region of an HTML file. For this
reason, the gradient or pattern is known as a paint server.

The server analogy isn’t just superficial. In
theory, you should be able to put multiple paint
servers—gradients or patterns—in an external
SVG document, and then reference the file and
element with a URI like gradients.svg#metal.
However, as mentioned earlier, support for ref‐
erences between files is subject to browser secu‐
rity and support limitations.

Example 1-7 defines four different gradients for the three lights and
the stoplight frame. The result is shown in Figure 1-4.

Graduating to Gradients | 25

Figure 1-4. Stoplight with gradient fills

Example 1-7. Using gradient fills to enhance a vector graphic stoplight

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 height="320px" width="140px" >
 <title>Gradient-Filled Stoplight</title>
 <defs>
 <circle id="light" cx="70" r="30" />
 <radialGradient id="red-light-off" fx="0.45" fy="0.4">
 <stop stop-color="maroon" offset="0"/>
 <stop stop-color="#220000" offset="0.7"/>
 <stop stop-color="black" offset="1.0"/>

26 | Chapter 1: Graphics from Vectors

 </radialGradient>
 <radialGradient id="yellow-light-off" fx="0.45" fy="0.4">
 <stop stop-color="#A06000" offset="0"/>
 <stop stop-color="#804000" offset="0.7"/>
 <stop stop-color="#502000" offset="1"/>
 </radialGradient>
 <radialGradient id="green-light-on" fx="0.45" fy="0.4">
 <stop stop-color="#88FF00" offset="0.1"/>
 <stop stop-color="forestGreen" offset="0.7"/>
 <stop stop-color="darkGreen" offset="1.0"/>
 </radialGradient>
 <linearGradient id="metal" spreadMethod="repeat"
 gradientTransform="scale(0.7) rotate(75)">
 <stop stop-color="#808080" offset="0"/>
 <stop stop-color="#404040" offset="0.25"/>
 <stop stop-color="#C0C0C0" offset="0.35"/>
 <stop stop-color="#808080" offset="0.5"/>
 <stop stop-color="#E0E0E0" offset="0.7"/>
 <stop stop-color="#606060" offset="0.75"/>
 <stop stop-color="#A0A0A0" offset="0.9"/>
 <stop stop-color="#808080" offset="1"/>
 </linearGradient>
 </defs>
 <rect x="20" y="20" width="100" height="280"
 fill="url(#metal)" stroke="black" stroke-width="3" />
 <g stroke="black" stroke-width="2">
 <use xlink:href="#light" y="80"
 fill="url(#red-light-off)" />
 <use xlink:href="#light" y="160"
 fill="url(#yellow-light-off)" />
 <use xlink:href="#light" y="240"
 fill="url(#green-light-on)" />
 </g>
</svg>

The gradients, defined within the <defs> section of the file, come in
two types: <radialGradient> for the circular lights and
<linearGradient> for the frame. Each gradient element has an
easy-to-remember id attribute that will be used to reference it.

The radial gradients also have fx and fy attributes, which create the
off-center effect, while the linear gradient contains spreadMethod
and gradientTransform attributes to control the angle, scale, and
repetition of the gradient. Each gradient contains <stop> elements
that define the color transition. If you absolutely must know more
now, you can jump ahead to Chapter 12 for more details.

Graduating to Gradients | 27

Still here? OK, then look at the rest of Example 1-7: the <rect>, <g>,
and <use> elements.

It’s mostly the same as Example 1-6, except for the fill values. Instead
of color names or RGB hash values, each fill attribute is of the
form url(#gradient-id).

Why the extra url() notation? Partly, it’s because presentation
attributes need to be compatible with CSS, and CSS uses
url(reference). More importantly, it’s because fill and stroke
and other presentation attributes can be specified as a URL or as
other data types, and you need to be able to clearly distinguish
between them. Without url(), how would you know if #fabdad
referred to a paint server element or to a light pink color?

To add a bit of realism, the gradients were defined so that the green
light appeared to be lit (bright green), while the red and yellow lights
were dim (dark maroon and mustard brown). But a real stoplight
wouldn’t stay green all the time.

It’s fairly straightforward to edit the code to switch the stoplight to
red: copy the red light gradient, change its id to red-light-on, then
change the stop-color values to something brighter. Copy the
green light gradient, change its id to green-light-off, then change
the colors to something darker. Finally, change the fill values to
reference the new gradients. There: you have a red stoplight. But you
still don’t have a working stoplight. For that, you need animation.

Activating Animation
Animation was a core part of the original SVG specifications. Not
only was there the option of animating elements with JavaScript, but
there was also a way of declaring animations as their own elements.

These animation elements (such as <animate> and <set>) were
adapted from another XML language, SMIL, the Synchronized Mul‐
timedia Integration Language.

However, Microsoft web browsers don’t support the SVG/SMIL ani‐
mation elements, which means that they aren’t used a lot on the web
—which means that other browser teams don’t want to invest a lot of
development time on improving their implementations.

28 | Chapter 1: Graphics from Vectors

2 Sarah Drasner, SVG Animations (Sebastopol, CA: O’Reilly, 2017).

Meanwhile, CSS introduced its own animation syntax. CSS anima‐
tion is not yet a full replacement for the SVG/SMIL animation ele‐
ments—but for the animations it can handle, it currently has the
better browser support.

We’ll talk more about your animation options in Chapter 19, or you
can pick up Sarah Drasner’s SVG Animations book for more.2

For our animated stoplight, there are a few different ways to
approach the problem with CSS. The straightforward approach is to
directly animate the fill property. That works fine for solid-color
fills. But browsers are currently buggy about animation when the fill
value is a url() reference to a paint server. As an alternative, we can
create two versions of each light, one with the “off ” gradient and one
with the “on” gradient, layered on top of each other. Then we can
animate the visibility of the top layer.

Figure 1-5. Three stages of an animated stoplight with gradient fills

Activating Animation | 29

http://shop.oreilly.com/product/0636920045335.do

Example 1-8 provides the code for implementing this approach: first
the markup for the layered structure, then the CSS code that brings
it to life. The CSS code includes @keyframes rules for the animation,
and also assigns styles by class. Figure 1-5 shows the three states of
the stoplight—but to get the full effect, run the code in a web
browser!

Example 1-8. Animating the stoplight using CSS keyframes

SVG MARKUP:
<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 height="320px" width="140px" >
 <title>Animated Stoplight, using CSS Keyframes</title>
 <defs>
 <circle id="light" cx="70" r="30" />
 <radialGradient id="red-light-on" fx="0.45" fy="0.4">
 <stop stop-color="orange" offset="0.1"/>
 <stop stop-color="red" offset="0.8"/>
 <stop stop-color="brown" offset="1.0"/>
 </radialGradient>
 <radialGradient id="red-light-off" fx="0.45" fy="0.4">
 <stop stop-color="maroon" offset="0"/>
 <stop stop-color="#220000" offset="0.7"/>
 <stop stop-color="black" offset="1.0"/>
 </radialGradient>
 <!-- More gradients -->
 </defs>
 <style>
 /* CSS styles (see below) */
 </style>
 <rect x="20" y="20" width="100" height="280"
 fill="url(#metal)" stroke="black" stroke-width="3" />
 <g stroke="black" stroke-width="2">
 <g class="red light">
 <use xlink:href="#light" y="80" fill="url(#red-light-off)" />
 <use class="lit"
 xlink:href="#light" y="80" fill="url(#red-light-on)" />
 </g>
 <g class="yellow light">
 <use xlink:href="#light" y="160"
 fill="url(#yellow-light-off)" />
 <use class="lit" xlink:href="#light" y="160"
 fill="url(#yellow-light-on)" visibility="hidden" />
 </g>
 <g class="green light">
 <use xlink:href="#light" y="240"
 fill="url(#green-light-off)" />

30 | Chapter 1: Graphics from Vectors

3 CSS animations will actually override inline style attributes—even !important styles.
But in general, use presentation attributes as fallbacks for CSS overrides.

 <use class="lit" xlink:href="#light" y="240"
 fill="url(#green-light-on)" visibility="hidden" />
 </g>
 </g>
</svg>

New radial gradients are added to represent the lit and off states
of each light.

But to keep this example short, the repetitive code isn’t printed
here; all the gradients follow the same structure, just with differ‐
ent colors and different id values.

The <style> element can be included anywhere, but it’s usually
best to keep it before or after the <defs>, near the top of the file.

The changed markup replaces each light in the stoplight with a
group (<g>) containing two different <use> versions of the cir‐
cle. The first one (bottom layer) has the “off ” gradient. Each
group is distinguished by a class describing which light it is.

The second <use> in each group (top layer) has the “on” gradi‐
ent. It also has the class lit, which we’ll use to access it from the
CSS.

The “lit” layers for the green and yellow lights are hidden by
default, using the presentation attribute for the visibility
property. We use visibility (and not display="none")
because display cannot be animated with CSS. We use presen‐
tation attributes (and not inline styles), so that our CSS rules
will override them:3 these are just the default values that apply if
CSS animations are not supported.

CSS STYLES:
@keyframes cycle {
 33.3% { visibility: visible; }
 100% { visibility: hidden; }
}
.lit {
 animation: cycle 9s step-start infinite;

Activating Animation | 31

}
.red .lit { animation-delay: -3s; }
.yellow .lit { animation-delay: -6s; }
.green .lit { animation-delay: 0s; }

The animation states are defined with an @keyframes block,
which names this animation cycle. There are two states in the
animation: hidden and visible. The time selectors say that after
one-third (33.3%) of the animation cycle, we want the light to
be visible, and at the end of the cycle we want it to be hidden.

The animation is assigned to all the layers with class lit using
the shorthand animation property. Translated to English, the
value means: “use the cycle animation keyframes; advance
through all the keyframes in a 9-second duration; for each
frame, jump immediately to the new value at the start of each
frame’s time period; repeat the entire animation infinitely.” The
step-start value is important for the way we’ve defined the
keyframes: the animation will start in the visible state, and
switch to the hidden state as soon as the 33.3% time point is
past.

All the lights have the same animation keyframes, but we don’t
want them all to turn on and off at the same time. The
animation-delay property staggers the animation cycles for
each light. Negative values mean that the animation starts run‐
ning from a point partway through, when the file loads. The
delay offsets are multiples of one-third of the 9-second total
cycle time, matching the proportions used in the keyframes.

The animation effect should be visible in most desktop and mobile
browsers released since late 2015. Be aware that the animation won’t
run in many older browsers still in use, or in limited-function
mobile browsers such as Opera Mini.

Although this animation (of visibility) works
OK in Internet Explorer (10 and 11), animations
of many SVG-specific style properties are not
supported.

32 | Chapter 1: Graphics from Vectors

You could increase support in Android and iOS
browsers by adding prefixed versions of the ani‐
mation properties (like -webkit-animation-

delay) and by duplicating the keyframes rule
and giving it a prefix, too (@-webkit-
keyframes). You’ll need to decide for yourself
whether the number of visitors to your website
who use those browsers is worth the duplicated
code. If you do decide to add prefixed proper‐
ties, a CSS processor such as Autoprefixer can
help you manage them.

For a purely decorative effect, the lack of perfect browser support
may be acceptable. You still get a stoplight in the other browsers; it’s
just stuck on the red light. In other cases, however, the animation is
essential to your content, and you will need to use JavaScript to cre‐
ate the animated effect. We’ll explore adding JavaScript to the stop‐
light example in Chapter 2.

Chapter 2 will also have more examples of SVG integrated with
HTML, using HTML for text and SVG for graphics. However, text
doesn’t have to be separate from the SVG code: SVG has a <text>
element for drawing text as part of your graphic itself.

Talking with Text
Although it may not be immediately obvious, text has a significant
role in the realm of graphics, and a surprisingly large amount of the
SVG specification is devoted to the placement of and display of text.

When the information in your graphic is essential, you often need to
spell it out in words as well as images. Metadata such as the <title>
element can help, especially for screen readers, but sometimes you
need words on the screen where everyone can see them.

Drawing text in an SVG is done with the creatively named <text>
element. We’ll talk more about text in Chapter 7, but the basics are
as follows:

• The words (or other characters) to be drawn are the child con‐
tent of the element, enclosed between starting and ending
<text> and </text> tags.

Talking with Text | 33

https://github.com/postcss/autoprefixer

• The text is positioned (by default) in a single line around an
anchor point; the anchor is set with x and y attributes.

• The text is painted using the fill and stroke properties, the
same as for shapes, and not with the CSS color property.

Example 1-9 shows the added or changed code, relative to
Example 1-8. Figure 1-6 shows the three states of the animated
result.

Figure 1-6. Three stages of a labeled, animated stoplight

34 | Chapter 1: Graphics from Vectors

Example 1-9. Adding text labels to the animated stoplight

CHANGES TO THE ROOT SVG ELEMENT:
<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 height="320px" width="400px" >

To make room for the labels, the width of the graphic has been
increased.

ADDITION TO THE CSS:
text {
 font: bold 60px sans-serif;
}

A new CSS rule (added to the <style> block) assigns font styles
to all the <text> elements, using the same shorthand font
property used in CSS text styling for HTML.

CHANGED GRAPHICAL SVG MARKUP:
<g stroke="black" stroke-width="2">
 <g class="red light">
 <use xlink:href="#light" y="80" fill="url(#red-light-off)" />
 <g class="lit" fill="url(#red-light-on)">
 <use xlink:href="#light" y="80" />
 <text x="140" y="100" stroke="darkRed">STOP</text>
 </g>
 </g>
 <g class="yellow light">
 <use xlink:href="#light" y="160"
 fill="url(#yellow-light-off)" />
 <g class="lit" fill="url(#yellow-light-on)"
 visibility="hidden" >
 <use xlink:href="#light" y="160" />
 <text x="140" y="180" stroke="darkOrange">SLOW</text>
 </g>
 </g>
 <g class="green light">
 <use xlink:href="#light" y="240" fill="url(#green-light-off)"/>
 <g class="lit" fill="url(#green-light-on)"
 visibility="hidden" >
 <use xlink:href="#light" y="240" />
 <text x="140" y="260" stroke="darkGreen">GO!</text>
 </g>
 </g>
</g>

Talking with Text | 35

Each “lit” version of the light has now been grouped together
with a matching text label. The class has been moved to the <g>
element, so that the entire group will be hidden or revealed as
the animation changes the lights. The fill presentation
attribute has also been moved to the group: both the shape and
the text will inherit the value.

The <text> elements each have an x value that positions them
to the right of the stoplight, and a y value that positions the base
of the text near the bottom of the circle. The text elements also
have a solid-colored stroke assigned directly with a presentation
attribute.

The remaining lights follow the same structure, except that the
lit layer, including the label, is hidden by default.

The stoplight example now contains shapes, paint servers, text, ani‐
mation: most of the key features used in SVG clip art, icons, or data
visualizations. Of course there’s much more to learn—this is only
Chapter 1! But by now you should understand enough to start mak‐
ing tweaks and adjustments to a clip art SVG file—or one you cre‐
ated with a drawing program—by editing the code directly.

Equally important, you should be starting to understand how SVG
works as a structured graphical document, not simply as a picture.
The drawing is divided into meaningful parts, and these parts can be
styled or modified independently.

More Online
To understand how SVG balances its dual nature as a document and
as an image, it helps to step back and think about how vector
graphics work overall. The stoplights we’ve been drawing so far are
all vector graphics, but what does that mean? How do these SVG
graphics differ from the bitmap (or raster) images that you can cre-
ate in a basic Paint application?

Read more in “Understanding Vector Graphics”:

https://oreillymedia.github.io/Using_SVG/extras/ch01-vectors.html

36 | Chapter 1: Graphics from Vectors

https://oreillymedia.github.io/Using_SVG/extras/ch01-vectors.html

The SVG Advantage
The basic concept for SVG is simple: use the descriptive power of
XML to create overlapping lines, shapes, masks, filters, and text that
—when combined—create illustrations. In computer graphics
terms, these shapes are either predefined (rectangles, circles, ovals,
and so forth), or are constructed by sequences of vector instruc‐
tions.

The SVG specification, originally finalized in 2002, was complex and
extensive. The specifications include more than just the XML
markup. They define many new CSS style properties for SVG con‐
tent (some of which have since been adopted for CSS styling of
other content) and a complete set of custom DOM interfaces for
manipulating SVG elements.

It has taken time for SVG to reach its potential. Some would argue it
is not there yet. Unlike HTML, SVG did not develop in concert with
extensive real-world experience from software implementations and
web designers.

For the first few years, there were only two implementations of the
complete standard: the Adobe SVG viewer, a plug-in for Internet
Explorer, and the Apache Batik Squiggle viewer, an open source
Java-based tool. Limited implementations of SVG were available in
other tools, however, including a version integrated into Mozilla
Firefox in 2003.

The Adobe SVG viewer was discontinued after Adobe merged with
Macromedia, makers of Flash. Batik remains of limited use, primar‐
ily as a component of other Java-based tools. However, by 2009, all
major browsers either had or were planning native (no plug-in
required) SVG implementations. The browser-based SVG tools have
only recently reached the performance and support levels of the old
Adobe plug-in.

This delay resulted in a shift in focus: from extending SVG as a
standalone dynamic graphics tool to integrating SVG within the rest
of the web platform.

Bandwidth availability has improved dramatically since SVG was
first proposed. On most broadband networks, the time to download
a large raster diagram is comparable to the time for a vector graph‐
ics program to calculate how to render a complex image. Nonethe‐

The SVG Advantage | 37

less, many people are accessing the web on mobile networks where
large downloads are both slow and costly, so compact file sizes still
matter.

The benefits of SVG go well beyond file size:

Familiar syntax
SVG is markup and styles, the same as HTML-based web con‐
tent. It can be generated by external data feeds and processes on
the fly, making it a natural part of web server pipelines. It can
also be integrated within other XML document types, which
includes the file formats used by major word processing and
publishing systems.

Because SVG is XML and CSS, with an established grammar
and schema, code-editing tools can check for syntax errors or
help fill in values quickly, while also offereing visualization tools
to display the SVG even as you type.

Dynamic and interactive
The vector elements in SVG describe not only what the graphics
look like but also what they are. If the elements are modified,
their appearance can be recalculated. SVG on the web can be
interactive and dynamic, using scripts to manipulate the docu‐
ment in response to user interaction or based on data retrieved
from separate files or web services.

Even without JavaScript, SVG can be dynamic: animation ele‐
ments and CSS selectors can show, hide, or alter content as the
user interacts with the graphic. And of course, SVG can be
hyperlinked to other documents on the Internet.

Accessible and extendable
SVG supports text-based metadata, not just about the image as a
whole, but about individual components within the picture.
Maps can internally identify roads, buildings, geographic
boundaries, and more; diagrams can provide relevant explana‐
tory and even interactive information; metadata systems can
read an SVG document and derive from it a very rich and
sophisticated view of the meaning behind the image.

Resolution-independent
SVG, as a vector format, automatically adapts to the capabilities
of the display hardware. There is no need to create new files for
the latest higher-resolution screens. When working with SVG,

38 | Chapter 1: Graphics from Vectors

you can apply and undo infinite transformations or filter effects
without any irreversible degradation of image quality.

Nonetheless, the biggest advantage for SVG on the web remains the
way in which it is integrated with other web platform languages.

Compare it with Portable Document Format (PDF): PDF files can
contain PostScript vector graphics code, and are widely available on
the internet. But PDF documents exist separate and apart from the
websites that link to or embed them.

SVG images, in contrast, are part of the web, and can interact with
other web technologies such as HTML, XML, CSS, and JavaScript.
Chapter 2 explores the bigger picture of SVG in the context of these
other web languages.

Summary: An Overview of SVG
This chapter has breezed through many different features of SVG,
and skipped over many more. The intent has been to give you the
lay of the land, so you can keep your bearings as we start exploring
in detail.

One of the key ideas, beyond the general structure of SVG and its
element or attribute names, is that SVG can (and in many cases
should) be approached programmatically. There are often multiple
ways to create the same picture, but each will differ in how it can be
used. Creating effective interactive applications with SVG requires
seeing the language as being, like HTML, a complex toolset of inter‐
connected parts.

While you can use tools such as Adobe Illustrator or Inkscape to
draw graphical pieces, the language comes into its own when you
treat it as a powerful way to build interfaces—widgets, maps, charts,
game controls, and more. Although SVG can replace icons or art
that you currently represent as static images (or animated GIFs), the
true advantages of SVG are in the ways it is different from any other
image type—in particular, in the ways it interacts with other web
design languages.

Summary: An Overview of SVG | 39

More Online
We hope you find the chapter text and examples easy to read and
learn. But we know that you’re not going to memorize every last
detail. It’s always nice to have a reference guide to look up the exact
spelling or options for a given feature. MDN is a fairly good refer-
ence, with links to the source specifications. But we’ve put together
our own.

The “SVG Elements and Attributes” guide contains lists of all the SVG
elements and attributes we introduce in the book (and a few we
haven’t had room for):

https://oreillymedia.github.io/Using_SVG/guide/markup.html

You can start with the section “Common Attributes for All SVG Ele-
ments”, which summarizes the attributes that can be used on any
SVG-namespaced element.

40 | Chapter 1: Graphics from Vectors

https://developer.mozilla.org/en-US/docs/Web/SVG
https://oreillymedia.github.io/Using_SVG/guide/markup.html
https://oreillymedia.github.io/Using_SVG/guide/markup.html#common-attributes
https://oreillymedia.github.io/Using_SVG/guide/markup.html#common-attributes

CHAPTER 2

The Big Picture
SVG and the Web

In the last few years, a quiet revolution has been taking place in web
browsers and operating systems. Solid implementations of SVG have
become standard in both desktop and mobile browsers.

As this has happened, web developers and designers have become
more confident in using SVG to display content that moves beyond
HTML layout. They have also been combining SVG with the power
of the newer, efficient, and standardized JavaScript engines to build
sophisticated information graphics and interactive games. Anyone
working with data visualization on the web is now gaining familiar‐
ity with SVG as a tool.

The history of SVG has not been straightforward.

As with HTML, CSS, and the other standards that make up the web,
the development of SVG has been a process of back-and-forth com‐
promises between the authors of specifications, the builders of web
browsers that implement them, and the designers of web pages that
use them. Unlike those other languages, however, the SVG specifica‐
tion did not develop slowly and incrementally—it was created fully
formed, as an incredibly complex graphics language.

If you work with HTML and CSS web design, you will find many
aspects of SVG familiar—and a few quite different. The SVG stan‐
dard was built upon other web standards, most notably XML and
CSS, and has a complex DOM that can be manipulated with Java‐
Script. In that way, it is very similar to HTML. But because the

41

primary focus of SVG is graphics, not text, it intersects and connects
the parts of the web platform that you usually try to keep separate:
content, formatting, and functionality.

This chapter starts with a refresher about the main web languages
and their separate roles. It then looks at how SVG interacts with
these languages. We adapt the stoplight example from Chapter 1 to
show how you can build on a simple SVG to create complete web
pages.

SVG and the Web Platform
If you are only interested in SVG as an image format—as a tool to
create static, unchanging pictures—you don’t need to worry too
much about the other web standards. To take full advantage of SVG
as a graphical web application, however, you will need to leverage
the entire web platform to build and extend your graphics.

More Online
What is the web platform? It is the interconnected set of coding lan-
guages that web browsers understand: HTML and XML, HTTP, CSS,
and JavaScript. And SVG. Together, these are the foundation on
which you can build complex websites.

To make the most of SVG on the web, you’ll need to understand
what each language adds to the web in general, and to SVG in par-
ticular. Read more about the division of responsibilities between
web languages in “The Web Platform”:

https://oreillymedia.github.io/Using_SVG/extras/ch02-web-
platform.html

Where does SVG fit on the web platform? SVG is an XML language,
describing a structured document. However, because SVG is a
graphics format, the structure of the document cannot be separated
from its visual presentation. SVG elements represent geometric
shapes, text, and embedded images that will be displayed onscreen
according to a clearly defined geometric layout. Other markup
defines complex artistic effects to be applied to the graphical
elements.

42 | Chapter 2: The Big Picture

https://oreillymedia.github.io/Using_SVG/extras/ch02-web-platform.html
https://oreillymedia.github.io/Using_SVG/extras/ch02-web-platform.html

SVG exists because not all documents can be displayed with HTML
and CSS. Sometimes content and layout are inseparable. In charts
and diagrams, the position of text conveys its meaning as much as
the words it contains. Other meaning is conveyed by symbols, col‐
ors, and shapes—without any words at all. Any complete representa‐
tion of the content of these documents includes the layout and
graphical features.

The same could be said about any image, and images have been part
of web pages since the early days of HTML. The W3C even standar‐
dized the PNG (Portable Network Graphics) image format, which
encodes icons and diagrams in compact files and can be used
royalty-free by any software or developer.

But SVG is different. All other image formats on the web are dis‐
played as single, complete entities. SVG, as an XML document, has
structured content with a corresponding DOM (document object
model). Stylesheets and scripts can access and modify the compo‐
nents of the graphic. Search engines and assistive technologies can
read text labels and metadata.

SVG on the web can be used as independent files—as complete web
pages or web apps—with hyperlinks and JavaScript-based interac‐
tion to connect it to the rest of the web. However, SVG was not
designed to display large blocks of text. Nor does it include form-
input elements or other specialized features of HTML.

The most effective use of SVG is not as a replacement for HTML, but
as a complement to it. SVG web applications are nearly always pre‐
sented as part of larger HTML web pages, either as embedded
objects or—with increasing frequency—directly included inline
within the HTML markup.

The Changing Web
As SVG has been integrated into web pages, the web pages them‐
selves have changed. The HTML5 specification and the many CSS
level 3 (and beyond!) modules have significantly changed the rela‐
tionship between SVG and the rest of the web platform. The dra‐
matically improved performance of JavaScript since 2009 and the
rise of JavaScript-based SVG libraries, such as Snap.svg and D3.js,
are smoothing away many of the rough edges between implementa‐
tions.

The Changing Web | 43

This book uses the terms HTML5 and CSS3
fairly generically. One of the main references for
HTML, the WHATWG Living Standard, doesn’t
use any version numbers; the competing spec at
W3C is progressing through version numbers
5.1 to 5.2. These incremental changes can all be
thought of as HTML5+.
On the CSS side, the level 3 and 4 modules of
existing features are being developed at the same
time as level 1 and 2 modules for new features.
All of these (essentially, anything beyond the
CSS 2.1 specification) can be thought of as
CSS3+.

Nonetheless, when working with SVG in the browser, you must
always be aware that implementations of the SVG standards are
imperfect, incomplete, and frequently changing. This becomes all
the more important when you are taking advantage of the features
of HTML5 and CSS3 that directly integrate SVG. Cross-browser
compatibility is an issue not only as it relates to support of the SVG
standard, but also as it relates to support for new features in HTML,
CSS, DOM, and JavaScript.

At the time of writing, the best supported version of SVG is 1.1; this
specification was created in 2005, without any major new features
being added to the original SVG standard. It was republished in
2011 as a second edition, with corrections and a new format, but the
same features.

A proposed SVG 2 standard was published in September 2016. It
adds many commonly requested features, clarifies numerous details,
and improves coordination with HTML and CSS. Other more
advanced SVG features are being proposed through additional
modules.

There have been other SVG efforts, but these
have not had a significant impact on the web.
The draft SVG 1.2 standard was ambitious,
adding features that would put it in line to
replace Microsoft PowerPoint, as well as
advanced vector manipulation of graphics. It
was abandoned as unworkable when it became

44 | Chapter 2: The Big Picture

https://html.spec.whatwg.org/multipage/

clear that the future of SVG would be in the
browsers, not specialized software.
A simplified standard, SVG Tiny, was developed
for mobile devices. The SVG Tiny 1.2 standard
was finalized, with some new features from the
main SVG 1.2 proposal; however, it fell out of
favor as mobile browsers shifted toward display‐
ing standard web pages.
At the time of writing, there is some risk that
SVG 2 may be added to this list. Some features
have initial browser implementations, but on
other features, none of the implementation
teams are ready to make the first move.

The other web platform languages have also been revised, in parallel
to the SVG work. Figure 2-1 sketches out a rough timeline of the
past quarter-century of web standards. At the time SVG 1.1 was
finalized, the established standards in other areas of the web
included CSS level 2, DOM level 2, and ECMAScript (ES) level 3.

Many SVG-centric tools, such as Apache Batik
and libRSVG, have not significantly updated
their CSS implementations since then, nor (in
the case of Batik) their DOM and JavaScript
implementations.

In contrast, as of SVG 2’s publication, the latest web browsers all
support DOM level 3 (and much of DOM 4) and ES 5.1 (and some
ES 6), as well as many CSS3+ features. And more features are added
with every browser update.

This book focuses on SVG in the web browser, and it will often take
advantage of the new features from other web specifications. How‐
ever, many older web browsers and other software are still in use.
We will identify areas where you’re likely to stumble across
backward-compatibility issues, and suggest workaround or fallback
options.

The Changing Web | 45

Figure 2-1. Timeline of web platform standards. Solid arrows indicate
direct extensions of existing standards; dashed arrows represent more
indirect inspiration. Specifications that were abandoned, such as SVG
1.2 or ECMAScript (ES) 4, are not included.

46 | Chapter 2: The Big Picture

There is another area of browser support to keep in mind: support
for SVG at all.

Every major web browser released since 2012 supports both SVG
images and inline SVG. But at the time of writing (mid-2017), some
older browsers are still in use. The ones you are most likely to need
to worry about:

• Internet Explorer versions 8 and earlier
• the stock browser for Android versions 2.3 and earlier

If any of these make up an important component of your website’s
audience (based on your user-analytics data), you’ll need to consider
fallback options.

This book is also very aware of the fact that SVG is still developing.
New CSS modules are extending SVG functionality, and SVG 2
introduces a variety of changes. Throughout the book we will high‐
light these proposed features, which—while not quite ready for pro‐
duction work—are useful to keep in mind as you learn the language.
A graphic that is difficult to create now may be much easier with a
new tool. The possibilities will be highlighted with “Future Focus”
sidebars like the following:

Future Focus
A Crystal Ball

In these boxes, we’ll try to predict the future of SVG.

Sometimes the predictions will be clear, because there is wide agreement
about what features should be adopted, and it’s just a matter of waiting for
wider browser support. Other times, the image in our crystal ball will be murky
and out of focus, because different proposals are still being debated. But in
either case, you should be aware that some of the recommendations and best
practices discussed in this book may change as SVG matures and adapts to its
role on the web.

While there is still some inconsistency between the various SVG
implementations, most browsers now have sufficient support for
static scalable vector graphics and JavaScript-based dynamic content

The Changing Web | 47

that it is possible to build complete graphical web applications with
SVG.

JavaScript in SVG
If you’ve used JavaScript to create a dynamic HTML page, you can
use it to create dynamic SVG. SVG elements inherit all the core
DOM methods to get and set attributes and styles. The JavaScript
itself is parsed and run by the same JS interpreter and just-in-time
compiler that runs scripts in your HTML pages.

That means that you can use modern JavaScript
syntax (ES6 and beyond) in modern browsers.
However, the examples in this book all use ES5
syntax that should run without error on any
browser that supports SVG.

Of course, there are a few complications: SVG is a namespaced XML
language, so you need to use namespace-sensitive DOM methods
when you’re creating elements or setting xlink attributes. This is
true even when creating inline SVG elements in an HTML docu‐
ment. Element and attribute names are also always case-sensitive
when created via the DOM.

Programmers switching from HTML to SVG often create code like
the following, and wonder why nothing is displaying on the screen:

var svg = document.createElement("svg");
var use = document.createElement("use");
use.setAttribute("xlink:href", "#icon");
svg.appendChild(use);
document.body.appendChild(svg);

This code will create elements that look correct if you inspect them
in your browser’s developer tools. If you copy and paste the gener‐
ated markup to a new file, it will even work correctly if you open
that file. But that’s because your friendly neighborhood HTML
parser will read the markup in that file and insert the correct name‐
spaces. The DOM methods don’t do that for you.

Creating elements named “svg” and “use” in an HTML document,
without setting a namespace, just creates HTMLUnknownElement
objects with those names. Doing the same in an SVG document cre‐
ates generic XML Element objects.

48 | Chapter 2: The Big Picture

If you’re ever unsure of what type of JavaScript
object you’re working with, you can print its
constructor.name property to the console. The
constructor property of an object is the func‐
tion that defined it. And a function’s name prop‐
erty is a simple string containing its, well, name.

In the same way, setting an attribute with the name xlink:href cre‐
ates an attribute with that literal name, including the : character.

The following code creates similar-looking elements, but this time
with the correct namespaces. It will add an inline SVG icon to the
end of the page (assuming you already have another SVG element
with id="icon" somewhere in the page):

var ns = {svg: "http://www.w3.org/2000/svg",
 xlink: "http://www.w3.org/1999/xlink"};
var svg = document.createElementNS(ns.svg, "svg");
var use = document.createElementNS(ns.svg, "use");
use.setAttributeNS(ns.xlink, "href", "#icon");
svg.appendChild(use);
document.body.appendChild(svg);

It’s definitely not ideal. Once again, you have to hardcode XML
namespace URLs in your code.

Alternatively, you can use the HTML parser from JavaScript, by set‐
ting the innerHTML property of an HTML element:

var div = document.createElement("div");
div.innerHTML = '<svg><use xlink:href="#icon" /></svg>'
document.body.appendChild(div.firstChild);

Much better! But be warned: this only works in an HTML docu‐
ment, which will correctly create an HTMLElement object for the
<div>.

The latest versions of web browsers even support innerHTML on
SVG elements, but that is a recent addition to the core DOM specs.
It isn’t supported in older browsers, because innerHTML was previ‐
ously only defined for HTML elements.

In browsers that support it, setting innerHTML
on an SVG element will use either the HTML or
XML parser, depending on what type of docu‐
ment the code is running in.

JavaScript in SVG | 49

As we discuss in Chapter 4, JavaScript libraries that are designed to
work with SVG can take care of this namespace hassle—but Java‐
Script libraries designed only for HTML can create the same prob‐
lems as the initial broken code snippet.

Also be aware that some methods you may be familiar with from
HTML are not part of the core DOM specifications. Some of these,
such as the focus() method to control keyboard focus, have been
added to SVG elements in SVG 2—but they aren’t universally imple‐
mented yet.

Even worse, some features, such as className, look similar between
HTML and SVG, but are structured differently. Many existing API
patterns were ignored by the original SVG DOM definitions. List
data types used numberOfItems instead of length, and didn’t sup‐
port JavaScript object [index] access; SVG 2 has added the more
familiar patterns, but again—support isn’t universal yet.

Because of these changes, scripts might work
well in your browser but stumble in others. At
the time of writing, Chrome and Firefox support
most of the SVG 2 DOM changes, but Safari/
WebKit and Microsoft Edge are a little further
behind. And of course, older versions of all
browsers may have problems.

As a sort of consolation prize for the missing HTML DOM methods
and mismatched patterns, the SVG specifications introduced a vari‐
ety of SVG-specific methods and properties to make graphical cal‐
culations easier. Unfortunately, many of these features were not
universally implemented, and some have become obsolete as SVG
switches to an animation model more compatible with CSS. None‐
theless, there are still a few useful features that can be relied on in
most web browsers.

You can do a lot with these and the core DOM methods that have
good support. We’ll have numerous simple examples of scripted
SVG throughout the book.

50 | Chapter 2: The Big Picture

More Online
The “Select SVG DOM Methods and Objects” guide has a summary
reference of the DOM methods and objects we use in the examples:

https://oreillymedia.github.io/Using_SVG/guide/DOM.html

Which brings up the question: how do you get your JavaScript into
your SVG?

If you’re working with inline SVG, any script running in your
HTML file has access to your inline SVG elements. So you can
include an HTML <script> element in the page <head> or <body>,
as you usually would.

SVG also has its own <script> element. To add JavaScript to a
standalone SVG file, you can include a <script> element anywhere
between the opening and closing <svg> tags. The SVG <script> ele‐
ment is very similar to its HTML counterpart, but they aren’t
identical.

If you include a <script> element as a child of
an <svg> element that is inline in HTML, the
parser will create an SVGScriptElement, not an
HTMLScriptElement.

To include an external JavaScript file with an SVG <script> ele‐
ment, use an xlink:href attribute (not src like in HTML) to give
the file location.

If you instead include the JavaScript code between the <script>
tags, remember to wrap it in an XML character data (CDATA) block,
so that less-than and greater-than operators or ampersands (<, >,
and &) do not cause XML validation errors. Combining both types
of scripts would look like Example 2-1.

Example 2-1. Adding scripts to a standalone SVG file

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink" >
 <title>My Standalone D3 Data Visualization</title>

JavaScript in SVG | 51

https://oreillymedia.github.io/Using_SVG/guide/DOM.html

 <script xlink:href="/assets/d3.min.js" />
 <script><![CDATA[
 if (1 < 0) {
 console.log("Uh oh, math is broken.",
 "But my XML markup isn't.");
 }
 /* more & more JS code */
]]></script>
</svg>

Since we’re using an xlink:href attribute later, we included the
extra namespace declaration on the root <svg> element.

Because this is XML, a <script> tag can be self-closing
(with />) if it doesn’t have any text content.

The <![CDATA[...]]> structure can be used anywhere in an
XML file to indicate that the enclosed text should be treated as
plain text, not markup. It’s usually required for JavaScript, and
can also be used for CSS code that might have special characters
in comments.

The CDATA markup should also be fine if you copy the SVG code
into an HTML file, but only if it is inside an inline <svg>, not in a
(non-XML) HTML script.

To be extra sure that your scripts don’t break,
regardless of XML or HTML parser, you can use
JavaScript line comments to hide the CDATA
markup:

<script>//<![CDATA[
 /* This script will work wherever. */
//]]></script>

As in HTML, scripts in an SVG file are executed in the order they
appear in the markup. When a script references an external file, the
browser waits until the file has downloaded and run before continu‐
ing. The SVG <script> element does not yet have an async or
defer attribute, equivalent to those added to HTML5. Of course, if
you’re using inline SVG, you can use asynchronous HTML script
elements to manipulate your SVG elements.

52 | Chapter 2: The Big Picture

There’s one other way to get JavaScript into your
SVG: onevent attributes, like onload or
onclick. These work much the same way as in
HTML, and—just like in HTML—they are
mostly discouraged in the modern web.

We’ve already alluded to one common use of scripted SVG: cross-
browser animation support. Example 2-2 shows JavaScript that
could be used to replace the CSS animation from Examples 1-8 or
1-9 from Chapter 1. The code uses classes to select the elements, so
it works with either the simple or labeled SVG markup: just remem‐
ber to remove the CSS animation code from the <style> element!

The <script> element should be included at the end of the file
(right before the closing </svg> tag). That way, it won’t run until the
rest of the file has been parsed.

Example 2-2. Using JavaScript to animate an SVG stoplight

<script><![CDATA[
(function(){

 var lights = ["green", "yellow", "red"];
 var nLights = lights.length;
 var lit = 2;

 function cycle() {
 lit = (lit + 1) % nLights;

 var litElement, selector;
 for (var i=0; i < nLights; i++) {
 selector = "." + lights[i] + " .lit";
 litElement = document.querySelector(selector);

 litElement.style["visibility"] =
 (i==lit)? "visible" : "hidden";
 }
 }

 cycle();
 setInterval(cycle, 3000);

})();
]]></script>

JavaScript in SVG | 53

The code is contained in an immediately-invoked anonymous
function. Although not required, this is good coding practice to
avoid conflicts between different scripts on a page. A function
creates a closure to encapsulate variables. The “immediately-
invoked anonymous” part means we are going to run it immedi‐
ately after defining it, and don’t need a name to refer to it later.

The lights array holds the class names that distinguish each
light group. Because the number of lights won’t be changing, we
can store it in a variable as well.

The red light is initially lit in the markup; this corresponds to
index 2 in the lights array (JavaScript array indices start at 0
for the first element).

The cycle() function will change the lights.

To start the cycle, the lit variable is advanced by one; the mod‐
ulus operator (%) ensures that it cycles back to 0 when it reaches
the length of the array.

At each stage of the cycle, each color of light will be modified to
either hide or show the “lit” graphic. One of the three won’t
change, but updating them all keeps the code simple and
ensures that it only depends on the lit state, not on knowledge
of the current DOM styles.

The “lit” <use> element for each color is retrieved via the
querySelector() method; a CSS selector of the form “.red .lit”
will select the first element of class lit that is a child of an ele‐
ment with class red.

The visibility style property is set to either visible or
hidden according to whether this light should currently be lit.
Modifying the style property of an element object has the same
effect as setting an inline style. It therefore overrides the presen‐
tation attribute in the markup.

The cycle function is run once to turn the light green, and then
is called at regular intervals on a 3-second (3,000ms) timer.

54 | Chapter 2: The Big Picture

The anonymous function is run immediately: the syntax
(function(){ /*...*/ })() parses and runs the encapsulated
code.

Although this isn’t a full web application—there is no interaction
with the user—it demonstrates how SVG elements can be accessed
and modified from a script.

There’s nothing SVG-specific about the JavaScript code: it selects
elements using CSS selectors and the document.querySelector()
method, and sets the visibility style according to which lit bulb
should be displayed. A timer runs the cycle again after every 3-
second interval.

The querySelector() method and its sibling
querySelectorAll() are convenient ways to
locate elements. Because they use CSS selectors,
they can find elements based on any combina‐
tion of tag names, class names, and parent-child
relationships. However, versions of WebKit and
Blink browsers prior to mid-2015 had a bug that
prevented them from working for SVG mixed-
case tag and attribute names, such as
linearGradient or viewBox, in HTML docu‐
ments. Related bugs affected the getElements
ByTagName() methods.
To improve backward compatibility, use classes
on these elements if you need to select them in
your inline SVG code.

JavaScript and SVG can do more than recreate simple animations, of
course.

Scripts can be used to implement complex logic and user interac‐
tion. They are also useful for calculating the coordinates of shapes in
geometric designs and data visualizations. You could even use Java‐
Script to implement your own form-input elements or wrapped-text
blocks in SVG. But it’s generally easier to use HTML for that.

The stoplight graphic now cycles through green, yellow, and red
lights when you view it in any modern web browser, and even in
Internet Explorer 9 (the earliest IE to have SVG support). However,

JavaScript in SVG | 55

you won’t get any animation, in any browser, if you reference the
SVG from the src attribute of an HTML element!

It’s an extra complication when you’re dealing with SVG in web
pages: the behavior of SVG on the web can be quite different,
depending on how the SVG is incorporated in the page.

Embedding SVG in Web Pages
If you’re using SVG on the web, you’ll usually want to integrate the
graphics within larger HTML files. There are three main ways that
SVG can be added to web pages:

• SVG as an image
• SVG as an embedded document
• inline SVG

Each embedding mode has advantages and disadvantages.

SVG as an HTML Image
The most straightforward method of combining SVG and HTML is
to use a self-contained SVG file as an image in the HTML tag.

Figure 2-2. Sample web page using an SVG image file

56 | Chapter 2: The Big Picture

Example 2-3 provides the code for a super-simple web page using
the CSS-animated SVG stoplight from Example 1-8. Figure 2-2
shows the result.

Example 2-3. CSS-animated stoplight as an image in a web page

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>SVG Images within HTML</title>
 <style>
 body {
 background-color: #222;
 color: white;
 margin: 0; padding: 0;
 font-family: sans-serif;
 }
 header, main {
 border-bottom: dashed yellow;
 }
 header {
 min-height: 12em;
 font-family: serif;
 }
 header h1 {
 margin: 0;
 color: red;
 text-shadow: yellow 0 0 4px, orange 0 0 2px;
 font-size: 500%;
 }
 header img {
 height: 10em;
 float: left;
 margin: 1em 2em;
 }
 p { padding: 0.5em; }
 </style>
</head>
<body>
 <header>
 <img src="../ch01-overview-files/animated-stoplight-css.svg"
 role="img" alt="Traffic light" />
 <h1>Tony’s Towing</h1>
 </header>
 <main>
 <p>Main text goes here, but WOW
 look at that image in the header!</p>
 </main>

Embedding SVG in Web Pages | 57

</body>
</html>

The element should be familiar to most web developers. The
src attribute provides the URL of the image file. An alt attribute
provides text that will be shown if the user has turned off image
downloads, or is using a screen reader. It will also be shown in older
browsers that can’t render SVG.

The role="img" attribute would normally be redundant on an
 element. It is required to fix an SVG-specific accessibility bug
in Apple’s VoiceOver screen reader:

Without role="img", some versions of WebKit
+VoiceOver treat an element with an SVG
source as an embedded document. The alt
attribute is ignored, as the browser instead looks
for titles in the SVG file.
This is one more reason you should always have
a <title> in your standalone SVG files. But the
title for the SVG might not be a good alternative
text for the way you are using it in this web page.
So use role="img" and alt to get consistent
alternative text for all users.

In HTML5+, the element has a big sister, the <picture> ele‐
ment, and a new attribute srcset. Together, they allow you to give
the browser a set of alternative versions of the image to use in differ‐
ent contexts. The most common use is to provide low- and high-
resolution versions of a photograph, for different screen sizes and
screen resolutions.

With SVG images, you don’t need to worry about screen resolution.
So you won’t need srcset. But <picture> can still be useful.

A <picture> element allows you to provide alternative file types as
well as alternative file sizes. As a result, it can be used to provide a
fallback raster image for SVG.

The <picture> element is always used in combination with an
. It groups that image with the <source> elements that define
alternative files. For SVG fallback, the element references
your fallback image (a PNG, GIF, or JPEG), and will be used in older

58 | Chapter 2: The Big Picture

browsers. A <source> element references the SVG equivalent, and is
used in modern browsers. The syntax is as follows:

<picture>
 <source type="image/svg+xml" srcset="url-to-graphic.svg" />

</picture>

Note that you must use srcset, not src, on a <source> element
inside a <picture>, even though there is only one file in the set.

Browsers that support SVG but don’t support
<picture> will get the fallback. This includes
Internet Explorer 9 to 11, and Safari 4 to 9. All
browsers released in 2016 or later (and some
released before then) will get the SVG.
If you really want users on medium-old brows‐
ers to get the SVG instead of the PNG, you can
add a JavaScript polyfill like PictureFill. But you
have to weigh the benefits of SVG against the
cost of the extra JavaScript.

There are a couple other features to emphasize in Example 2-3. First,
note that the height of the image is being set in em-units, versus the
height of 320px that was set in the SVG file (Example 1-8). Just like
other image types, the SVG can be scaled to fit. Unlike other image
types, the image will be drawn at whatever resolution is needed to
fill the given size. The width of the image isn’t set in Example 2-3;
since both height and width were set in the SVG file, the image will
scale in proportion to the height.

Or at least, that’s how it usually works. Internet
Explorer scales the width of the image area in
proportion to the height you set, but doesn’t
scale the actual drawing to fit into that area.
There’s an easy solution, however; it involves the
viewBox attribute that we’ll discuss in Chapter 8.

The second thing to note is that this is the animated SVG that is
embedded. Declarative animation, including CSS animation and
SVG/SMIL animation elements, runs as normal within SVG used as
images—in browsers that support that animation type at all.

Embedding SVG in Web Pages | 59

https://scottjehl.github.io/picturefill/

Or at least, that’s how it’s supposed to work.
MS Edge prior to version 15 (released April
2017) and Firefox prior to version 51 (released
end of 2016) will not animate an SVG embedded
as an image in a web page, even though CSS ani‐
mation is supported in other SVG elements and
SMIL-style animation elements in images are
supported in Firefox!
And of course, older browsers do not support
CSS animations, in SVG images or otherwise.

Why not use the scripted SVG animation from Example 2-2, which
has better browser support? Because scripts do not run within
images. That’s not a bug, it’s defined in the HTML spec: for security
and performance reasons, files loaded as images can’t have scripted
content.

There are some other important limitations of SVG used as images:

• SVG in images won’t load external files (such as external style‐
sheets or embedded photos).

• SVG in images won’t receive user interaction events (such as
mouse clicks or hover movements).

• SVG in images can’t be modified by the parent web page’s scripts
or styles.

The limitations are the same if you reference an SVG image from
within CSS, as a background image or other decorative graphic (an
embedding option we’ll discuss more thoroughtly in Chapter 3).

Interactive Embedded SVG
If you want to use an external SVG file without (most of) the limita‐
tions of images, you can use an embedded <object>, replacing the
 tag from Example 2-3 with the following:

<object data="animated-stoplight-scripted.svg"
 type="image/svg+xml" >
</object>

If you try this, you’ll note that the graphic doesn’t scale to fit like the
image did. Again, that can be fixed with a viewBox attribute.

60 | Chapter 2: The Big Picture

You can also add a fallback for older browsers, by including an
 element as a child of the <object> element (with the src of
the referencing a raster image file), but beware that some
older browsers (including most versions of Internet Explorer) will
download both the SVG and the fallback.

You could also use an <embed> element or <iframe> with much the
same effect. There is slightly different support in older browsers and
no fallback option. As we discuss in Chapter 8, scaling behavior is
also different for <iframe>, and less consistent between browsers.

Embedded objects can load external files, run scripts, and (with a lit‐
tle extra work and some security restrictions) use those scripts to
interact with the main document. However, they are still separate
documents, and they have separate stylesheets.

Just like an HTML file in an <iframe>, an
embedded SVG object should be a fully interac‐
tive and accesible part of the main web page.
However, they can be a little buggy in browsers.
Test carefully, including keyboard interaction
and screen reader exposure, if you’re embedding
interactive SVG as an <object>.

There’s another option for fully interactive SVG: inline SVG in the
HTML markup. Inline SVG has its own complications, but also
many unique features.

Using SVG in HTML5 Documents
Perhaps the biggest step toward establishing SVG as the vector
graphics language for the web came from the people who work on
HTML standards.

When SVG was first proposed, as an XML language, it was expected
that developers would insert SVG content directly into other XML
documents—including XHTML—using XML namespaces to indi‐
cate the switch in content type. But most web authors weren’t inter‐
ested in adopting the stricter syntax of XML when browsers
rendered their HTML just fine.

Using SVG in HTML5 Documents | 61

Modern HTML standards have developed after
much conflict between the W3C (World Wide
Web Consortium), promoting XHTML, and a
parallel group, the WHATWG (Web Hypertext
Application Technology Working Group), pro‐
moting a “living standard” of HTML as develop‐
ers and browsers used it. Both groups publish
competing HTML specifications.
By the time the W3C decided that HTML5 was
stable (in 2014), they had long yielded the XML
debate. Authors can choose to use XML-
compatible markup, but non-XML HTML is the
default. Some discord between the two groups
remains, but the net effect is that the latest
HTML standards are (mostly) reflected in the
latest browsers, and have been updated based on
plenty of real-world experience.

With HTML developing separately from XML, it could have easily
left SVG behind as another too-complicated coding language.
Instead, the HTML5 standard (and the WHATWG living standard)
welcomed the idea of SVG content mixed in with HTML markup,
just without the need for XML namespaces.

By making SVG a de facto extension of HTML, the HTML working
groups acknowledged that SVG was a fundamental part of the future
of the web. This has had—and will continue to have—a huge impact
on SVG.

HTML5 also introduced a number of new elements and attributes.
The examples in this book will touch on some of the new HTML
features but won’t go into too much detail; there are plenty of great
resources on using HTML5 out there.

For using SVG, the most important thing to know about HTML5 is
the <svg> element.

An <svg> element in HTML represents an SVG graphic to be
included in the document. Unlike other ways of embedding SVG in
web pages, the graphic isn’t contained in a separate file; instead, the
SVG content is included directly within the HTML file, as child con‐
tent of the <svg> element.

62 | Chapter 2: The Big Picture

The integration isn’t one-way. It’s also possible to include HTML ele‐
ments as children of SVG content. The SVG <foreignObject> ele‐
ment creates a layout box within an SVG drawing, in which an
HTML document fragment can be displayed.

Again, the elements are in the same file, nested in the same DOM.
The HTML elements must be marked with proper XML namespaces
in a standalone SVG file, but the HTML parser automatically
accepts HTML content inside <foreignObject>.

The <foreignObject> was never supported in
Internet Explorer, although it is available in
Microsoft Edge. Foreign objects in SVG are
somewhat quirky in most web browsers, and are
best used only for small amounts of content.

There are some key differences to keep in mind between using SVG
code in HTML5 documents versus using it in standalone SVG files.

The most common area of difficulty is XML namespaces. The
HTML parser ignores them.

If a web page is sent to the browser as an HTML file, namespace
declarations have no effect. Namespace prefixes will be interpreted
as part of the element or attribute name they precede, except for
attributes like xlink:href and xml:lang, which are hardcoded into
the parser. If the same markup is parsed by the XML parser (for
example, if the web page is sent to the browser as an XHTML file),
the resulting document object model may be different.

This book will try to use the most universally
compatible syntax for SVG, and to identify any
areas where you’re likely to have problems.

To further confuse matters, the DOM is sensitive to namespaces (as
we warned earlier in the chapter). If you are dynamically creating
SVG, you need to be aware of XML namespaces regardless of
whether or not you’re working inside an HTML5 document.

Another important feature of SVG in HTML5 is that the <svg> ele‐
ment has a dual purpose: it is the parent element of the SVG

Using SVG in HTML5 Documents | 63

graphic, but it also describes the box within the web page where that
graphic should be inserted. You can position and style the box using
CSS, the same as you would an or <object> referencing an
external SVG file.

Including SVG content within your primary HTML file enables
scripts to manipulate both HTML and SVG content as one cohesive
document. CSS styles inherit from HTML parent elements to SVG
children. Among other benefits, this means that you can use
dynamic CSS pseudoclass selectors—such as :hover or :checked—
on HTML elements to control the appearance of child or sibling
SVG content.

Example 2-4 uses HTML5 form validation and the :valid

and :invalid pseudoclasses to turn an inline SVG version of the
stoplight graphic into a warning light. If any of the user’s entries in
the form are invalid, the stoplight will display red. If the form is
valid and ready to submit, the light will be green. And finally, if the
browser doesn’t support these pseudoclasses, the light will stay yel‐
low regardless of what the user types.

Example 2-4. Controlling inline SVG with HTML form validation and
CSS pseudoclasses

HTML MARKUP:
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8" >
 <title>Inline SVG within HTML</title>
 <link rel="stylesheet" type="text/css"
 href="svg-inline-styles.css" >
</head>
<body>
<form id="contactForm" method="post" >
 <h1>How can we contact you?</h1>
 <svg width="140" height="320"
 viewBox="20 20 140 320"
 preserveAspectRatio="xMinYMin meet"
 aria-label="stoplight" role="img" >
 <defs>
 <circle id="light" cx="70" r="30" />
 </defs>
 <rect x="20" y="20" width="100" height="280"
 fill="url(gradients.svg#metal) silver"
 stroke="black" stroke-width="3" />

64 | Chapter 2: The Big Picture

http://www.w3.org/TR/html5/forms.html#constraints
http://www.w3.org/TR/selectors4/#ui-validity
http://www.w3.org/TR/selectors4/#ui-validity

 <g stroke="black" stroke-width="2">
 <g class="red light" >
 <use xlink:href="#light" y="80"
 fill="url(gradients.svg#red-light-off) maroon" />
 <use class="lit" xlink:href="#light" y="80"
 fill="url(gradients.svg#red-light-on) red"
 visibility="hidden"/>
 </g>
 <g class="yellow light">
 <use xlink:href="#light" y="160"
 fill="url(gradients.svg#yellow-light-off) #705008"/>
 <use class="lit" xlink:href="#light" y="160"
 fill="url(gradients.svg#yellow-light-on) yellow" />
 </g>
 <g class="green light">
 <use xlink:href="#light" y="240"
 fill="url(gradients.svg#green-light-off) #002804" />
 <use class="lit" xlink:href="#light" y="240"
 fill="url(gradients.svg#green-light-on) lime"
 visibility="hidden"/>
 </g>
 </g>
 </svg>
 <label>
 <input type="text" name="CustomerName" required />
 Full Name
 </label>
 <label>
 <input type="email" name="CustomerEmail" required />
 Email Address
 </label>
 <button type="submit" >Send</button>
</form>
</body>
</html>

A linked stylesheet contains the CSS, both for the HTML form
content and for the inline SVG.

The body of the web page contains a single <form> element. The
form contains a heading and the input elements, but also the
SVG that will give feedback about the user’s entries.

Much of the SVG code should look familiar by now; changes are
described next.

Using SVG in HTML5 Documents | 65

The SVG code is a modified version of the stoplight SVG code we
used in the CSS-animated and JS-animated versions of the stoplight
(Examples 1-8 and 2-2).

The attributes on the <svg> element have been changed to fit the
new context. For one thing, there is no xmlns. For a pure HTML
document, no namespaces are required (for XHTML, they would
be); the HTML5 parser knows to switch to SVG mode when it rea‐
ches an opening <svg> tag.

The width and height attributes provide a default size for the SVG;
the final size will be controlled by CSS. Two new attributes (viewBox
and preserveAspectRatio) control the scaling of the graphic; we’ll
talk more about them in Chapter 8. For now, just trust that these are
the magic that make the SVG drawing scale to fit the dimensions we
give it within the HTML page.

The particular attribute values in Example 2-4
also ensure that the graphic will be drawn flush
against the top-left edges of the SVG area, mak‐
ing it line up neatly with the heading text.

The aria-label and role attributes on the <svg> tell screen read‐
ers to treat the SVG in the same way as an with
alt="stoplight"; we’ll talk more about ARIA in Chapter 17. The
actual validation information about the form inputs will be commu‐
nicated directly to the screen reader by the browser.

Inside the SVG, the main change is that we’ve removed all the gradi‐
ent definitions and put them in a separate file, gradients.svg. As
mentioned in Chapter 1, most browsers do not support this, so you
probably would not want to do this in production; it’s used here so
we can focus on the new code.

Here, we use the fact that fill can declare fallback colors, in case
there’s a problem with URL references. We’ll talk more about the
fallback syntax in Chapter 12. Browsers that don’t show the gradi‐
ents use the solid colors instead. It’s not pretty, but it’s functional.

We’ve also changed the visibility presentation attributes. In other
examples, we’ve left the red light on by default, but now we
only want the red light to show if it is meaningful. The
visibility="hidden" presentation attributes on the red and green

66 | Chapter 2: The Big Picture

lights ensure that they display in the “off ” state by default. The yel‐
low light is by default “lit.”

The rest of the code describes the form itself. HTML5 form valida‐
tion attributes have been used that will trigger invalid states:

• Both fields are required, and so will be invalid when empty.
• The second field is of type="email"; browsers that recognize

this type will mark it as invalid unless the content meets the
standard format of an email address.

The :valid and :invalid pseudoclass selectors
are supported on <form> elements (as opposed
to individual <input> elements) in Firefox (ver‐
sions 13+), WebKit/Safari (version 9+), and
Blink browsers (Chrome and Opera, since early
2015). Microsoft Edge (as of EdgeHTML version
15) and older versions of other browsers display
the indeterminate yellow light.

For more universal browser support, you could use a script to listen
for changes in focus between input elements, and set regular CSS
classes on the <form> element based on whether any of the input ele‐
ments are in the invalid state. The stylesheet would also need to be
modified so that these classes also control the SVG styles.

Since this isn’t a book about JavaScript, we’re not going to write out
that script in detail. Once again, nothing about the script would be
SVG-specific. The SVG effects are controlled entirely by the
(pseudo-)classes on the parent <form>.

The styles that control the appearance of both the form and the SVG
are in a separate file, linked from within the HTML <head>.
Example 2-5 presents the CSS code that controls the interaction.

Example 2-5. CSS stylesheet for the code in Example 2-4

CSS STYLES: svg-inline-styles.css
@charset "UTF-8";

/* Form styles */
form {

Using SVG in HTML5 Documents | 67

 display: block;
 max-width: 30em;
 padding: 1.5em;
 overflow: auto;

 border: double 12px;
 border-radius: 0 2em;
 color: navy;
 font-family: sans-serif;
}
h1 { margin: 0 0 1em; }
label, button {
 display: block;
 clear: right;
 padding: 0 0 3em;
}
input, button {
 float: right;
 min-width: 6em;
 max-width: 70%;
 padding: 0.5em;
 color: inherit;
 border: solid;
}
button { background: silver; }
input:invalid {
 border-color: red;
 box-shadow: none; /* override browser defaults */
}
input:focus, button:focus {
 outline: green dotted;
 outline-offset: 2px;
}
form:invalid button[type="submit"] {
 color: dimGray;
}

/* SVG styles */
form svg {
 float: left;
 width: 6em;
 height: 12em;
 max-width: 25%;
 max-height: 80vh;
 overflow: visible;
}
form:valid .green .lit {
 /* If the validator thinks all form elements are ok,
 the green light will display */
 visibility: visible;
}

68 | Chapter 2: The Big Picture

form:invalid .red .lit {
 /* If the validator detects a problem in the form,
 the red light will display */
 visibility: visible;
}
form:valid .yellow .lit, form:invalid .yellow .lit {
 /* If either validator class is recognized,
 turn off the yellow light */
 visibility: hidden;
}

The first batch of style rules defines the appearance of the HTML
form elements, including using the :invalid selector to style indi‐
vidual inputs that cannot be submitted as-is, and :focus selectors to
identify the active field.

The <svg> element itself is styled as a floated box with a standard
width and height that will shrink on small screens. The overflow is
set to visible to prevent the strokes of the rectangle from being
clipped, now that the rectangle has been moved flush against the
edge of the SVG.

The remaining rules control the visibility of the lights, taking
advantage of the fact that CSS rules override the defaults set with
presentation attributes. If the form matches the :valid selector, the
bright green light is revealed; if it matches :invalid, the bright red
light is displayed. Finally, if either of those selectors is recognized by
the browser, the illuminated version of the yellow light is hidden. If
the selectors aren’t recognized (or if the CSS doesn’t load), the pre‐
sentation attributes ensure that only the yellow light is lit.

Figure 2-3 shows the web page in action: when the form is invalid
(because of a problem with the email field) versus when it is com‐
plete and showing the green light. The screenshots are from Firefox,
which at the time of writing is the only browser that supports both
the pseudoclasses and SVG gradients from external files.

This demo uses familiar CSS approaches (classes and pseudoclasses)
to style SVG in a dynamic way. But this is only the beginning of how
SVG and CSS can be integrated.

Using SVG in HTML5 Documents | 69

Figure 2-3. A web page using inline SVG to enhance form validation
feedback

Using SVG with CSS3
CSS has also advanced considerably since SVG 1.1 was introduced.
The core CSS specification was updated to version 2.1, and finalized
in 2011. But already, work had begun on a variety of CSS modules,
each focusing on specific topics. There is no single CSS3 specifica‐
tion, but the many modules are collectively known as CSS level 3.

70 | Chapter 2: The Big Picture

Many of the original CSS3 features are widely implemented in web
browsers, and you can use them without problem when designing
SVG for the web. SVG tools that still rely exclusively on the SVG 1.1
specifications, however, may not support them. Nonetheless, thanks
to CSS’s error-resistant syntax, the old software shouldn’t break
completely; it should just ignore the parts it does not understand.

Some of the newer specifications, although widely implemented, are
still not entirely stable. Others are very experimental.

The W3C working group periodically publishes an informal “snap‐
shot” of the state of CSS standards, with links to the modules. The
latest version is at https://www.w3.org/TR/CSS/.

The new CSS modules include many graphical effects—such as
masking, filters, and transformations—that are direct extensions of
features from SVG. These standards replace the corresponding SVG
definitions, allowing the same syntax to be used for all CSS-styled
content. There are no competing chapters in SVG 2. Support for
these effects in browsers is more erratic (we’ll discuss the details in
the relevant chapters); many bugs remain, but they are slowly being
squashed.

Not all aspects of CSS3 were developed in collaboration with SVG.

Other new CSS features introduced similar-but-different graphical
features that put CSS in direct competition with SVG for some sim‐
ple vector graphics. Whenever this book discusses a feature of SVG
that has a CSS equivalent, we’ll highlight the similarities and differ‐
ences using “CSS Versus SVG” notes like this:

CSS Versus SVG
Style Versus Graphics

In these asides, we’ll compare different ways of achieving the same graphical
effect, and identify effects that can only be achieved with one language or the
other. This should help you, the web designer, decide which tool is best for the
job you’re trying to do.

The relationship between CSS and SVG is so complex, and so
important, that we’ve given it a separate chapter. Chapter 3 will look

Using SVG with CSS3 | 71

https://www.w3.org/TR/CSS/

at the ways CSS can be used to enhance SVG, and SVG can be used
to enhance CSS. It will also consider the ways in which CSS has
started to replace SVG for simple graphics like the stoplight example
we’ve been using so far.

Summary: SVG and the Web
This chapter aimed to provide a big picture of SVG on the web, con‐
sidering both the role of SVG on the web and the way it can comple‐
ment (and be complemented by) other web technologies.

The web is founded on the intersection of many different coding
languages and standards, each with its own role to play. For the
most part, web authors are encouraged to separate their web page
code into the document text and structure (HTML), its styles and
layout (CSS), and its logic and functionality (JavaScript).

SVG redefines this division to support documents where layout and
graphical appearance are a fundamental part of the structure and
meaning. It provides a way to describe an image as a structured
document, with distinct elements defined by their geometric presen‐
tation and layout, that can be styled with CSS and modified with
JavaScript.

The SVG standard has developed in fits and starts. The practical use
of SVG on the web is only just starting to achieve its potential. There
are still countless quirks and areas of cross-browser incompatibility,
which we’ll mention whenever possible in the rest of the book.
Hopefully, the messy history of SVG and the interdependent web
standards has reinforced the fact that the web, in general, is far from
a perfect or complete system, and SVG on the web is still relatively
new.

The goal of this book is to help you work with SVG on the web,
focusing on the way SVG is currently supported in web browsers,
rather than the way the language was originally defined. In many
cases, this will include warnings about browser incompatibilities
and suggestions of workarounds. However, support for SVG may
have changed by the time you read this, so open up your web
browser(s) and test out anything you’re curious about.

72 | Chapter 2: The Big Picture

More Online
The <script> and <style> elements introduced in this chapter and
the previous one are included in our markup reference, under the
category “Elements for adding other languages to SVG”:

https://oreillymedia.github.io/Using_SVG/guide/
markup.html#integration

The elements for embedding SVG in HTML are summarized in the
“Embedding SVG in HTML” guide:

https://oreillymedia.github.io/Using_SVG/guide/embedding.html

Summary: SVG and the Web | 73

https://oreillymedia.github.io/Using_SVG/guide/markup.html#integration
https://oreillymedia.github.io/Using_SVG/guide/markup.html#integration
https://oreillymedia.github.io/Using_SVG/guide/embedding.html

CHAPTER 3

A Sense of Style
Working with CSS

On the web, style means CSS. Cascading Style Sheets are used to
indicate how the plain text of HTML should be formatted into the
colorful diversity of websites and applications that you interact with
every day.

SVG and CSS have an intertwined relationship. SVG incorporates
CSS styling of decorative aspects of the drawing, but uses a basic lay‐
out model completely independent of CSS layout. CSS has been
expanded to include so many graphical effects (formerly only avail‐
able in SVG) that it has become a rudimentary vector graphics lan‐
guage of its own.

This chapter covers how to use CSS styles to modify your SVG
graphics, and how to reference SVG images and elements in CSS
code used to style HTML. It also discusses the benefits and limita‐
tions of using CSS+HTML to create graphics, including its similari‐
ties and differences with SVG, and outlines factors for you to
consider when deciding between the two.

CSS in SVG
CSS is not required for SVG; it is perfectly possible to define a com‐
plete SVG graphic using presentation attributes. However, using CSS
to control presentation makes it easier to create a consistent look
and feel. It also makes it easier to change the presentation later.

75

More Online
A complete list of SVG style properties, including their default val-
ues, is provided in the “SVG Style Properties” guide:

https://oreillymedia.github.io/Using_SVG/guide/style.html

Most properties will be discussed in context throughout the rest of
the book.

Style Declarations
There are four different ways to define presentation properties for
an SVG element: presentation attributes, inline styles, internal style‐
sheets (<style> blocks), and external stylesheets.

Presentation attributes
Most style properties used in SVG may be specified as an XML
attribute. For the most part, the effect is the same as if CSS were
used. Properties that are normally inherited will be inherited, and
the inherit keyword can be used to force inheritance on other
properties.

Things to note:

• There are no shorthand versions of the presentation attributes
(e.g., use font-size, font-family, and so on, not font).

• The XML parser is case-sensitive for property names (must be
lowercase) and for some keyword values (although SVG 2
requires presentation attribute values to be parsed the same way
as in CSS).

• You cannot include multiple declarations for the same property
in order to provide fallbacks for older browsers; you can only
have one of each attribute per element.

• You cannot use the !important modifier.
• Values set using CSS take priority over a presentation attribute

on the same element. However, presentation attributes super‐
cede inherited style values, even if the inherited value was set
with CSS.

76 | Chapter 3: A Sense of Style

https://oreillymedia.github.io/Using_SVG/guide/style.html

Inline styles

All SVG elements can have a style attribute. Similar to its HTML
equivalent, it accepts a string of CSS property: value pairs. Inline
styles declared this way supersede both presentation attributes and
values from stylesheets, except for !important stylesheet values.

A <style> block
You can include an internal stylesheet within your SVG document
using a <style> element, similar to the <style> element in HTML.

The element can be placed anywhere, but is usually at the top of the
file or inside a <defs> section. In addition, when your SVG code is
included inline within another document, such as HTML5, any
stylesheets declared for that document—or declared in other SVG
graphics within the document—will affect your graphic.

The <style> block can include any valid CSS stylesheet content, but
the main content will be CSS style rules consisting of a CSS selector
followed, within braces (curly brackets), by a list of property:
value pairs that will apply to elements matching that selector:

selector {
 property1: value;
 property2: value; /* comment */
 property3: value !important;
}

The !important modifier clobbers the normal CSS cascade rules,
and it should only be used as a last resort.

If you’re not familiar with CSS and CSS selectors, you’ll want to con‐
sult a CSS-specific reference guide, such as Eric Meyer’s CSS Pocket
Reference or the CSS-Tricks online almanac. Most browsers now
support CSS level 3 selectors (and some level 4 selectors), but older
browsers and SVG tools that have not been updated since SVG 1.1
may only support CSS 2 selectors.

Although the SVG <style> element works
much the same way as its HTML counterpart,
HTML introduced additional DOM interfaces
that allow you to access and modify the style‐
sheet using JavaScript, which SVG did not ini‐
tially match. SVG 2 harmonizes the two, but
implementations have not all caught up.

CSS in SVG | 77

http://shop.oreilly.com/product/0636920015055.do
http://shop.oreilly.com/product/0636920015055.do
http://css-tricks.com/almanac/

Some other details to consider when using internal stylesheets in
SVG files (especially if you’re not used to working with CSS in
XML):

• The SVG 1.1 specifications did not define a default stylesheet
type. Although all web browsers will assume type="text/css",
other tools (notably Apache Batik and out-of-date versions of
Inkscape) will ignore the <style> block if the type isn’t
declared. SVG 2 makes the de facto default official.

• The contents of the <style> block can be (but don’t have to be)
contained in an XML “character data” section. This avoids pars‐
ing errors if your comments contain stray <, >, or & characters.
The start of the character data region is indicated by <!
[CDATA[and the end by]]>, like this:

<style type="text/css"><![CDATA[
circle { /* Styles for <circle>s */
 fill: red; /* red & purple are my favorite colors */
}
]]></style>

• CSS has its own way of handling XML namespaces, which is
completely distinct from any namespace prefixes declared in the
XML markup.

More Online
Most web developers have never needed to use XML namespaces
in CSS. But when you’re working with SVG, namespaced elements
and attributes (like xlink:href) can trip up your CSS selectors.

Read more in “XML Namespaces in CSS”:

https://oreillymedia.github.io/Using_SVG/extras/ch03-
namespaces.html

We only use one type of namespaced CSS selector in the examples in
this book, and it is to specifically cancel out the distinction between
href and xlink:href in attribute selectors.

The [href] attribute selector only selects href attributes without
namespaces. To also select xlink:href attributes, you need to add

78 | Chapter 3: A Sense of Style

https://oreillymedia.github.io/Using_SVG/extras/ch03-namespaces.html
https://oreillymedia.github.io/Using_SVG/extras/ch03-namespaces.html

*| (asterisk and pipe) ahead of the attribute name, as a wildcard
namespace marker. It looks like this:

pattern[*|href] /* pattern elements with an
 href or xlink:href attribute*/
use[*|href="#icon"] /* use elements that clone `icon` */
a[*|href$='.pdf'] /* links to a PDF file */
use:not([*|href^='#']) /* use elements whose cross-references
 don't start with a `#` target */

The issues with type and namespaces also apply to external
stylesheets.

External stylesheets
Style rules may be collected into external .css files so that they can be
used by multiple documents.

External stylesheets (or any external file resour‐
ces) are never loaded from SVG files that are
used as images in web pages (e.g., or CSS
background-image).

There are four ways to include external stylesheets for SVG, all of
which allow the stylesheet to be restricted to certain media types:

• An import rule at the top of another CSS stylesheet or <style>
block, like:

<style type="text/css">
 @import "style.css";
 @import url("print.css") print;
</style>

• An XML stylesheet processing instruction in the prolog of an
SVG or XML file (the “prolog” being any code before the open‐
ing <svg> or other root tag), like:

<?xml-stylesheet href="style.css" type="text/css"?>
<?xml-stylesheet href="print.css" media="print"
 type="text/css"?>
<svg xmlns="http://www.w3.org/2000/svg">
 <!-- ... -->
</svg>

CSS in SVG | 79

• A <link> element in the <head> of an HTML5 document that
includes inline SVG, like:

<html>
<head>
 <!-- ... -->
 <link href="style.css" rel="stylesheet" type="text/css">
 <link href="print.css" rel="stylesheet"
 media="print" type="text/css">
</head>
<body>
 <!-- ... -->
 <svg>
 <!-- ... -->

• An HTML <link> element in a standalone SVG file, using
proper XML namespaces (either a prefix or an xmlns attribute
on the <link> element itself) to identify it as the HTML
element:

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:html="http://www.w3.org/1999/xhtml">
 <html:link href="style.css" rel="stylesheet"
 type="text/css">
 <link xmlns="http://www.w3.org/1999/xhtml"
 href="print.css" rel="stylesheet"
 media="print" type="text/css" />
 <!-- ... -->
</svg>

Support for the HTML <link> in SVG files was
only officially added in SVG 2. It is supported in
every web browser we’ve tested, but will proba‐
bly not be supported in other SVG tools.

In all these cases, the first stylesheet (style.css) would be used for all
media, while the second (print.css) would only be used for printing
out the graphic.

Overriding Styles
Once the browser has all your different style rules, it cascades them
together with the default values to create a specified value for each
property on each element, and then applies inheritance as necessary
to create a final used value. For SVG, this works the same as

80 | Chapter 3: A Sense of Style

elsewhere in CSS, except that presentation attributes add an extra
step to the cascade.

Presentation attributes are treated as an author-level style rule with
zero specificity. In fact, they have less than zero specificity, because
the zero-specificity universal * selector outranks them.

There are also a few SVG-specific style defaults
that are defined in the SVG specs and applied as
browser-level style rules. The most notable one
is that overflow is set to hidden on most SVG
elements where it has an effect, even though the
normal CSS initial value is visible.

More Online
Although CSS in SVG works much the same as CSS in HTML, that
doesn’t mean it is simple. Even developers who work with CSS every
day sometimes get confused by the cascade, selector specificity, or
inheritance rules.

Read more about how all these features work—in general and as
applied to SVG—in “The Cascade”:

https://oreillymedia.github.io/Using_SVG/extras/ch03-
cascade.html

CSS cascading and specificity rules can be used to create a stylesheet
that completely overrules presentation attributes in the code.

For example, you could use CSS overrides to create a separate set of
styles for black-and-white printing. Example 3-1 presents such a
stylesheet for the grouped primary-color stoplight from
Example 1-4 in Chapter 1. (Other versions of the stoplight could
have been used, but this one has short and sweet markup.) The
print-preview result is shown in Figure 3-1.

CSS in SVG | 81

https://oreillymedia.github.io/Using_SVG/extras/ch03-cascade.html
https://oreillymedia.github.io/Using_SVG/extras/ch03-cascade.html

Figure 3-1. A minimalist, monochrome stoplight

Example 3-1. Stylesheet for monochrome printing of an SVG

SVG MARKUP:
<?xml-stylesheet media="print"
 href="grouped-stoplight-print-styles.css" ?>
<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 height="320px" width="140px" >
 <title>Grouped Lights Stoplight</title>
 <rect x="20" y="20" width="100" height="280"
 fill="blue" stroke="black" stroke-width="3" />
 <g class="lights" stroke="black" stroke-width="2">

82 | Chapter 3: A Sense of Style

 <circle cx="70" cy="80" r="30" fill="red" />
 <circle cx="70" cy="160" r="30" fill="yellow" />
 <circle cx="70" cy="240" r="30" fill="#40CC40" />
 </g>
</svg>

We’ve used the xml-stylesheet format to include the print
stylesheet; an alternative would be to add an HTML-
namespaced <link> after the <title>. The media="print"
attribute lets the browser know to only use these styles when
printing.

The only change to the markup is a class attribute on the <g>
group.

CSS STYLES: grouped-stoplight-print-styles.css
* {
 fill: inherit;
 stroke: inherit;
 stroke-width: inherit;
}
g.lights {
 fill: lightgray;
 stroke: dimgray;
 stroke-width: 1;
}
rect {
 fill: none;
 stroke: black;
 stroke-width: 2;
}

The universal selector (*) is used to reset the styles declared on
all elements using presentation attributes.

We use the inherit keyword, instead of setting a value directly
on every element, so that style inheritance will work normally.

We give all the lights the same appearance by setting the styles
once on the <g> element (using the class added to the markup).

The <rect> is styled separately. Note that, because we reset the
stroke and stroke-width presentation attributes for all ele‐
ments, the styles have to be set in the CSS even when, like the
black stroke, they have not been changed from the original.

CSS in SVG | 83

If there are multiple valid stylesheet rules with the same specificity,
the final value is used. To determine which value comes last, differ‐
ent stylesheets (both external files and <style> blocks) are con‐
catenated together in the order in which they are included in the
document. This allows you to use an external stylesheet for many
documents and then modify it for a particular document using a
<style> element. It also allows you to specify fallback styles for new
features that may not be universally supported.

Conditional Styles
Declaring styles in CSS stylesheets is often simply a convenience
compared to using presentation attributes, allowing you to apply the
same style rules to many elements (or many files) without repeating
your code. However, with CSS, you can create much greater flexibil‐
ity in your graphic, by using fallback values, media queries, and
interactive pseudoclasses to create styles that adapt to the context.

Parser fallbacks
The most basic, and universally supported, conditional CSS is the
fallback value. CSS error handling rules require browsers to skip
any invalid style declarations, and continue reading the rest of the
file. If you use a new feature the browser doesn’t support, it will
ignore the declaration.

In combination with the cascade rules, this means that you can pro‐
vide fallback values for new property features simply by declaring—
earlier in the stylesheet—a more widely supported value for the
same property. Browsers will apply the last value that they recognize
and support. For example, the following code would provide a fall‐
back for a semitransparent rgba() color value (which was intro‐
duced in the CSS level 3 Color specification):

.stained-glass {
 fill: #FF8888; /* solid pink */
 fill: rgba(100%, 0, 0, 0.5); /* transparent red */
}

Fallback styles allow you to use new features while providing alter‐
natives for tools that only support the SVG 1.1 specifications. There
are currently only a few such features relevant to styling SVG, such
as CSS3 colors and units, and new filter and masking options.

84 | Chapter 3: A Sense of Style

However, the number of inconsistently supported style values will
likely increase as new CSS3 and SVG 2 specifications are rolled out.

@supports tests
One limitation of CSS error-handling fallbacks is that they only
apply to a single property. Sometimes you need to coordinate multi‐
ple property values to provide fallback support for a complex fea‐
ture. The new @supports rule allows this type of coordination. The
basic structure looks like the following:

.stained-glass {
 fill: #FF0000; /* solid red */
 fill-opacity: 0.5;
}
@supports (fill: rgba(100%, 0, 0, 0.5)) {
 .stained-glass {
 fill: rgba(100%, 0, 0, 0.5); /* transparent red */
 fill-opacity: 1; /* reset */
 }
}

With this code, the SVG fill-opacity property is used as an alter‐
native to CSS3 transparent colors. Again, thanks to CSS error-
handling rules, browsers that don’t recognize the @supports rule will
skip that entire block.

CSS @supports is supported in all the latest
browsers, but older browsers (such as Internet
Explorer) will skip over the entire block. Make
sure you still have decent fallbacks if “nothing”
is supported by the @supports test!

Be aware that @supports only tests whether the CSS parser recog‐
nizes a particular property/value combination. It can’t test whether
that property will be applied when a particular element is being
styled.

This is particularly frustrating when you’re working with SVG in
web browsers. Certain properties (such as filter or mask) may be
recognized but only applied on SVG elements, despite applying to
all elements in the latest specs. Other properties (such as text-
shadow or z-index) may be recognized and applied for CSS box
model content, but not for SVG.

CSS in SVG | 85

Media queries

The @supports rule is a type of conditional CSS rule block.

A more established conditional CSS rule is the @media rule, more
commonly known as a media query. A media query applies certain
styles according to the type of output medium used to display the
document. We already discussed how it is possible to use the media
attribute to limit the use of external stylesheets. @media rules allow
those same conditions to be included within a single stylesheet or
<style> block:

@media print {
 /* These styles only apply when the document is printed */
}

Originally, CSS used a fixed number of media type descriptions,
such as screen, print, tv, and handheld. But this proved limiting.

Handheld devices today are quite different from what they were 15
years ago, and screens come in all shapes and sizes. The only media
type distinction that is still relevant is screen versus print. For all
other distinctions, use feature-based media queries, which directly
test whether the output device is a certain size, or a certain resolu‐
tion, or able to display full-color images (among other features).

For general information on media query syntax and options, consult
a CSS reference. For SVG, there are a couple complications to keep
in mind.

The first thing to realize is that the media query is evaluated before
any of the SVG code; in other words, before any scaling effects
within the SVG change the definition of what a px or a cm is.

The second thing to be aware of, particularly if you’re switching
between separate SVG files and inline SVG code, is that the media
being tested is the window or printed page for the document con‐
taining the SVG code. If the SVG is inline within HTML5, that
means the entire frame containing the HTML web page. However, if
the SVG is embedded as an <object> or , it means the specific
frame area created to draw the graphic.

In practice, this means that media queries can be a little more pre‐
dictable with embedded SVG files. You can design around the SVG
dimensions directly, without needing to know the rest of the layout.

86 | Chapter 3: A Sense of Style

More Online
See a simple example of how the same media query has different
effects on inline versus embedded SVG, in “Media Queries in
Embedded Versus Inline SVG”:

https://oreillymedia.github.io/Using_SVG/extras/ch03-media-
queries.html

It should be clear that a thorough understanding of CSS can help
you make the most of your SVG graphics. However, that is not the
end of the relationship; it also works the other way.

SVG in CSS
There are two distinct ways in which you can reference SVG files
from within a CSS file:

• use the entire SVG file as an image
• use specific SVG elements that apply graphical effects

Complete SVG images can be used like other image types in CSS-
styled HTML or XML documents. Theoretically, they can also be
used in CSS-styled SVG (for example, as a background-image on the
root element), although the practical need is more limited.

SVG element references were initially a feature unique to SVG, for
styling other SVG elements; however, many of these properties that
use these references (including fill, stroke, filter, mask, and
clip-path) are now being expanded to other types of CSS-styled
content.

Using SVG Images Within CSS
The ability to reference image files from CSS has existed from the
earliest versions of the language. Any HTML element that partici‐
pates in the document layout flow—that is, anything that takes up
space on a web page—has a background. The ability to modify this
background was one of the first CSS capabilities implemented in
contemporary browsers, and as such is quite robust, fully supported
by all popular browsers still in common use.

SVG in CSS | 87

https://oreillymedia.github.io/Using_SVG/extras/ch03-media-queries.html
https://oreillymedia.github.io/Using_SVG/extras/ch03-media-queries.html

The background-image property, like any CSS property that accepts
an image, takes a URL value, contained within the url() function:

background-image: url('/images/myImage.jpg');

The quotes around the argument in the url() function are recom‐
mended, but can often be omitted, so long as the URL only contains
ASCII characters with no whitespace.

The URL could be global, starting with a protocol (https://), or at
least a double slash (//):

https://www.example.com/images/myImage.jpg

Or it could be local, starting with a single slash (/), meaning it is on
the same server as the web page:

/images/myImage.jpg

Or relative to the current web page or stylesheet location:

myImage.jpg
../images/myImage.jpg

The ../ in that last URL means “go up one level
in the file directory, then find the specified
folder and file.” We use it in the examples, when
linking to a file from a different chapter, stored
in a different folder in the example repository.

The HTML5 specification, when describing SVG as a required for‐
mat for images, states that it should also be valid format for
background-image in CSS-styled HTML.

This means that if you have an SVG file, such as myImage.svg, you
can use it in exactly the same manner as you could use a JPEG, GIF,
or PNG file, in any modern browser:

background-image: url('/images/myImage.svg');

If you want to provide fallback images for older browsers that don’t
support SVG, you have a few options:

88 | Chapter 3: A Sense of Style

• Use a JavaScript tool, such as Modernizr, to test whether SVG
images are supported and change the classes (and therefore
style rules) on your elements accordingly.

• Use a server script to identify the old browsers and edit your
web page to use different style rules.

• Use Internet Explorer conditional comments to include a style‐
sheet that overrides your main style rules (this doesn’t help with
older mobile browsers that don’t support SVG).

• Use other modern CSS syntax not supported by the older
browsers, such as layered background images and CSS gradi‐
ents, to make the browser ignore the background image decla‐
ration that includes SVG, and apply fallback declaration instead.

The layered-image fallback approach looks like the following:

background-image: url('/images/myImage.jpg'); /*fallback*/
background-image: url('/images/myImage.svg'),
 linear-gradient(transparent, transparent);

This prevents the SVG file from being downloaded in both old
Internet Explorer and old Android browsers.

Although backgrounds are the most common use for images in CSS,
there are currently three other well-supported properties that accept
image values:

list-style-image

Specifies a custom graphic to replace the bullet or number for a
list element (technically, any element with CSS display type
list-item).

border-image

Generates decorative frames for elements.

content

Provides content to be used in the ::before and ::after pseu‐
doelements, as a series of text strings and/or images. The images
are displayed at their natural size, like a series of inline block
elements, so this is best only used for small icons with defined
sizes in the SVG file.

SVG in CSS | 89

http://modernizr.com/

New CSS properties, including mask-image and
shape-outside, are extending this list. SVG
images are also fairly well supported in the
cursor property—so long as the image has
defined height and width.
In general, if a CSS property takes an image file,
it should accept an SVG file.

Figure 3-2. A web page using SVG graphics as CSS backgrounds, bul‐
lets, and borders

90 | Chapter 3: A Sense of Style

Example 3-2 applies all four properties to an HTML web page, using
card suit shapes that we’ll learn how to draw in Chapter 6. The
(somewhat intense-looking) web page that results is shown in
Figure 3-2.

Example 3-2. Using CSS properties that accept an SVG image value

HTML MARKUP:
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8" >
 <title>Using SVG in CSS for an HTML page</title>
 <link rel="stylesheet" href="svg-in-css.css" />
</head>
<body>
 <h1>Card Sharks</h1>

 First point
 Second point
 Third
 Fourth
 And another
 One more
 In conclusion
 This is the last point

</body>
</html>

CSS STYLES: svg-in-css.css
body {
 margin: 0 1em;
 font-family: sans-serif;
 color: navy;

 background-color: red;
 background-image: url('../ch06-path-files/spade.svg'),
 url('../ch06-path-files/heart.svg'),
 url('../ch06-path-files/club.svg');
 background-size: 40px 40px;
 background-position: 0 0, 20px 0, 20px 20px;
}
h1 {
 text-align: center;
 border-radius: 2em / 50%;
}
h1::before, h1::after {

SVG in CSS | 91

 display: block;
 content: url('../ch06-path-files/diamond.svg')
 url('../ch06-path-files/spade.svg')
 url('../ch06-path-files/heart.svg')
 url('../ch06-path-files/club.svg');
}
h1, ul {
 background-color: white;
 background-color: rgba(100%, 100%, 100%, 0.85);
 max-width: 70%;
 margin: 0.5em auto;
}
ul {
 padding: 1em;
 padding-left: calc(1em + 10%);
 border: solid #999 1em;
 border-radius: 10%;

 border-image-source: url(svg-in-css-border-gradient.svg);
 border-image-slice: 5% 5%;
 border-image-width: 4.7%; /* = 5% / 105% */
 border-image-repeat: stretch;
}
li {
 line-height: 2em;
}
ul li:nth-of-type(4n+1) {
 list-style-image: url('../ch06-path-files/diamond.svg');
}
ul li:nth-of-type(4n+2) {
 list-style-image: url('../ch06-path-files/spade.svg');
}
ul li:nth-of-type(4n+3) {
 list-style-image: url('../ch06-path-files/heart.svg');
}
ul li:nth-of-type(4n+4) {
 list-style-image: url('../ch06-path-files/club.svg');
}

The solid red background color will be visible on any parts of
the web page not covered by the background images; it will also
provide a fallback if SVG images are not supported.

For browsers that support SVG and the CSS3 Backgrounds and
Borders specification, a complex pattern consisting of three
overlapping images will be used as the background. The back‐
grounds will be layered top to bottom in the same order they
are given in the CSS.

92 | Chapter 3: A Sense of Style

A list of values is given for background-position, setting the
initial offset for each corresponding graphic in the list of back‐
ground images. Each shape will have the 40px square size set by
background-size. The positions are the initial offset, but each
image will repeat in a tiled pattern (set the background-repeat
property for a different behavior).

The content property on the pseudoelements of the heading is
used to provide a decorative row of icons above and below the
heading text.

The will be surrounded by a decorative border image;
however, a solid gray border is defined as a fallback. The
border-radius curvature is used to ensure that the padding
area will not extend beyond the curved corners of the border
image.

The border image consists of a rounded rectangle with a repeat‐
ing diagonal gradient. The other properties control how the
image is divided into edges and corners to fill the border region.
CSS border images are a complex topic, with many options,
which do not take advantage of any SVG features. You may find
it easier to use layered background images to achieve the same
effect.

To create a rotating series of custom bullets, the nth-of-type
CSS pseudoclass selector is used to assign the different list
images. The selector li:nth-of-type(4n+1) will apply to every
 element that is one more than a multiple of four (when
counting all list-item elements that are children of the same par‐
ent). In other words, the first, fifth, and ninth item and so on.
Unlike JavaScript, CSS does not count the first element in a set
as index 0.

The stylesheet presented in Example 3-2 references five separate
SVG image files. Each one is only a few hundred bytes in size before
compression, but requesting each file from the web server may slow
display of the web page.

SVG in CSS | 93

The HTTP/2 protocol, now available in the lat‐
est browsers and many web servers, reduces the
time spent by the browser requesting each new
file. With HTTP/2, you probably wouldn’t worry
about having five different image files. But you
might worry about 100.
This is especially true because the server’s ability
to compress the file size depends on how much
repetition there is in a single file: repetition that
is divided across many different files cannot be
compressed away.

Making Every File Count
There are various options to reduce the number of file requests
when you have a large number of small SVG graphics:

• Construct a single sprite image, with the separate icons
arranged in a row or grid, to use as a background-image file for
multiple elements. Then use the background-size and
background-position properties to position the sprite file in
such a way that the correct icon is visible.
This technique has been used for years with raster image sprites;
there is nothing specific to SVG about it. However, it only works
for background images—there are no similar size and position
options to reposition a list image file.

• Create a sprite image as above, but add <view> elements that
describe the target region for each icon. Then specify the ID of
the relevant view as the target fragment (after the # mark) in the
URI.

• Create an SVG stack file, with your different icons overlapping
in the same position. Then use the CSS :target pseudoclass to
only display each graphic if it is referenced in the URL target
fragment.

• Convert each image reference to a data URI, which allows you
to pass an entire file’s contents in the form of a URI value.

We’ll discuss SVG views and stacks in Chapter 9. Theoretically, they
should be usable anywhere you use an SVG image file (in CSS or in
HTML), since all the information about position and size is con‐
tained in the SVG code and the URL fragment. However, at the time

94 | Chapter 3: A Sense of Style

of writing there are serious limitations on browser support in Web‐
Kit, and in many older Blink browsers still in use (e.g., on Android).

That last option is worth a longer discussion. It’s currently the rec‐
ommended approach for embedding very small SVG files in a CSS
file, such as might be used for custom list bullets or simple back‐
ground patterns.

A data URI is an entire file encoded in a URL string. You can there‐
fore use it anywhere a URL is required, without needing to down‐
load a separate file.

For security reasons, Internet Explorer and Edge
do not let you directly open data URIs in a
browser tab. IE also doesn’t allow them as an
<iframe> source. However, you can use them
almost anywhere else you would use an SVG:
, <object>, or CSS image properties.

To use data URIs, you specify the data: file protocol, the media
type, optional encoding information, and then the file contents as a
URI-safe string. Many browsers allow you to pass a simple SVG file
as plain-text markup, with only %, #, and ? characters encoded (since
these have special meaning in URIs). However, for cross-browser
support, you also need to URL-encode all ", <, and > markup char‐
acters and any non-ASCII Unicode characters.

You can guarantee compatibility by using the JavaScript
encodeURIComponent(string) method to encode your plain-text
markup. The result would be entered in the following code to create
a data URI:

url("data:image/svg+xml,URI-encoded ASCII text file");
url("data:image/svg+xml;charset=utf-8,URI-encoded
 Unicode file");

Be sure to use a complete, valid SVG file to create your data URI,
including XML namespaces. However, you can minify the file as
much as possible before encoding, in particular to remove extra
whitespace.

Taylor Hunt has discovered that you can keep the encoding URI size
smaller by using single-quote characters (') instead of double
quotes (") in your markup; the single quotes do not need to be

SVG in CSS | 95

escaped in a URL, so long as the entire string is surrounded by dou‐
ble quotes. His article on SVG data URIs has a more detailed Java‐
Script function for making optimal data URIs. Jakob Eriksen used
the same approach to create a Sass CSS preprocessor function. And
Dave Rupert turned it into a copy-and-paste website, if you’re only
encoding a few short graphics.

For raster image files—which don’t have a plain-text representation
—data URIs use the base-64 encoding algorithm. Base-64 encoding
converts the raw binary data of a file to a string using 64 URL-safe
characters.

Base-64 encoding is not recommended for SVG data URIs in CSS or
HTML files, because the end result cannot be compressed (with
Gzip or Brotli) as effectively as a URL-encoded text. Even uncom‐
pressed, it may be longer than an optimal URI-encoded version.

Nonetheless, base-64 encoding is the best choice for encoding many
other file types that you might wish to embed in your SVG file itself.
The JavaScript function btoa(data) converts file data to base-64
encoding, and there are also lots of online tools that can convert a
file. The result is embedded as follows:

url("-encoded JPEG file");

For different file formats, replace the JPEG media type (image/jpeg)
as needed.

Using SVG Effects Within CSS
We have already seen, in Chapter 1, how an SVG presentation
attribute can reference another SVG element using the url() nota‐
tion. In that case, it was a fill property referencing a gradient
element:

<use xlink:href="#light" y="80" fill="url(#red-light-off)" />

Other SVG style properties follow the same syntax: you define the
details of the graphical effect you want to apply in the SVG markup,
and then apply that effect to another element using a url() refer‐
ence.

For masks, clipping paths, and filters (which we’ll discuss in Chap‐
ters 15 and 16), these graphical effects can now also be applied to
non-SVG content in the latest web browsers. Proposed new CSS

96 | Chapter 3: A Sense of Style

https://codepen.io/tigt/post/optimizing-svgs-in-data-uris
https://codepen.io/jakob-e/pen/doMoML
https://codepen.io/davatron5000/pen/owyKJM

modules would also allow SVG gradients and patterns to be used
directly as image sources or text fill.

To reference a graphical effect, use a URL that contains a # targeting
the reference to a specific element’s id.

Theoretically, the URL for most effect properties can reference an
element in a different file, either as a local relative URL or an abso‐
lute URL (e.g., to a content-delivery network serving up your static
image assets). However, browser support for cross-file references
varies, and depends on the property.

Even when external files are supported, you can’t just reference an
SVG filter or mask from someone else’s website (a cross-origin refer‐
ence). We talk more about cross-origin issues in “File Management”
on page 341.

If the URL is either a local target fragment like url(#filter), or a
relative file path like url("../assets/filters.svg#blur"), the
URL will be resolved relative to the file that contains the CSS rule.
This means that local target fragments can only be used for <style>
blocks, inline styles, and presentation attributes—never an external
stylesheet, which cannot contain valid SVG elements.

The location of relative URLs, including local target fragments, will
also be affected by the HTML <base> tag and by xml:base
attributes, which instruct the browser to treat all relative URLs as
being relative to a different web address.

SVG 2 and the latest CSS specs propose special
rules for URLs that only have a target fragment
(i.e., they start with a # character), so that they
would not be affected by <base> change, and
they could be used in external stylesheets. How‐
ever, browser support isn’t consistent yet, and
some of the specification details may still
change.

With SVG graphical effects, combining many effects into a single file
is not a problem: the URL references always target a specific ele‐
ment. Unfortunately, for the time being that file is usually your main
web page, not a reusable asset file.

SVG in CSS | 97

CSS Versus SVG
This chapter has so far emphasized the ways in which CSS and SVG
are interdependent and complementary. However, there are also
many ways in which the two are contradictory and competitive. As
CSS has expanded to include more graphical options, it has included
many features that were previously the exclusive domain of SVG,
such as gradients, complex shapes, and animation.

Although some of the new CSS graphical effects have been coordi‐
nated with work on SVG, others have implemented completely new
rules and syntax. As a result, switching between CSS graphics and
SVG can be confusing.

Styling Documents Versus Drawing Graphics
The tension between CSS and SVG is driven by their differing goals
of formatting documents versus rendering graphics. Both are
involved in handling layout; both control the incorporation of
images, colors, and patterns; and both determine how text gets ren‐
dered. It’s easy to get lost in the overlap; some CSS properties work
in SVG just the same as in HTML, while others are completely
different.

It helps to focus on the different purposes of the two languages.

CSS was designed to describe the presentation of text documents. It
assumes that most of the elements in the document contain text.
CSS rules define the regions of the web page in which the text
should be arranged (layout boxes), the decoration of those boxes,
and the styling of the text itself. For the most part, the text is treated
as a continuous stream that can be wrapped from one line to
another to fit within the layout boxes. When you change the avail‐
able space for each line, the layout will be rearranged: text wrapping
at different points, boxes expanding to fit more or fewer lines of text,
and the overall page layout shifting to accommodate them.

In contrast, SVG defines a two-dimensional graphic. There is no
single flow of content that can be wrapped to a new line if there isn’t
enough space on this one. The entire SVG expands or contracts
together, preserving the relative positions of all the elements in both
horizontal and vertical directions.

98 | Chapter 3: A Sense of Style

The shape and position of SVG elements are a fundamental part of
their meaning and purpose. In contrast, the fundamental meaning
of HTML elements is contained in their text content and the seman‐
tic meaning associated with the HTML tags; the shape and position
of the CSS layout boxes is (usually) pure decoration.

When you add a border to a CSS layout box, it takes up extra space
around the outside of the box, and the layout adjusts to accommo‐
date it. In contrast, when you add a stroke to an SVG shape, it is
positioned exactly centered over the geometric edge of the shape. If
that stroke overlaps something else, it’s up to you to decide whether
to move or resize the shapes to accommodate it; the browser makes
no assumptions about why you’re drawing graphics in the particular
places you specify.

Many other syntax differences come from this difference between
styling independent, flexible boxes versus drawing graphics that are
explicitly positioned by x- and y-coordinates. Even for the CSS fea‐
tures that have been adapted from SVG, such as transformations
(Chapter 11) or masks (Chapter 15), new rules were required to
apply the effects to elements that aren’t part of a fixed coordinate
system.

Nonetheless, although CSS layout and style properties were created
to format text documents, they can just as easily be applied to empty
elements in order to construct purely graphical content. It is with
this usage that CSS becomes a direct competitor to SVG.

CSS as a Vector Graphics Language
As described in Chapter 1, vector graphics describe where and how
a computer should draw an image, rather than describing the pixela‐
ted result. In this way, the combination of an HTML document plus
CSS stylesheet can be seen as a vector language; together, they
describe how the browser should display the web page.

Most web pages do not use the precise coordinate-system layout
usually associated with vector graphics. However, CSS absolute posi‐
tioning can be used to provide coordinate-like positioning, placing
elements at a certain point on the page regardless of the flowing lay‐
out of the text. CSS also allows you to set the width and height of
elements exactly, regardless of the width available or the height
required to display their text content.

CSS Versus SVG | 99

With these properties—and the many styles available to decorate
CSS boxes with borders, backgrounds, and more—CSS can turn a
nested series of HTML elements into a vector graphic. Example 3-3
uses CSS and HTML to recreate the original, primary-color stop‐
light from Chapter 1. Figure 3-3 shows the result, which is very close
to Figure 1-1.

Figure 3-3. The CSS vector graphic stoplight

100 | Chapter 3: A Sense of Style

Example 3-3. Drawing a simple stoplight, with CSS and HTML

HTML MARKUP:
<!DOCTYPE html>
<html lang="en">
<head>
 <title>Stoplight Drawn Using CSS Styles</title>
 <style>
 /* Style rules go here (or as an external stylesheet) */
 </style>
</head>
<body>
 <figure aria-label="A stoplight">
 <div class="stoplight-frame" >
 <div class="stoplight-light red" ></div>
 <div class="stoplight-light yellow" ></div>
 <div class="stoplight-light green" ></div>
 </div>
 </figure>
</body>
</html>

An HTML5 <figure> element is used to group the elements
that will be part of the graphic. An aria-label attribute adds a
text description for accessibility purposes.

The frame and the lights are each <div> elements; by default,
these will be displayed as independent boxes, but they have no
other meaning or default styles. A class attribute is used so that
the custom styles can be applied in the stylesheet.

The three elements that will represent the lights are contained
inside the element that will represent the frame; unlike SVG
shapes, HTML <div> elements can be nested, which allows you
to position smaller elements relative to the boundaries of larger
components.

Each light has been given two class names: one (stoplight-
light) will be used to assign the common features (size and
shape); the other (e.g., green) will be used to assign the unique
features (color and position).

CSS Versus SVG | 101

CSS STYLES:
figure {
 margin: 0;
 padding: 0;
}
.stoplight-frame {
 margin: 20px;
 width: 100px;
 height: 280px;
 background-color: blue;
 border: solid black 3px;
 position: relative;
}
.stoplight-light {
 width: 60px;
 height: 60px;
 border-radius: 30px;
 border: solid black 2px;
 position: absolute;
 left: 20px;
}
.stoplight-light.red {
 background-color: red;
 top: 30px;
}
.stoplight-light.yellow {
 background-color: yellow;
 top: 110px;
}
.stoplight-light.green {
 background-color: #40CC40;
 top: 190px;
}

Most browsers inset <figure> elements relative to the rest of
the text; here, the margin and padding are reset so that positions
of the graphic components will be relative to the browser win‐
dow.

The element with class stoplight-frame is offset from the edge
of the window using margin spacing, then is given a fixed width
and height. It is filled in using background-color and given a
stroke-like effect with border.

The stoplight frame element is also given the position:
relative property. This does not affect the display of this

102 | Chapter 3: A Sense of Style

component, but it defines the component as the reference coor‐
dinate system for its absolutely positioned child elements.

All three of the elements representing the lights will share
the .stoplight-light styles. The width and height make the
element square; then, border-radius rounds it into a circle and
border adds a stroke effect.

The light elements are set to use absolute positioning, then the
left property sets the horizontal position of each light as an
offset from the left edge of the frame element.

Each individual light has its color set according to its class. The
vertical position is set with the top property, again as an offset
from the frame element.

The example may be simple, but it demonstrates some common fea‐
tures in CSS vector graphics:

• Although CSS elements are by default rectangular, the border-
radius feature can be used to create circles or ellipses.

• You can position elements using margin and padding, but it is
usually more reliable to position them absolutely.

• You can use one element as the reference frame for absolutely
positioning other elements by nesting them in the HTML, by
giving it a nondefault position value.

In Chapter 12, we will expand upon this simple stoplight example to
recreate the gradient effects from Figure 1-4 using CSS gradients.

Which to Choose?
If you can create vector graphics with CSS, why bother learning
SVG? It really depends on what type of graphics you’re trying to
create.

For advanced graphics, SVG has the undoubted advantage. CSS can
create simple rectangles and circles, but other shapes require clip‐
ping paths (which aren’t well supported) or complex nested struc‐
tures. There is also much better browser support for graphical
effects in SVG, and more flexible options for decorative text.

CSS Versus SVG | 103

For graphical decorations on a text document, however, CSS styling
may provide a simple solution. For a simple background gradient,
styling with CSS is easier than creating a separate SVG file, encoding
it, and embedding it as a data URI in your CSS file. By taking advan‐
tage of the ::before and ::after pseudoelements available on most
elements, you can create moderately complex decorations such as
turned-down corners, menu icons, or stylistic dividing rules.

The ::before and ::after pseudoelements do
not apply to “replaced content” such as images,
form input elements, or SVG content. They do
apply to other void (always empty) HTML ele‐
ments such as <hr/> (horizontal rule), which is
rendered using the CSS layout model.

When the CSS graphic requires more than the three layout boxes
you can create from a single element, simplicity is compromised.
Creating a scaffolding of HTML elements to represent each part of
the graphic, as we did in Example 3-3, divides your graphical code
between the CSS and the markup. Although the same could be said
about inline SVG graphics with external stylesheets, it is generally
easier to distinguish SVG graphical markup from the rest of the
HTML content of the web page. SVG’s <use> element, in particular,
makes it easier to organize your graphical markup into a single sec‐
tion of your HTML file.

Compatibility adds another layer of complexity. For the most part,
browsers either support SVG or they don’t; certain effects may not
always render the same, but the geometric structure will be consis‐
tent. In contrast, when you’re building CSS vectors, the geometric
appearance often depends on relatively recent features of the lan‐
guage. Without support for border-radius, the stoplight would
have been barely recognizable.

This book focuses on SVG, and so it will for the most part empha‐
size the SVG way of creating vector graphics. However, this is also
intended to be a practical reference for web designers, so the ques‐
tion of CSS versus SVG will be revisited regularly throughout the
rest of the book. Whenever an SVG feature is introduced that has a
CSS counterpart, the two will be compared and contrasted to high‐
light the key differences in how they work.

104 | Chapter 3: A Sense of Style

Summary: Working with CSS
CSS and SVG have an interdependent relationship, which has both
been enhanced and complicated by the development of level 3 CSS
specifications.

CSS3 is big, consisting of more than two dozen different documents
representing new functionality beyond what is supported in CSS 2.1.
There are specifications covering animations, 2D and 3D transfor‐
mations, transitions, text to speech, print layout, advanced selectors,
and more. Throughout this book, where appropriate, each chapter
will cover the CSS capabilities in comparison with SVG features.

It’s worth noting that the CSS specifications are a perpetual work in
progress. One of the key roles of this chapter was to point out fea‐
tures that were available and relevant to SVG. If you are working
with advanced CSS features, it is always worth spending some time
looking at the current state of work on CSS specifications at the
W3C and experimenting to see what is and is not implemented in
your target browsers.

When you’re using CSS to style SVG content, new CSS features such
as media queries can increase the functionality and flexibility of
your graphics. Browsers use the same CSS parser and selector-
matching implementations for SVG as for HTML. So you can use
these new CSS features in your SVG files, in any web browser that
supports them, even though they did not exist at the time the SVG
1.1 specifications were finalized. The future-focused CSS error-
handling rules allow you to define limited fallback options for soft‐
ware that has not implemented the latest features. The @supports
rule allows more nuanced control.

SVG has also become an important part of CSS styling for text docu‐
ments. This chapter has discussed the use of complete SVG images
in CSS; other chapters will explore the SVG graphical effects, which
can now be used in the latest browsers to manipulate the appearance
of HTML content.

At the same time, CSS3 has developed alternatives to many SVG fea‐
tures, so that you can use it to directly create vector graphics from
empty elements in your HTML code. This chapter has given a hint
of the possibilities. By the end of the book, you should have a clearer
understanding of what is possible with CSS and HTML alone, and
what is made much easier with SVG.

Summary: Working with CSS | 105

http://www.w3.org/Style/CSS/current-work
http://www.w3.org/Style/CSS/current-work

CHAPTER 4

Tools of the Trade
Software and Sources to Make SVG Easier

The SVG examples in this book were for the most part created “from
scratch,” with the markup or standard JavaScript being typed into a
code editor. However, that’s certainly not the only way to work with
SVG, nor the most common one.

Most SVG drawings and original art start their life inside some kind
of graphical software, created by an artist or designer working with
shapes and colors rather than XML tags and attributes.

Most SVG data visualizations are created with JavaScript, and visual‐
ization libraries offer different degrees of abstraction between the
author and the SVG code.

In most projects, SVG icons are imported from existing icon sets,
with the SVG files manipulated entirely by project build scripts.

By showing you the internal components of an SVG, stripped down
to their skeletal form, we hope to give you a complete toolset to
work with SVG: the skills to modify and extend any SVG you work
with, no matter how it was created. With this programmatic
approach to SVG, you will be better able to manipulate graphics cre‐
ated by others or by software, in order to match your web design or
to enable user interaction. But this mental toolset you’ll gain by
understanding SVG shouldn’t detract from the software tools that
other developers have created.

107

Software tools make it easier to create graphics and process files so
they are ready to deploy on your web server and display on your
pages. The tools discussed in this chapter include:

• graphical editors that emphasize visual components rather than
code

• code editors that provide hints and immediate feedback
• libraries that streamline the creation of dynamic graphics with

JavaScript
• rendering programs that display the SVG or convert it into

other image formats

In addition, we introduce the vast panoply of free and licensable
SVG content that can help you quickly enhance your web develop‐
ment process and designs, even if your personal artistic skills don’t
extend beyond stick figures.

This chapter specifically mentions some of the most popular soft‐
ware and services. These are not the only options, and we don’t
guarantee they are the best. They are given as examples of what is
out there, and of how different options vary from one another.
When choosing tools for your own projects, think about the features
you need, and the budget you can afford.

Whatever you choose, remember that any standards-compliant SVG
file can usually be opened and modified with other SVG tools, so
you’re not locked into the workflow of a particular product or
vendor.

Ready-to-Use SVG
The easiest way to get started with SVG—especially if you’re more of
a programmer than a graphic designer—is to start with someone
else’s art. SVG may not be as ubiquitous on the web as other image
formats, but it’s getting there.

The simplest method is to start searching for your term of interest
plus “SVG,” which will yield a broad result in most search engines.
For more precision, you will want to refine your search: Google
Images is a good start, although you can refine your search by using
the “Search tools” option and choosing “Line Art” or “Clip Art”

108 | Chapter 4: Tools of the Trade

http://images.google.com
http://images.google.com

under the “Type” menu option. Alternatively, typing “subject file
type:SVG” directly into Google will also work.

Prior to using clip art from a vendor or website, you should ascer‐
tain what license it is provided under. Early SVG was mostly pro‐
duced within open source communities, with graphics often
released under a Creative Commons license, but today, high-quality
SVG artwork is produced by professional artists expecting to be
compensated for their work.

Although there are plenty of free-to-use graphics available (some
with noncommercial restrictions or attribution requirements), oth‐
ers are offered under paid license systems similar to those used for
stock photos or web fonts.

One benefit of SVG’s dual nature as both an
image format and an XML format is that it is
possible to embed copyright license information
directly in the file using a <metadata> block.
We’ll discuss how you can do this for your own
graphics in Chapter 17.

For accessing graphics created by others, remember that creative
works are by default “all rights reserved”; the absence of a copyright
declaration does not mean a work is public domain. Don’t use some‐
one else’s work unless you are sure that the original creator has
offered a license compatible with your intended use.

SVG will never replace JPEG for stock photographs (which can’t be
efficiently represented in vectors), but it is now a standard option
for vector graphic clip art and icons, including those provided by
commercial suppliers.

There are a number of tools and libraries that can convert simple
SVG art into other vector formats and back again. This can increase
the flexibility of the vector graphics: for example, the encapsulated
PostScript (EPS) format, long a staple in the realm of clip art, is still
dominant in print. For simpler graphics, icon fonts—which allow
sets of single-color icons to be distributed as a web font file—are
popular because they allow icon size and color to be controlled with
familiar CSS properties. Nonetheless, companies that produce clip
art, maps, and related graphics for the web are increasingly shifting
to SVG for their vector graphic format.

Ready-to-Use SVG | 109

https://creativecommons.org/

Using a vector graphic as a source file, stock art companies can gen‐
erate raster images (PNG, JPEG, and GIF) of any size on demand.
For a web designer interested in purchasing raster graphics, how‐
ever, it often makes more sense to license a single SVG and convert
it into the required raster format at the needed resolutions yourself,
rather than purchasing raster graphics at different scales.

The following sites should help start you on your search for SVG:

Open Clip Art Project
The Open Clip Art Library (OCAL) Project is definitely the old‐
est, and perhaps the largest, repository of SVG content, all of it
available either through Creative Commons or public domain
licenses for unrestricted commercial use.

Figure 4-1. Samples from the Open Clip Art Library: on the left,
Simple Farm Animals 2 by user Viscious Speed; on the right, line
drawings from Sir Robert Baden-Powell’s 1922 book An Old
Wolf ’s Favourites, converted to SVG by user Johnny Automatic

Established in 2004 by Jon Phillips and Bryce Harrington, the
OCAL project was created to provide a public commons for clip
art, using SVG for encoding primarily because the format typi‐
cally doesn’t have the same type of vendor encumbrances or
royalty restrictions as other proprientary formats. Moreover,
because the source code for the graphics can be read with a text

110 | Chapter 4: Tools of the Trade

http://www.openclipart.org

editor, it’s also possible to decompose clip art images into sepa‐
rate pieces, making SVG useful as a way of packaging collec‐
tions of icons or images in a single file. Figure 4-1 displays some
of the diverse artistic styles available.

The project is also integrated with the Flaming Text ImageBot
graphics editor, which allows you to tweak some SVG style
properties online.

Wikimedia Commons
The media repository arm of Wikipedia, Wikimedia Commons
compiles images, audio, and video in a wide variety of formats.
All files are available under some sort of “copyleft” license; some
require attribution or are restricted to noncommercial use or to
use within similarly licensed work. Detailed license information
is available on each file’s catalogue page.

Wikimedia is actively pushing their contributors to use the SVG
format for diagrams, clip art, icons, and other vector drawings
because of its flexibility and ease of editing; their servers then
automatically generate raster versions in various sizes. The tag‐
ging and cataloguing of files on Wikipedia is often inconsistent,
making searching a little difficult. But there is plenty of great
SVG content if you take the time to look around. Figure 4-2 dis‐
plays selections from the SVG Botanical Illustrations category,
including a labeled diagram; because SVG files are easily edita‐
ble, the file is available with labels in many languages.

Figure 4-2. SVG from Wikimedia Commons: on the left, a holly‐
hock flower by user Ozgurel; on the right, a labeled diagram of a
peach by Mariana Ruiz Villarreal (aka LadyofHats)

Ready-to-Use SVG | 111

http://www.flamingtext.com/imagebot/editor
http://www.flamingtext.com/imagebot/editor
http://commons.wikimedia.org/wiki/Main_Page

SVG is used for most maps, logos, and diagrams on Wikipedia.

Iconic
Iconic is a commercial SVG icon library, but they offer a set of
more than 200 icons completely free to use (MIT license; you
must ensure that license information is available in the file).
This Open Iconic set includes most common user interface but‐
tons in single-element icons that you style to any color you
choose. For their paid offerings, Iconic distinguishes themselves
by taking full advantage of all the possibilities of SVG, support‐
ing multicolor styling and using scripts to substitute in more
detailed versions of the icons at larger sizes. They even brag
about their easy-to-read (and modify) XML markup.

The Noun Project
Another icon-focused library, the Noun Project aims to create a
visual language for clear international communication. Access
to their entire library is by monthly subscription, but their data‐
base includes many public domain and Creative Commons–
licensed icons, which users can search by concept using tags in
dozens of languages.

Typically, SVG in the wild is stored as text-based
XML files. However, the SVG standards allow
for Gzip-compressed SVG—typically having
a .svgz filename extension—to reduce the file
size. This is common for high-quality, photo‐
realistic SVG files, which can occasionally get to
be bigger than their PNG counterparts, and for
maps and other complex charts that embed a lot
of metadata within the graphics themselves.
However, using .svgz on the web can be tricky.
Even if you get your server configuration cor‐
rect, browsers can get it wrong if the user then
saves the received file.
File compression should nonetheless always be
used by a performance-minded web developer
(that’s you!) to compress an SVG, HTML, or
CSS file for transmission from web server to
browser—either with Gzip or the newer Brotli
algorithm. The compression is usually applied
through web server settings, and is indicated via
HTTP headers, rather than with a file extension.

112 | Chapter 4: Tools of the Trade

https://useiconic.com/open
https://thenounproject.com/

Ready-to-use graphics can solve many web design problems. For
common interface icons, creating your own graphics may often feel
like reinventing the wheel.

But for other projects, or other graphic types, stock art just won’t do.
You need to create a custom image that perfectly represents a new
and unique concept. It takes a little more artistic skill, but there are
plenty of tools for creating your own SVG art. After all, that’s how
most of the graphics in these collections were created in the first
place.

Click, Drag, Draw: Graphical SVG Editors
Once upon a time, one of the biggest issues facing adoption of the
Scalable Vector Graphics standard was the lack of decent tools for
creating SVG graphics. Most SVG needed to be coded by hand, or—
if that was too daunting—to be converted from other proprietary
graphical standards. This reliance on converted graphics meant that
the full features of SVG weren’t always used.

On the other side, many vector graphics editors include features that
are not part of the standard SVG specification. To ensure that this
extra information and features are retained when you save and
reload the SVG (a process called “round-tripping”), these programs
either have separate, proprietary image formats (like Adobe Illustra‐
tor’s .ai format) or add extra markup to the SVG file (as Inkscape
does). To create graphics that will display consistently with other
software, these programs also include commands that will “flatten”
the extra features into standard SVG 1.1.

If you are creating SVG for the web, always ensure that you export
the final version of your graphic in standard SVG. Without this step,
the file may be many times larger than the “pure” SVG version. This
will slow your site and complicate any future code you try to write.

You can often fix a bloated, proprietary SVG
export with an optimization tool (discussed in
“Processing and Packaging” on page 133). But
it’s always better to make the most of the web-
export tools from the original software first.

There are now numerous graphical applications that can export files
as SVG; this section lists just a sample.

Click, Drag, Draw: Graphical SVG Editors | 113

The common feature of these apps is the visual, what-you-see-is-
what-you-get (WYSIWYG) editor, where you can position shapes
with your mouse (or stylus, or finger) and select colors from on-
screen palettes. They differ in the range of SVG features they sup‐
port, and in how easy they are to use. We offer some tips and
warnings about how to get web-quality output from each.

Adobe Illustrator
Adobe Illustrator is the granddaddy of vector graphics programs,
and debuted in 1987. Illustrator not only set the expectations of
what a vector graphics program should look like, but has consis‐
tently been at the cutting edge of vector graphics support for the
past two decades.

Many aspects of SVG were inspired by the capabilities of Illustrator,
and Illustrator has long supported export of its graphics to SVG for‐
mat. However, it’s definitely worth remembering that SVG is not a
native format for the application (the .ai format is). This means that
Illustrator must perform a conversion from its internal vector
graphics format (built primarily around PostScript) to SVG. For
comparatively simple graphics, this is a straightforward process, but
it is possible to create Illustrator images that have poor fidelity and
large file sizes when rendered to SVG, with the application replacing
complex vectors with embedded bitmap images.

The basic save-as-SVG option in Illustrator creates a complex file
from which the native graphic can be reconstructed. However, a
much more streamlined export-as-SVG option was introduced in
Adobe Illustrator CC 2015, which creates a vector graphic optimized
for the web.

In the latest (CC, or Creative Cloud) versions of Illustrator, you can
also copy individual graphics components from Illustrator and paste
them into a text editor; the corresponding SVG code will be pasted.
(If it doesn’t work, look for the “On Copy: Include SVG Code”
option in the “File Handling and Clipboard” settings.) Alternatively,
you can select “Copy to SVG” from the right-click context menu of a
layer; this is your only option if the selected object is text (copying a
text element normally just copies the text content).

114 | Chapter 4: Tools of the Trade

Copying and pasting markup for individual ele‐
ments is useful if you’re building a complex
application or animation in SVG. You can use
the visual editor to draw shapes, without having
Illustrator mangle the rest of your markup.

Avoid using “Illustrator filters” in your graphic, as the application
doesn’t yet translate them well into SVG; use the “SVG filters”
instead. Similarly, blending modes (Multiply, Dissolve, etc.) aren’t
yet translated into SVG-compatible CSS blend modes (as described
in Chapter 16). If you use these, remove them before export and
then edit the CSS yourself to add them back in. Finally, be sure all
stroked shapes use centered strokes, as inside/outside strokes are not
yet supported in SVG.

Adobe Photoshop
The most recent (CC) versions of Adobe Photoshop can also export
SVG documents. While Photoshop is primarily a bitmap (raster
image) editor, it supports vector shapes and text, making this a use‐
ful option to be aware of.

To export SVG from Photoshop, name the layer or group with the
intended name of the file: for example, icon.svg. Then, use File →
Generate → Image Assets.

The generated SVG document will be exported into a folder pro‐
vided with the name of the originating PSD file, with your named
SVG documents inside the folder. By default, this folder will appear
on your desktop, although you can change this in Photoshop’s pref‐
erences.

At the time of writing, there are several features of the exported SVG
file to keep in mind:

• The exported SVG is responsive (it has a viewBox attribute on
the root <svg> element) but with default sizes (it also has width
and height attributes).

• The viewBox is automatically cropped to the edges of the largest
vector shape in the current design.

• Elements are given their own unique classes in an embedded
style in the SVG.

Click, Drag, Draw: Graphical SVG Editors | 115

• Any bitmap images will be turned into inline base-64 data URIs
in the SVG.

As an alternative to generating an SVG as an image asset, you can
use Photoshop’s File → Export options, including setting up prefer‐
ences to make SVG the default “Quick Export” option. One upside
of the image assets approach is that Photoshop will automatically
update the exported SVG with any changes made to the original
PSD document. It’s expected that Adobe Illustrator will offer similar
functionality in the near future.

The open-source alternative to Photoshop, GIMP (the GNU Image
Manipulation Program) also has some vector features and SVG
export of certain graphic components. GIMP’s SVG export is opti‐
mized for readability, which is great if you’re going to be manipulat‐
ing it in a code editor—but less so if you are worried about
minimizing file sizes.

Sketch
Sketch is a Mac-only program that has proved extremely popular
with user interface designers. Unfortunately, the SVG export capa‐
bilities (at the time of writing) are stuck where Adobe Illustrator was
five years ago…although that’s not to say that the result can’t be
improved and cleaned up.

First, Sketch must be informed that a shape can be exported as SVG:
you’ll find this option at the bottom of the properties panel for a
selected shape. Sketch will deliver each shape as its own separate
SVG file, unless multiple shapes are merged.

By default, Sketch applies stroke to elements on the inside, which (as
previously discussed) SVG does not yet support. The latest versions
adjust your path sizes to match the stroke; for more predictable
export, ensure that Sketch’s preferences are set to stroke paths in
their center.

A typical export of SVG code for a simple path will include a lot of
extraneous code; Sketch adds its own proprietary code in the out‐
put, under the sketch namespace.

116 | Chapter 4: Tools of the Trade

https://www.gimp.org/
https://www.gimp.org/

To create the cleanest possible SVG output from Sketch, adhere to
the same rules we established for Illustrator, with a few additions:

• Create an artboard for each drawing (Insert → Artboard), and
one drawing (such as an icon) per artboard.

• Remove any bounding boxes from the drawing.
• Don’t attempt to rotate your drawing in Sketch before export, as

doing so will (in current versions) significantly distort the SVG
export.

Following these rules will eliminate many of the current issues with
SVG export from Sketch, but not all of them; you may have more
success copying and pasting Sketch drawing objects into another
vector application, such as Illustrator.

Inkscape and Sodipodi
Sodipodi was one of the earliest SVG editors, initially developed for
Linux systems. It drew its inspiration from Adobe Illustrator, but
used SVG natively to store and retrieve content. Inkscape started as
a branch of Sodipodi, and is now the more actively developed pro‐
gram.

Inkscape has matured into a remarkably sophisticated, feature-rich
vector graphics application, while never losing sight of its SVG
roots. It is available for Linux, Windows, and Mac, but the Mac ver‐
sion relies on the XQuartz adapter (for running Unix-based software
on Mac), and can be difficult to use.

The interface (Figure 4-3) is somewhat crowded with features, but if
you put in a little effort to learn all the options it allows for consid‐
erable control over the graphic. In addition to supporting most
static SVG features, it includes numerous filters and extensions to
create graphical effects. There are also controls that allow you to edit
nongraphical aspects of the SVG, such as element IDs, alternative
text, and even simple JavaScript event handling. You can also inspect
the XML file and edit nodes and attributes directly.

Click, Drag, Draw: Graphical SVG Editors | 117

http://www.inkscape.org

Figure 4-3. The open source Inkscape graphics editor

There are a few features in Inkscape that can make SVG exports eas‐
ier:

• Use File → “Clean up document” to remove unused <defs>
elements.

• If you are copying an element for use elsewhere in the same
drawing, create a Clone (Edit → Clone), which generates a
<use> reference to the original element. This reduces output
code size and makes later editing far easier.

• Use Path → Simplify to reduce the number of points in an over-
drawn element, further reducing file size.

Inkscape uses SVG as its own native format, but with extra
application-specific data in its own XML namespaces. In addition,
Inkscape implemented some features of SVG 1.2, particularly multi‐
line text boxes, which were never widely supported by browsers; be
sure to convert your text boxes to fixed-position SVG text when
exporting for the web.

When saving your file, you’ll need to be very clear exactly what kind
of SVG you are saving from Inkscape: “Inkscape” SVG, with its extra

118 | Chapter 4: Tools of the Trade

embedded code, or “plain” SVG. Inkscape also has an “Optimized
SVG” option.

For the web, you either want the plain version or the optimized ver‐
sion; if you use the optimized option, consider the export settings
carefully so you don’t accidentally remove content that you need for
later styling or scripting.

Draw SVG
Draw SVG is a comprehensive online SVG editor, developed pri‐
marily by Joseph Liard. It is under active development, with intent
to support SVG 2 features as they become supported by browsers,
and performance has significantly improved since we first reviewed
it. Figure 4-4 shows the interface.

Figure 4-4. The Draw SVG free online SVG graphics editor

Draw SVG implements essentially all the SVG drawing and styling
features commonly supported by browsers (except animation). It
even supports HTML <foreignObject> content for embedding
audio, video, or formatted text paragraphs, and multilingual text
using the <switch> element.

The interface uses standard SVG terminology for attributes and
style properties, which is helpful if you will be alternating between
using a graphics editor and writing the code yourself. You can add

Click, Drag, Draw: Graphical SVG Editors | 119

http://draw-svg.appspot.com/

IDs and classes to elements, and set the language attribute for text,
although at the time of writing it does not seem to support alterna‐
tive text (e.g., <title>). Drawing complex curved shapes can be
nonintuitive if you’re used to the instant feedback of other drawing
tools.

The application also offers tools to create rasterized versions of the
SVG, and to encode raster images as embedded data URIs.

There are now many other browser-based online SVG editors, some
with more features than others, but all of which use the web browser
to convert the code to graphics. We already mentioned the Flaming
Text ImageBot editor that is paired with the Open Clip Art Library;
the commercial Vecteezy clip art library has their own online SVG
editor, which is free to use as a stand-alone SVG editor.

Boxy SVG
A different approach to a browser-based SVG editor, Boxy SVG is a
full graphical editor in the form of a Chrome plug-in; in use, it is
indistinguishable from a desktop application. A website demo works
in any web browser. It has an attractive interface and excellent sup‐
port for SVG features, including new features such as blend modes.
Equally importantly, it is being actively developed.

More Online
Nearly all of the SVG editors described in this section can also con-
vert SVG graphics to raster images, or other vector formats. This can
be useful to create fallbacks for old browsers, or to create consistent
rendering for print publications.

However, manually saving files in multiple formats from a graphics
editor can be tedious. On many web server setups, you can auto-
mate the process using dedicated rasterization and conversion
tools.

Read more in “SVG Snapshots: Converting Vector to Raster”:

https://oreillymedia.github.io/Using_SVG/extras/ch04-
rasterizers.html

120 | Chapter 4: Tools of the Trade

http://www.flamingtext.com/imagebot/editor
http://www.flamingtext.com/imagebot/editor
https://www.vecteezy.com/editor
https://www.vecteezy.com/editor
https://boxy-svg.com/
https://oreillymedia.github.io/Using_SVG/extras/ch04-rasterizers.html
https://oreillymedia.github.io/Using_SVG/extras/ch04-rasterizers.html

Bringing SVG Alive: SVG in the Web Browser
To see and use the full power of SVG, as more than just an image,
you need a dynamic SVG viewer that can update the graphic accord‐
ing to user interaction or timed animations. And if you’re building
SVG for the web, it’s best to test it in web browsers as early and often
as possible.

When discussing web browser support for SVG, it helps to group
the browsers according to the rendering engine (drawing code) that
they use. Many of the engines are open source; numerous other
tools use the same code. Different applications using the same ren‐
dering engines usually display web pages and SVG in the same way.
For that reason, we focus on the major browser rendering engines
(Chrome/Blink, Safari/WebKit, Firefox/Gecko, Internet Explorer,
and Microsoft EdgeHTML) in all the browser support warnings in
the book.

Knowing the rendering engine also tells you which prefixes were
used for experimental CSS features. CSS prefixes are going out of
fashion—all the major browsers have pledged not to introduce new
prefixed CSS properties for web content—but some features are still
only supported in some browsers with a prefixed syntax.

Conversely, some of the most widely used prefixed properties have
now been adopted by all new browsers as deprecated synonyms for
the standard CSS. Content creators should, of course, use the unpre‐
fixed versions.

If you need to add prefixes to support older browsers, use a dedica‐
ted software tool to make the conversion. Of course, you should also
make sure your designs still function if a feature isn’t supported at
all—so you may find that prefixes aren’t worth the hassle.

New features are now usually enabled with experimental browser
modes (or “flags”) controlled by the user.

This section reviews the history of the main rendering engines when
it comes to SVG, and summarizes major support issues. However—
with the exception of Presto and Trident—the browser SVG imple‐
mentations are all under active development. Feature support may
have changed by the time you read this. Consult the version release
notes or the issue-tracking databases for the various browsers to
determine if a specific feature is now supported.

Bringing SVG Alive: SVG in the Web Browser | 121

Gecko for Firefox
The first web browser implementation of SVG was built within the
Gecko rendering engine in 2003. Gecko, originally built for Net‐
scape 6, is the basis of the Mozilla Firefox browser as well as numer‐
ous niche browsers and tools.

The original SVG implementation was basic, focusing on simple
vector shapes. However, it has expanded steadily and continues to
improve. Until around 2014, dynamic SVG could be slow and jerky
in Firefox; however, significant performance improvements have
been made and some animations are now smoother in Firefox than
in other browsers.

There are still some areas where Firefox/Gecko does not conform to
the SVG specifications in the finer details, particularly around the
way <use> elements are handled. The rendering engine also did not
initially implement many of the style properties that offer nuanced
control of the layout of SVG text; some of these features are now
(mid-2017) being implemented in coordination with enhancements
to CSS-styled HTML text. SVG rendering may also differ slightly
between operating systems, as Firefox uses low-level graphical ren‐
dering tools from the operating system to improve the performance
of some actions.

Experimental CSS features for Gecko used the -moz- (for Mozilla)
prefix; since mid-2016, Firefox also supports the most common
-webkit- properties.

WebKit for Safari and iOS Devices
Apple’s Safari browser was built upon open source rendering and
JavaScript engines originally created for the KDE operating system
(for Linux/Unix computers). Apple’s branch of the code—known as
WebKit—is used in all Apple devices and was also originally the
basis for the Google Chrome browser, among many other tools.
WebKit is also used in the PhantomJS browser simulator.

WebKit implemented most SVG 1.1 features between 2008 and
2010; many edge cases or areas of poor performance remain, but for
most purposes it is a complete implementation. Up until recently,
many CSS3 features required a -webkit- prefix on Safari and related
software, leading to the proliferation of those prefixes in the wild.
However, the development team has now committed to transition‐

122 | Chapter 4: Tools of the Trade

ing away from prefixes, and Safari 9 and 10 support unprefixed ver‐
sions of the most commonly used properties, such as those for
animations and transforms.

On iOS (the operating system used by iPhone and iPad), all web
browsers and apps use WebKit, even Firefox and Chrome. It’s a
requirement of the Apple App Store.

Blink for Newer Versions of Chrome, Opera, and
Android Devices
In 2013, Google’s Chromium project announced that they would no
longer synchronize further development with the WebKit project.
The Google Chrome browser at that point used WebKit code to ren‐
der web pages (and SVG) but had separate code for other functions
including JavaScript processing.

The branch of the rendering engine, developed as part of the Chro‐
mium project, is now known as Blink. In addition to being used by
Chrome, Blink is used in the Opera browser (since version 13) and
in native applications on newer Android devices. It is also used by
other new browsers, such as Vivaldi and Brave, and by the Samsung
Internet browser on Samsung Android devices.

Blink browsers still support -webkit- CSS properties, although not
necessarily those introduced since the split. They have user settings
(flags) to allow developers test out their own new features.

Initial development of the Google Chrome browser (and now Blink
in general) was heavily focused on performance; animations are
generally fast and smooth (although Firefox has since caught up).
Some edge-case features are not supported, particularly in areas
where the SVG specifications work differently from CSS and HTML.
Blink has removed support for SVG fonts from most platforms, and
the development team has indicated that they would eventually like
to deprecate SVG animation elements (SMIL animation) in favor of
CSS or scripted animations.

Presto for Older Opera Versions and Opera Mini
The Opera browser previously used its own proprietary rendering
engine, known as Presto. It is still used for server-side rendering for
the Opera Mini browser, converting web pages to much simpler
compressed files for transmission to mobile devices with low

Bringing SVG Alive: SVG in the Web Browser | 123

1 Data from http://gs.statcounter.com

computing power or expensive and slow internet connections. In
Opera Mini, SVG is supported as static images, but not as interactive
applications.

Presto supports nearly all of the SVG 1.1 specifications and some
CSS3 properties. However, it has not been (and will not likely be)
substantially updated since 2013. Furthermore, Opera Mini has
intentionally chosen not to implement many decorative CSS effects
that require too much memory or computation to recreate on a low-
power mobile phone. Opera Mini does support the @supports rule
(see Chapter 3), so you can use that to adjust your styles if necessary.

Presto versions of Opera used an -o- prefix for experimental CSS
features, but it is unlikely to be useful in modern websites.

Trident for Internet Explorer and Other Windows
Programs
Internet Explorer was the last major browser to introduce SVG sup‐
port. Prior to the development of the SVG standard, Microsoft had
introduced its own XML vector graphics language (the Vector
Markup Language, or VML), used in Microsoft Office software and
supported in Internet Explorer since version 5.

Basic SVG support was introduced (and VML phased out) with
Internet Explorer version 9 in 2009. Support for additional SVG fea‐
tures, such as filters, was added in subsequent versions. Nonetheless,
older Internet Explorer versions that do not support SVG (particu‐
larly Internet Explorer 8) continue to be used because newer ver‐
sions of the software are not supported on older Windows operating
systems. As of the end of 2016, slightly more than 0.6% of global
web traffic used Internet Explorer 8, a steady drop from previous
years but still a meaningful share for very large commercial web‐
sites.1

As of Internet Explorer 11 (the final version of the browser), there
were a number of small quirks and bugs in SVG support, and some
features that were not supported at all. The main area where Inter‐
net Explorer does not match the other web browsers is animation:
there is no support for either SVG animation elements or CSS

124 | Chapter 4: Tools of the Trade

http://gs.statcounter.com

animation applied to SVG graphics. Another key missing feature is
the <foreignObject> element, which allows HTML content to be
embedded in an SVG graphic.

The Trident rendering engine used for Internet Explorer is also used
in other Microsoft programs and by some third-party software built
for Windows devices. It used the -ms- CSS prefix, but there are only
a few properties where prefixes make a difference.

EdgeHTML for Microsoft Edge and Windows 10+
Programs
The Microsoft Edge browser developed for Windows 10 uses a new
rendering engine, built from a clean codebase to emphasize perfor‐
mance and cross-browser interoperability. The EdgeHTML engine
is also used by other software in Windows 10.

Edge supports all the web standards supported in Internet Explorer,
and many new ones. Collaboration from Adobe developers helped
advance support for a number of graphics and visual effects features.
Support for SVG <foreignObject> and CSS animations of SVG
content has already been introduced, as has tabindex in SVG. The
development team has indicated that they intend to implement
many other SVG2/CSS3 features. However, plans to eventually sup‐
port SVG animation elements were shelved after the Chromium
project announced their deprecation plans.

Edge uses two version numbers: one for the application interface
version, and one for the EdgeHTML rendering engine. This book
uses the EdgeHTML numbers, since those are what affect web
standards support.

For backward compatibility, Edge supports -ms- prefixed properties
that were supported in Internet Explorer, and also introduced sup‐
port for some -webkit- prefixes that are commonly used in existing
websites. However, you shouldn’t normally be adding prefixes for
MS Edge support.

Servo
The Mozilla foundation is sponsoring the development of a new
browser rendering engine, Servo, that may one day replace Gecko at
the core of Firefox. It is being built from scratch in Rust, a program‐
ming language optimized for parallel computing environments. At

Bringing SVG Alive: SVG in the Web Browser | 125

the time of writing, developement work on SVG rendering within
Servo is at the very early stages; you can track their open issue to
add support.

Other Dynamic SVG Viewers
In addition to the web browsers, there are two other dynamic SVG
rendering engines that have been important in the development of
SVG:

Adobe SVG viewer
As mentioned in Chapter 1, the Adobe SVG viewer—a plug-in
for Internet Explorer—was one of the first and most complete
SVG environments. Although it has not been developed for
years, it can still be downloaded to enable SVG support on older
Internet Explorer browsers. To trigger the plug-in, the SVG
must be included in the page via either an <object> or an
<embed> tag.

Batik Squiggle viewer
The Apache Batik project is a complete implementation of SVG
1.1 in Java. Batik can be used to generate and display SVG in
other Java-based software, and has a rasterizer tool that can be
used from the command line (or from command-line scripts). It
also comes with its own dynamic SVG viewer called Squiggle
for viewing SVG files from your computer or the web.

Squiggle can display SVG animation and can process JavaScript
and respond to user events, including following hyperlinks to
new files. Batik supports nearly all of the SVG 1.1 specification,
but has not been updated for more recent CSS, DOM, and Java‐
Script methods. It can also be more strict, compared to browser
implementations, about requiring common values to be explic‐
itly specified in markup and in scripts.

The web browsers and other dynamic SVG viewers do not merely
display an image of the SVG—they present changing, interactive
SVG documents. To create such a document, you’ll need to use more
than the graphical editing programs presented in “Click, Drag,
Draw: Graphical SVG Editors” on page 113. You’ll need to look
inside the SVG, and work with the underlying code.

126 | Chapter 4: Tools of the Trade

https://github.com/servo/servo/issues/9998
https://github.com/servo/servo/issues/9998
http://xmlgraphics.apache.org/batik/

Markup Management: Code Editors
It is possible to write SVG code in any editor that can save in a plain-
text format. You can open up Notepad or something similar; type in
your markup, scripts, and styles; save it with a .svg extension; and
then open the same file in a web browser.

If you typed carefully, and didn’t forget any required attributes or
misspell any values, your SVG will appear onscreen, ready to be
used just as you intended. However, if you’re human, chances are—
at least some of the time—you’ll end up with XML validation errors
displayed onscreen, with JavaScript errors printed to the developer’s
console, or simply with a graphic that doesn’t look quite like you
intended.

Text editors that are designed for writing code can help considera‐
bly. They can color-code the syntax so it’s easy to detect a missing
quotation mark or close bracket. They can also test for major syntax
errors before you save. Many can autocomplete terms as you type.
The options for code editors are too numerous to list here; many are
available only for specific operating systems. Whatever you choose,
be sure to confirm that the editor has—at a minimum—syntax rules
for XML, or more preferably specific rules and hints for SVG.

Nonetheless, even the best syntax highlighting and code hints can‐
not help you draw with code. When you’re working with complex
shapes and graphical effects, it really helps to be able to see the
graphical effect of your code as you write it. SVG preview features
(often as separately installed extensions) are thankfully becoming
more popular in code editors. This section covers only a few of the
options.

Once you have tools that allow you to rapidly write and test your
code, it becomes easier to think about SVG programmatically.
Working with the code forces you to consider the graphic from the
perspective of the document object model rather than simply from
the perspective of its final appearance.

Atom Plus SVG Preview
A code editor developed by GitHub, Atom has a friendly interface
that opens up with lots of tips for new coders, but it also has many
features for power users, and many more available via extensions.

Markup Management: Code Editors | 127

https://atom.io/

For standalone SVG files, the SVG Preview extension will display a
live version of the SVG in the editor as you type. The preview image
is currently displayed as inline SVG code; this means that minor
syntax errors and missing namespaces in a half-finished file do not
break the preview. Unfortunately, it also means that external files
and stylesheets are not supported, and that <style> blocks from one
preview affect another. The SVG Preview feature—and the entire
editor—uses the Blink rendering engine, via GitHub’s Electron
framework for creating applications with web technologies.
Figure 4-5 shows side-by-side views of the same SVG file in code
and preview mode.

Figure 4-5. The Atom code editor with SVG Preview enabled

Brackets Plus SVG Preview
A code editor developed by Adobe primarily for web developers,
Brackets includes a feature whereby you can open the web page
you’re working on in a browser and have it update as you type in the
main editor. At the time of writing (Brackets version 1.8), the live
updates only work with HTML and CSS; SVG inline in those pages
is displayed, but not updated live. Nonetheless, the integrated local
web server can be quite useful for testing. It needs to be started with
an HTML file, but you can switch to an SVG file by editing the URL
in your browser.

128 | Chapter 4: Tools of the Trade

https://atom.io/packages/svg-preview
http://brackets.io/

There is an SVG Preview extension for Brackets. It is independent of
the Atom SVG Preview, but has many of the same features. How‐
ever, it should only be used for static SVG images, as script errors in
your code can crash the editor. Like the Atom preview, it uses inline
code rendered (by Blink) within the HTML5 application, and has
the same issues. However, the code for the Brackets SVG Preview is
currently injected without sandbox restrictions, and inline scripts
can wreak havoc. Unfortunately, there’s not an easy way to turn the
preview on and off. Figure 4-6 shows the editor with a live preview
of SVG icons.

Despite active development of both the core Brackets code and
extensions, as of early 2017 there has not been noticeable progress
on SVG-focused features for a couple years. Adobe is also develop‐
ing software (Adobe Extract) to allow users of their commercial
design software (e.g., Photoshop) to easily generate matching web
code in Brackets; however, at the time of writing this tool primarily
focuses on CSS and does not include any features related to SVG or
Adobe Illustrator.

Figure 4-6. The Brackets code editor with SVG Preview enabled

Oxygen XML SVG Editor
A commercial XML management program, Oxygen allows you to
handle many types of XML-based data and formatting tools. The

Markup Management: Code Editors | 129

https://github.com/peterflynn/svg-preview
http://www.oxygenxml.com/

SVG editor uses Batik to render graphics, and can render both SVG
markup and SVG created via scripts. It is intended primarily for cre‐
ating SVG as the result of an XSLT (eXtensible Stylesheet Language
Transformation) template applied to an XML data file, but can also
be used for plain SVG.

Online Live Code Sites
In recent years, numerous web applications have become available
that allow you to write web code and see its output in separate
frames of the same web page. Because the result is displayed right in
your web page, you can use all the latest features supported by your
web browser. Most make it easy to import common JavaScript code
libraries. However, since you don’t control the web server, other
external files can often be limited by browser security restrictions.

All these sites currently work with HTML5 documents, including
inline SVG elements. As with the live SVG previews for code editors,
this means that they are more forgiving of syntax errors than SVG in
XML files. Some live code sites worth mentioning include:

• JSFiddle was one of the first sites to offer live execution of web
code that you can save to a publicly accessible web link that you
can send to collaborators or reference from help forums. The
stripped-down interface is best for small test cases and
examples.

• CodePen is a more full-featured live code site that also serves as
a social media network for web designers; you can explore other
coders’ work, leave comments, or publish a blog with multiple
embedded working examples in each post. A paid “Pro” mem‐
bership opens up additional collaboration tools and the ability
to upload separate image files, scripts, or other resources.

• Tributary is specifically designed for data visualizations and
other scripted SVG. By default, it provides you with a blank
HTML page containing a single inline <svg> element that you
can manipulate with JavaScript. You can also create separate
data files accessible from the main script. The interface offers
convenient tools such as visual color pickers and GIF snapshots
(including animation) of your work.

When you’re working on these sites, keep in mind that saving your
work usually also means publishing to the web. Some sites, such as

130 | Chapter 4: Tools of the Trade

http://jsfiddle.net/
http://codepen.io/
http://tributary.io/

CodePen, automatically apply a very-few-rights-reserved license to
work published in this way (you can save work privately and control
copyright with a paid CodePen membership).

Because the live code sites support live preview of JavaScript as well
as markup, they are particularly useful when you’re dealing with
dynamic and interactive SVG and when creating data visualizations.
If those areas interest you, the next set of tools you’ll want to investi‐
gate are JavaScript tools to make manipulating the DOM easier.

Ready-to-Use Code: JavaScript Libraries
There are two ways to create an SVG by writing code: writing out
the XML markup and attributes, or writing JavaScript to create the
corresponding DOM elements dynamically. Scripting is preferred
when you have a lot of similar elements or when the geometric
attributes should be calculated based on a data file. This book uses
both approaches in the examples.

There’s actually a third way to code SVG (which
we mentioned briefly when discussing the Oxy‐
gen XML editor): using an XSLT stylesheet
applied to an XML data file.
The XSLT stylesheet is an XML file. It consists of
SVG markup templates interspersed with for‐
matting instruction elements that indicate how
the data should be processed and inserted into
the SVG file. XSLT is therefore another way to
create SVG that should correspond with under‐
lying data.
However, unlike with scripting, the XSL trans‐
formation can only be applied once, when the
file is processed; it cannot be updated with new
data or respond to user interactions. With
standardized JavaScript being well supported
and efficiently implemented in browsers, the use
of XSLT to generate SVG is falling out of favor.

The popularity of using JavaScript for the creation and manipula‐
tion of SVG has much to do with the availability of open source
tools to make this easier. These libraries of JavaScript code provide

Ready-to-Use Code: JavaScript Libraries | 131

shorthand methods to perform common tasks, allowing your script
to focus on graphics instead of underlying DOM function calls.

The following JavaScript libraries are particularly important for
working with SVG. Learning to use these JavaScript libraries is
worth a book of its own (and many great books are available). How‐
ever, they don’t replace an understanding of the underlying SVG
graphics. It’s difficult to effectively manipulate SVG with scripts
unless you already know what SVG is (and isn’t) capable of.

Raphaël and Snap.svg
The Raphaël library by Dmitry Baranovskiy was important in get‐
ting dynamic SVG into production web pages. It provides a single
interface that can be used to create either SVG graphics or Microsoft
VML graphics, depending on which one the browser supports. The
library is therefore essential if you want to provide dynamic vector
graphics to users of Internet Explorer 8. The number of features
Raphaël supports, however, is limited to the shared features of the
two vector graphics languages (SVG and VML).

The terminology used by Raphaël includes a number of convenient
shorthands that do not always directly correspond to the standard
SVG element and attribute names. The same terminology is used in
the newer Snap.svg library, produced by Baranovskiy through his
new employer, Adobe. Unlike Raphaël, Snap.svg does not include
support for VML graphics. This keeps the size of the library code
files down, and allows support for features such as clipping, mask‐
ing, filters, and even groups, which aren’t supported in VML. Snap
can also load in existing SVG code, in order to manipulate complex
graphics created in WYSIWYG editors. Both Snap and Raphaël have
convenient functions to create smooth JavaScript animations, allow‐
ing you to animate graphics in any version of Internet Explorer.

D3.js
The D3.js library, originally developed by Mike Bostock, has
become the standard tool for creating dynamic SVG data visualiza‐
tions. D3 is short for Data-Driven Documents, and it reflects how
the library works by associating JavaScript data objects with ele‐
ments in the DOM.

The core D3 library is open-ended, allowing you to manipulate
groups of DOM elements (SVG or HTML) simultaneously by defin‐

132 | Chapter 4: Tools of the Trade

http://raphaeljs.com/
http://snapsvg.io/
http://d3js.org/

ing how their attributes and styles should be calculated from the
corresponding data objects. Changes in values can be set to
smoothly transition over time to create animated effects.

D3 includes a number of convenient functions for calculating the
geometric properties of common data visualization layouts, such as
the angles in a pie graph. It also includes SVG-specific convenience
functions for converting data and geometrical values into the actual
instructions you’ll use in the attributes of an SVG <path> element.
However, D3 does not draw the charts directly; many extensions
and add-ons have been developed to make it easier to draw common
chart types.

GSAP
An animation-focused commercial library, the GreenSock Anima‐
tion Platform focuses on making animated HTML and SVG content
fast, smooth, and cross-browser compatible. The GSAP library can
be freely used on many commercial projects (and most noncom‐
mercial ones); a paid license is required if the site’s end users pay a
subscription or other fees, or to access various extra plug-in scripts.
A number of those plug-ins are specifically focused on working with
SVG paths, or circumventing browser support issues at the intersec‐
tion of SVG and CSS3.

SVG.js
SVG.js is a lightweight library for drawing, manipulating, and ani‐
mating SVG elements. It doesn’t offer much new functionality com‐
pared to “vanilla JS,” but it offers a much friendlier, more compact
API for creating elements and setting attributes. It also allows you to
create simple animations and transitions.

Processing and Packaging
You have your SVG ready to go, whether it came from a clip art
library, was drawn in a graphics editor, or was carefully written as
code. There are still a few tools that you may want to use while
uploading SVG to your web server. A sample routine, which could
be automated, would be to:

Processing and Packaging | 133

https://greensock.com/
https://greensock.com/
http://svgjs.com/

• Run your SVG code through an optimizing tool such as SVGO
or Scour to eliminate extra markup from graphics tools and to
otherwise condense the file (being sure not to use any settings
that will remove IDs or classes that you’ll use in scripts or style‐
sheets). SVGO, in particular, has a community of tools built
around it, integrating it into most popular web development
toolchains.

• Generate raster fallback images for Internet Explorer 8 and
Android 2.3 users (using any of the rasterization tools men‐
tioned in https://oreillymedia.github.io/Using_SVG/extras/ch04-
rasterizers.html).

• Compile a folder full of all individual SVG icons into a single
file that can be sent to the user as a whole (the SVGStore Grunt
plug-in does this on a Node/Grunt server configuration).

• Use Gzip or Brotli compression to further reduce file size; if you
do the compression in advance, instead of dynamically as part
of the server request, be sure that your server is set to correctly
indicate the compression scheme in the HTTP headers sent
with the file.

Automated optimizing tools like SVGO can be
risky, sometimes altering the image in ways that
affect the shape of curves. If using an automated
tool, stick to the milder optimizations.
Alternatively, there are two online graphical
interfaces to SVGO: SVG Editor and SVG-
OMG. Both allow you to adjust options and see
the results immediately, while also allowing you
to look at the parsed code. SVG OMG has the
benefit that, after you have visited the site once,
it can run offline through the power of Service
Workers.

There are almost certainly many more tools and techniques that can
be used, depending on how your website and server are set up, and
on how you intend to use the SVG. These examples should get you
started.

134 | Chapter 4: Tools of the Trade

https://github.com/svg/svgo
http://www.codedread.com/scour/
https://oreillymedia.github.io/Using_SVG/extras/ch04-rasterizers.html
https://oreillymedia.github.io/Using_SVG/extras/ch04-rasterizers.html
https://github.com/FWeinb/grunt-svgstore
https://github.com/FWeinb/grunt-svgstore
http://petercollingridge.appspot.com/svg-editor
https://jakearchibald.github.io/svgomg/
https://jakearchibald.github.io/svgomg/

Summary: Software and Sources to Make
SVG Easier
The purpose of this chapter hasn’t been to tell you what software or
which websites to use, although hopefully it has given you some
suggestions if you did not know where to start.

More importantly, the review should have helped you understand
the diversity of ways you can create and use SVG. It also should have
reminded you of the compatibility issues that you must always keep
in mind when working on the web. And finally, it should have hel‐
ped you get some SVG files onto your computer—whether downloa‐
ded from a clip-art library or created in an editor—that you can
experiment with as you work through the rest of the book.

This chapter has been revised many times since it was first started in
2011, in part due to the dramatic changes in the SVG software land‐
scape. It will surely be the first chapter in the book to become
obsolete.

In the past few years, SVG has in many ways become a de facto stan‐
dard for maps and information graphics on the web, is becoming a
commercially viable alternative for clip art, is making its way into
graphics usage for component diagrams of everything from houses
to aircraft to cars, and is factoring into web interfaces (and even
operating system interfaces) in subtle but increasingly ubiquitous
ways.

While the example sites and applications given here are a good start,
other places to find out more about SVG include infographics and
data visualization meetups, or online forums on LinkedIn or
Google+ (both of which have a number of active SVG and data visu‐
alization groups).

As you’re following along with the rest of the book, feel free to use
downloaded clip art or SVG you created in a graphics program to
experiment with styles and effects. It’s what you’ll often do in prac‐
tice. Opening the files in a code editor that highlights the syntax
(and particularly one that can “tidy up” or “pretty print” the XML)
can help you identify the core structure of group and shape elements
in the code. From there, you can add new attributes or CSS classes.

Summary: Software and Sources to Make SVG Easier | 135

For Part II, however, we will focus on creating graphics entirely with
code, defining the raw shapes that make up your image using ele‐
ments and attributes.

136 | Chapter 4: Tools of the Trade

PART II

Drawing with Markup

The fundamental structure of an SVG drawing is defined by the ele‐
ments and attributes that draw content to the screen. These aspects
of SVG markup create the shapes and text you see, and control their
basic layout. The shapes and layout are defined in a vector language
of x and y coordinates that plots out positions on an invisible grid.

The next few chapters describe the SVG elements that create new
visible content: basic shapes, custom shapes, and text. Part III exam‐
ines more closely how those x and y coordinates are measured and
manipulated.

CHAPTER 5

Building Blocks
Basic Shapes

Most SVG graphics are built from one or more shape elements.
Shapes—along with text and embedded images—provide the basic
graphical content that is drawn to the screen. The attributes of each
shape element define the geometrical region of that shape; its style
properties control how that vector region is displayed on the screen
(or printed on paper).

SVG defines two different ways of creating a shape. The first is to
make use of the predefined shape primitives. In Chapter 1, we intro‐
duced two of these: circles and rectangles. The others are <line>
and <ellipse>. These are “quick and dirty” shapes that are useful
for fast layout, common operations, and fairly standard interface
and graphic design layouts. They can also make your code easier to
read, as the element tag names clearly define what shape it is.

However, predefined shapes are limited. For most drawings, you will
need to create custom shapes, using <polygon>, <polyline>, or
<path>. A <path> can be used to replace any of the other shape ele‐
ments, but is considerably more flexible. SVG paths can be used to
draw incredibly complex shapes that are not included in any geome‐
try textbook.

This chapter introduces the basic shapes in detail, discussing how
you can specify lengths and positions in SVG. With this informa‐
tion, you will be able to lay out many simple geometric designs.
Chapter 6 then explores <path> and the other custom shape

139

elements, and the variety of shapes they can create. At the end, you’ll
have all the information you need to create basic vector icons and
line drawings with SVG. In theory, anyway—it takes a lot of practice
to really get comfortable with manipulating curved paths!

For now, the shapes will be filled or stroked with solid colors, and
they will be drawn at a specific size and position within the graphic.
In Part III, we’ll explore the ways you can manipulate the geometry
of shapes by altering the coordinate system in which the vector
shapes are defined. In Part IV, we will discuss the ways in which you
can change the appearance of the shapes.

Drawing Lines, from Here to There
The simplest shape in the SVG lexicon is the <line>. It represents a
straight segment connecting two points. A line’s geometry is defined
by four attributes: x1 and y1 give the coordinates of the starting
point, while x2 and y2 give the coordinates of the end point. The fol‐
lowing code describes a diagonal line from (0,100) to (100,0):

<line x1="0" y1="100" x2="100" y2="0" />

All SVG shapes, even <line> and <polyline>,
are by default styled with fill: black and
stroke: none. This means that, by default, a
<line> will not be visible. There is no area inside
a straight line to be filled in.

Use CSS or presentation attributes to give the lines a stroke color.
You can also optionally set fill: none, although this won’t have a
visible effect with <line>.

As described in Chapter 1, coordinates are (by default) measured
from the top-left corner of the graphic. When numbers are given
without units, these user coordinate lengths are (again, by default)
equivalent to CSS px units. Figure 5-1 shows the line with a royal
blue stroke 10px wide, in a 1.5in square SVG with a golden yellow
background.

140 | Chapter 5: Building Blocks

Figure 5-1. An SVG line, stroked in blue

CSS background and border properties are sup‐
ported in web browsers for the root <svg> ele‐
ment of an SVG file, in the same way that they
apply to an inline <svg> in an HTML page. But
beware: borders, margin, and padding on that
root <svg> will mess up sizing and scaling if you
use that SVG file in an HTML or
<object>.

If any of the geometric attributes are left out, the corresponding
coordinate will default to 0. The following <line> is therefore equiv‐
alent to the previous one:

<line y1="100" x2="100" />

In contrast, the following code draws a line from (100,0) to (0,100).
Although it will often look exactly the same as the previous lines,
some styles (stroke dashes and line markers, which we discuss in
Chapters 13 and 14) will distinguish between the start and end
points of a line.

<line y2="100" x1="100" />

The order in which you list the attributes makes
no difference, only the attribute names.

Drawing Lines, from Here to There | 141

In addition to user coordinate values, each attribute can be given as
a percentage, or as a length with unit. The units defined in SVG 1.1
are the same as those defined in CSS 2: px, pt, pc, cm, mm, in, em,
and ex.

More Online
CSS3 units are supported in some browsers, but not all, and not
consistently.

Details and definitions of all the units, are included in the “Units for
Measurements” guide:

https://oreillymedia.github.io/Using_SVG/guide/units.html

Example 5-1 uses a simple JavaScript routine to create an arrange‐
ment of lines with their start and end points offset at 1-centimeter
intervals.

The script uses the document.documentElement
property to access the root SVG element. This
only works in a .svg file. In a .html file, the
documentElement would be the <html> element,
not an <svg>!
To adapt this script for inline SVG, use
querySelector("svg") to find the first <svg>
element from your markup, or use a class or id.

The code takes advantage of the default coordinates, and does not
explicitly set attributes that will always be zero. This is a common
trick in SVG coding. The origin is your friend: the more that you
can rely upon it, the fewer positioning attributes you need to specify
in the SVG markup. Chapters 8 and 11 will discuss how you can
control the position of the origin—the (0,0) point—relative to the
image region.

142 | Chapter 5: Building Blocks

https://oreillymedia.github.io/Using_SVG/guide/units.html

Example 5-1. Drawing SVG lines with JavaScript

SVG MARKUP:
<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 height="10cm" width="10cm">
 <title>Line Art</title>
 <style type="text/css">
 line {
 stroke: purple;
 }
 svg {
 margin: 1cm;
 }
 </style>
 <script><![CDATA[
 /* script goes here */
]]></script>
</svg>

The SVG is given a square drawing region, 10cm wide and tall.

The markup consists only of the title, style rules, and JavaScript.

Although margin isn’t well defined for standalone SVG, it is
supported on the root element in most web browsers.

The entire drawing is created within the <script>. The <!
[CDATA[and]]> markers ensure that less than/greater than
signs within the script are not interpreted as XML markup
(don’t include them in HTML scripts).

JAVASCRIPT:
(function() {
 var size = 10;
 var doc = document;
 var svg = doc.documentElement;
 var svgNS = svg.namespaceURI;

 if (!(svg.classList && svg.classList.contains("initialized")))
 draw();

 function draw(){
 var l1, l2;
 for (var i = 0; i <= size; i++) {
 l1 = doc.createElementNS(svgNS, "line");

Drawing Lines, from Here to There | 143

 l1.setAttribute("x1", i + "cm");
 l1.setAttribute("x2", size + "cm");
 l1.setAttribute("y2", i + "cm");
 svg.appendChild(l1);

 l2 = doc.createElementNS(svgNS, "line");
 l2.setAttribute("y1", i + "cm");
 l2.setAttribute("x2", i + "cm");
 l2.setAttribute("y2", size + "cm");
 svg.appendChild(l2);
 }
 if (svg.classList)
 svg.classList.add("initialized");
 }
})()

The size of the drawing region, in centimeters, is stored in a
variable to avoid repeating the number 10 multiple times in the
code. Once again, the entire script is encapsulated in an anony‐
mous function call.

The documentElement is the root element created in the
markup; here, it is the main <svg> element.

Rather than repeat the SVG namespace URI multiple times in
the code (and risk a typo), we access it from the <svg> element
itself.

In some browsers, if you save a web page that was generated
from a script, the saved page will include both the generated ele‐
ments and the script. When you reopen the saved file, the script
runs again, doubling all the generated elements. (Other brows‐
ers save the raw source code.) This line tests to see if the SVG
has already been initialized, and only draws the graphic if it
hasn’t. Before using the DOM 3 classList object, it checks to
confirm it exists, avoiding errors on older platforms.

Inside the draw() function, a for loop creates the lines, adjust‐
ing their start and end points by 1cm at a time, from 0 to 10cm
(inclusive).

The first block of code creates the lines for the top-right corner
of the graphic, using the methods createElementNS() and
setAttribute().

144 | Chapter 5: Building Blocks

For all of these lines, we leave y1 as the default 0, and set x2 to
10cm. The x1 and y2 attributes are adjusted for each cycle of the
for loop.

The appendChild() method adds the newly created <line> ele‐
ment to the SVG, as the last child of the <svg>.

The second batch of instructions is similar, but it now creates
lines in the lower left of the graphic. All the lines have x1 of 0
(default) and y2 set to 10cm.

Finally, after drawing is complete, we mark the <svg> element
with the initialized class (after again checking that the
classList property is supported).

The script (and other scripts in this book) uses what is commonly
known as “Vanilla JavaScript.” Elements are created, and attributes
modified, with the core DOM methods directly supported by the
browsers, not with shorthand methods from an imported library or
framework. It may look more verbose than a JQuery or d3 script, but
it’s a lot less code from the perspective of the browser’s JavaScript
parser—and the user’s data plan!

As we warned in Chapter 2, you need to use
createElementNS with the SVG namespace URI
in order to create a valid SVG element. However,
the namespace can be accessed from the
namespaceURI property of any existing SVG
element.

The graphic generated by the script is displayed in Figure 5-2. Math‐
ematically, you could say that the lines create a mesh envelope for
the curved region in the center. You may also recognize the pattern
as recreating the kind of string-and-peg artwork that was popular in
the 1960s.

Drawing Lines, from Here to There | 145

Figure 5-2. String art “curves” created from SVG lines

The code in Example 5-1 includes a <style> section that sets the
stroke property for all line elements. This creates the visible line,
drawn centered along the line defined by the vector coordinates.

The exact geometry of a stroke is controlled by a variety of other
style properties—stroke-width, stroke-opacity, stroke-

dasharray, and so forth—that will be covered in more detail in
Chapter 13. For now, it’s worth noting that stroke-width has a
default value of 1; this creates the 1px-wide “strings” in the graphic
(Figure 5-2).

Although the lines were created with JavaScript, the final result is an
SVG document held in your browser’s memory. Example 5-2 shows
the markup that describes that SVG document, similar to what you
would see in the DOM inspector of your browser’s developer tools.

146 | Chapter 5: Building Blocks

Example 5-2. The SVG document created by the line-art script

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 height="10cm" width="10cm"
 class="initialized">
 <title>Line Art</title>
 <style type="text/css">
 line {
 stroke: purple;
 }
 svg {
 margin: 1cm;
 }
 </style>
 <script><![CDATA[
 /* the script is still here */
]]></script>
 <line x1="0cm" x2="10cm" y2="0cm"/>
 <line y1="0cm" x2="0cm" y2="10cm"/>
 <line x1="1cm" x2="10cm" y2="1cm"/>
 <line y1="1cm" x2="1cm" y2="10cm"/>
 <line x1="2cm" x2="10cm" y2="2cm"/>
 <line y1="2cm" x2="2cm" y2="10cm"/>
 <line x1="3cm" x2="10cm" y2="3cm"/>
 <line y1="3cm" x2="3cm" y2="10cm"/>
 <line x1="4cm" x2="10cm" y2="4cm"/>
 <line y1="4cm" x2="4cm" y2="10cm"/>
 <line x1="5cm" x2="10cm" y2="5cm"/>
 <line y1="5cm" x2="5cm" y2="10cm"/>
 <line x1="6cm" x2="10cm" y2="6cm"/>
 <line y1="6cm" x2="6cm" y2="10cm"/>
 <line x1="7cm" x2="10cm" y2="7cm"/>
 <line y1="7cm" x2="7cm" y2="10cm"/>
 <line x1="8cm" x2="10cm" y2="8cm"/>
 <line y1="8cm" x2="8cm" y2="10cm"/>
 <line x1="9cm" x2="10cm" y2="9cm"/>
 <line y1="9cm" x2="9cm" y2="10cm"/>
 <line x1="10cm" x2="10cm" y2="10cm"/>
 <line y1="10cm" x2="10cm" y2="10cm"/>
</svg>

The SVG now has the initialized class, as the drawing script
has completed.

The script code is still part of the DOM, but if the page is reloa‐
ded it will only run as far as the point where it checks for the
initialized class.

Drawing Lines, from Here to There | 147

The 22 generated <line> elements are appended at the end of
the SVG in the order they were created by the script.

The many lines in Example 5-2 may appear to create a single shape,
but they don’t. Each line is still a separate element in the document.
And although they appear to outline a square and also enclose a
curved region, you cannot fill in either region as a block of color.

The remaining shape elements, in contrast, allow you to define
shapes as you’re probably more used to thinking of them—as two-
dimensional areas with an inner fill region surrounded by stroked
edges.

Future Focus
More Measurements and Calculations

The CSS Values and Units level 3 specification, which was mostly finalized
(reached W3C candidate recommendation status) in July 2013, expanded and
modified the definition of length units. It introduces two new font-relative
units, rem and ch, plus the four viewport units, vw, vh, vmin, and vmax.

Values and Units 3 also introduced the calc() function, which allows you to
calculate a number or length using arithmetic to combine absolute units, rela-
tive units, and percentages; and the toggle() function, which allows you to
cycle through a list of values by comparing against the inherited value for the
same property. (Although support for toggle() in browsers is still poor.)

Most modern browsers support the new units and calc expressions in all
standard CSS properties, including some that can be used in SVG, such as
font-size (although IE and Edge are buggy here). The new units can also be
used to set the width and height of the <svg> element in HTML5.

Support for the new units and functions in SVG-specific style properties (such
as stroke-width) is inconsistent:

• Firefox (as of 55) supports the new units, but not calc expressions.

• Internet Explorer 11 and Microsoft Edge (EdgeHTML 15) accept them
both as valid CSS declarations, but when rendering, they do not use a
value created with a calc expression—meaning that the stroke with that
style property was not drawn at all—and a vw unit causes Edge 15 to
crash completely!

148 | Chapter 5: Building Blocks

• Chrome/Blink supports CSS units in SVG-related CSS rules (since before
version 54), although there may be edge-case bugs.

• WebKit supports calc functions as of Safari 9, and the new units as of
Safari 10.

In other words, be very careful using any of the new units and calc yet.

Support for the new units in SVG geometry attributes (such as cx or width)
has been implemented in most browsers over the past few years, but calc
expressions are still either unsupported or buggy. Blink is the buggy one; as of
version 59—and for many versions previous—it uses the first length in a calc
expression, ignoring the rest of the calculation.

Under SVG 2, all valid CSS3 length expressions—including the new units and
calc expressions—are valid for style properties and their matching presenta-
tion attributes. This includes many geometric attributes, which have been re-
defined as presentation attributes for matching CSS properties (more on that
later).

For other geometric features of SVG, such as path data, a calc-like method
may be introduced in the future, but the syntax is not decided.

It’s Hip to Be Square (or Rectangular)
Extending the straight line to two dimensions creates the next basic
shape, the rectangle. As we saw in Chapter 1, a rectangle is repre‐
sented in SVG by the <rect> element. While lines are defined by the
coordinates of two different points, the SVG rectangle follows a
slightly different approach. Instead of defining start and end points,
a <rect> is defined by one point and a width and height. The posi‐
tioning point is set by x and y attributes (not x1 and y1 like for a
line); this defines the upper-left corner of the rectangle.

As with <line>, if any of the geometric
attributes x, y, width, or height are not specified
on a <rect>, they default to 0. However, if either
width or height is zero, the rectangle will not be
drawn at all—not even the stroke. A negative
width or height is invalid.

It’s Hip to Be Square (or Rectangular) | 149

You can use the <rect> element to create a square simply by setting
the width and height equal. The following creates a 1-inch square:

<rect width="1in" height="1in" />

Each attribute is independent, and can have different units—or no
units at all. The following code shifts the square 1cm from the left
edge of the SVG and 12pt (⅙ inch) from the top edge:

<rect x="1cm" y="12pt" width="1in" height="1in" />

That square <rect>, filled in purple—darkOrchid, to be precise—
and added to the line from Figure 5-1, creates Figure 5-3.

Figure 5-3. An SVG rectangle, filled in purple

If you’re displaying the preceding square on a
screen, and measure it with a ruler, you’ll proba‐
bly discover that it is not exactly 1 inch square.
Browsers that support CSS3 units will always
adjust the definition of real-world units (like in
and cm) to maintain a constant ratio to CSS px
units (96px per inch), while also allowing px lay‐
out units to line up neatly with the physical pix‐
els of your screen. When printing, the browser
will generally use the real-world inch as the base
unit, and adjust px accordingly.

The following describes a rectangle that is 80% of the height and
width of the parent <svg> and centered in the SVG region (10% off‐
set from each side):

<rect x="10%" y="10%" width="80%" height="80%" />

150 | Chapter 5: Building Blocks

The actual width-to-height ratio of this rectangle will depend on the
width-to-height aspect ratio of the SVG itself; it may be a square, but
not necessarily.

Simple rectangles may not be very exciting, but there are lots of
practical designs that use them. Example 5-3 generates a chess- or
checkerboard design from <rect> elements, using JavaScript. The
final graphic contains one large rectangle for the edges of the board,
then 64 (8×8) smaller black and white squares.

Example 5-3. Creating a checkerboard of SVG rectangles with
JavaScript

SVG MARKUP:
<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 height="9in" width="9in">
 <title>Checkerboard</title>
 <style type="text/css">
 .board { fill: saddleBrown; }
 .white { fill: linen; }
 .black { fill: #222; }
 </style>
 <script><![CDATA[
 /* script goes here */
]]></script>
</svg>

The checkerboard will be 9 inches square in total; an 8 × 8 grid
of 1-inch-square tiles, with a half-inch border on all sides for
the board’s frame.

The white and black tiles will be identified by class names,
rather than by fill colors set directly in the DOM. This allows us
to adjust the actual color used for white and black; in this case,
to use a creamy off-white color and a dark charcoal gray.

JAVASCRIPT:
(function() {
 var squares = 8;
 var doc = document;
 var svg = doc.documentElement;
 var svgNS = svg.namespaceURI;

 if (!(svg.classList && svg.classList.contains("initialized")))
 draw();

It’s Hip to Be Square (or Rectangular) | 151

 function draw(){
 var board = doc.createElementNS(svgNS, "rect");
 board.setAttribute("width", "100%");
 board.setAttribute("height", "100%");
 board.setAttribute("class", "board");
 svg.appendChild(board);

 var square;
 for (var i = 0; i < squares; i++) {
 for (var j = 0; j < squares; j++) {
 square = doc.createElementNS(svgNS, "rect");
 square.setAttribute("x", (i+0.5) + "in");
 square.setAttribute("y", (j+0.5) + "in");
 square.setAttribute("width", "1in");
 square.setAttribute("height", "1in");
 square.setAttribute("class",
 (i+j)%2 ? "black" : "white");
 svg.appendChild(square);
 }
 }
 svg.classList.add("initialized");
 }
})()

The script uses the same structure as Example 5-1. In this case,
the squares variable stores the number of squares in each row
and column of the checkerboard.

The first block of the draw() function creates the background
rectangle that represents the wooden board.

We create the individual tiles using nested for loops; the outer
loop (with variable i) cycles through the rows of the grid, while
the inner loop (with variable j) cycles through the tiles within
each row.

The horizontal and vertical positions of each tile (x and y
attributes) are set from the i and j variables, adding a half-inch
offset for the frame of the checkerboard.

We set the class, either black or white, by testing whether the
sum of the row and column index is even or odd; that is,
whether the sum modulus 2 is 1 (truthy) or 0 (falsy). This cre‐
ates the correct alternating pattern in both the horizontal and
vertical directions.

152 | Chapter 5: Building Blocks

The tiles are all inserted after the board, and are therefore
drawn on top of it.

Figure 5-4 shows the graphic generated by Example 5-3, scaled
down to fit the page. We’re not going to print out all 65 generated
<rect> elements, but be sure to open the SVG file in a browser and
use the developer tools to inspect the DOM, so that you understand
how it would look as SVG markup.

Figure 5-4. A checkerboard of SVG rectangles created with JavaScript

The final checkerboard document includes many very similar ele‐
ments, and therefore is a candidate for reducing repetition with
<use> elements. However, since all these repeated properties are
only written once in the original script, it still meets the Don’t
Repeat Yourself (DRY) principle.

It’s Hip to Be Square (or Rectangular) | 153

Nonetheless, if you had a much larger number of repeated elements
(hundreds or thousands, not just dozens), the size and complexity of
the DOM could slow down your browser. For this reason, if you’re
creating a repeated pattern for decorative effect only—and do not
need the individual elements to respond to user events separately—
you will want to use a <pattern> element, which we’ll discuss in
Chapter 12.

Future Focus
Geometry as Style

If you’re used to CSS layout (and for this book, we’re assuming you are), you’re
used to setting width and height of elements via CSS properties. If you’re cre-
ating an SVG layout with a lot of rectangles all the same size (like, for example,
a checkerboard), can you set the size once in a CSS rule?

You can’t—yet. But that’s changing.

In the original SVG specifications, anything that defined a shape’s geometry was
considered a fundamental part of the document structure, and could only be
set by attributes in the XML. CSS styles could only be used to control how that
shape was painted to the screen, not where or how large.

This proved rather limiting for creating diagrams and charts, where many ele-
ments may need to have the same dimensions or the same alignment
(without being exact <use> copies of each other).

There are other benefits to being able to describe layout with CSS, which
didn’t exist when SVG was first developed. If layout is set with CSS, you can use
CSS media queries to adjust the layout for different screen or page sizes. And if
geometry is set with CSS, then you can use CSS animations and transitions to
create animated shapes.

With those objectives in mind, the SVG 2 specification (as published in Sep-
tember 2016) defines the following geometry attributes on shapes to also be
available as CSS properties:

• width and height

• x and y

• cx and cy

154 | Chapter 5: Building Blocks

• r, rx, and ry (which we’ll introduce in the next section)

• d (which we’ll discuss in Chapter 6)

None of the properties inherit by default. At the time of writing (late 2016),
both WebKit and Blink rendering engines have partial implementations of SVG
geometry properties in CSS.

You may notice that there are some geometric attributes missing from that list.
What about x1, x2, y1, and y2 from the <line> element?

There wasn’t a clear consensus about what to do with them. Create separate
CSS properties for each attribute? Or allow the x and y properties to take mul-
tiple values? As we’ll discover in Chapter 7, x and y attributes on text elements
already take multiple values. The <polyline> and <polygon> elements, how-
ever, use a completely different approach to setting multiple points, setting x
and y coordinates in the same (points) attribute.

When geometry is defined in element attributes, each element can have its
own attributes. In CSS, however, the same parsing rules have to apply every-
where, and ideally the same property names will be reused.

At present, it isn’t really clear how or when the rest of SVG geometry will be
integrated into CSS. If you have strong opinions, contribute to SVG standards
discussion on GitHub, W3C mailing lists, and web browser issue trackers.

Cutting Corners
The <rect> object is more flexible than it appears at first glance. It
has two additional geometric attributes: rx and ry. These parame‐
ters are used to create rounded corners on the rectangle. Specifically,
they give the horizontal (rx) and vertical (ry) radii of an ellipse
(oval) used to draw the rounded corners.

As before, you can use any mix of CSS units you want, or omit the
units for px coordinates:

<rect x="1cm" y="18pt" width="1in" height="5pc"
 rx="18pt" ry="5mm" />

Adding that shape, with deepSkyBlue fill, to our simple example
from earlier creates Figure 5-5.

Cutting Corners | 155

Figure 5-5. An SVG rectangle with rounded corners, positioned atop a
regular <rect> and a line

The rx value sets the distance from the left and right edges of the
rectangle that should be curved, while ry sets the distance from the
top and bottom. These attributes also default to 0 when not speci‐
fied, making the sharp-cornered rectangles we’ve seen so far.

Except…the defaults for rx and ry are more complicated than that.
If you specify one of rx or ry, but not the other, the missing value is
automatically calculated to match.

This creates symmetrical, circular corners—even
if you use a percentage length, where the same
percentage would create a different length in the
other direction.

Percentages for the radius, just like percentages for all the other SVG
geometry attributes, are measured relative to the SVG coordinate
system as a whole: the width for rx, or the height for ry. The percen‐
tages don’t scale according to the size of the rectangle itself.

However, regardless of how you specify the radius, it will never be
more than half the width or height of the rectangle. This means that
sometimes a single radius value won’t create symmetrical corners,
after all.

Example 5-4 uses both symmetrical and asymmetrical corner
rounding on layered rectangles to create a ripple pattern radiating
out from a central shape. Figure 5-6 shows the result.

156 | Chapter 5: Building Blocks

Figure 5-6. A ripple pattern created with rounded rectangles

Example 5-4. Using radiused corners to round rectangles

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 width="14cm" height="11cm">
 <title>Splash!</title>
 <style type="text/css">
 .water {
 fill: paleTurquoise;
 }
 .ripples {
 stroke: lightSeaGreen;
 fill: lightSeaGreen;
 fill-opacity: 0.15;
 }
 .stone {
 fill: darkSlateGray;
 }
 </style>
 <rect class="water" width="14cm" height="11cm" />
 <g class="ripples" >
 <rect x="5.75cm" y="4.75cm" width="2.5cm" height="1.5cm"
 rx="0.25cm" />
 <rect x="5cm" y="4cm" width="4cm" height="3cm"
 rx="1cm" />

Cutting Corners | 157

 <rect x="4cm" y="3cm" width="6cm" height="5cm"
 rx="2cm" />
 <rect x="3cm" y="2.5cm" width="8cm" height="6cm"
 rx="3cm" ry="2.5cm" />
 <rect x="2cm" y="2cm" width="10cm" height="7cm"
 rx="4cm" ry="3cm" />
 <rect x="1cm" y="1cm" width="12cm" height="9cm"
 rx="5.5cm" ry="4cm" />
 <rect x="0.5cm" y="0.5cm" width="13cm" height="10cm"
 rx="6.5cm" ry="5cm" />
 </g>
 <rect class="stone"
 x="6cm" y="5cm" width="2cm" height="1cm" rx="0.1cm"/>
</svg>

If you inspect the code in Example 5-4 closely, you’ll notice that the
layered <rect> elements are arranged with the smallest, center rip‐
ple drawn first and the largest drawn last. Nonetheless, all the ele‐
ments are visible in Figure 5-6, because the fill-opacity property
defines a semitransparent fill color. We’ll discuss fill-opacity
again in Chapter 12, and will look at more options for transparency
and blending colors in Chapters 15 and 16.

CSS Versus SVG
Curved Corners

The CSS border-radius property is loosely equivalent to SVG rounded rec-
tangles. However, it is considerably more complex. For starters, you can specify
which corner you want to curve with individual style properties for each
corner:

border-top-right-radius: 4cm 2cm;
 /* the first length is rx, the second ry */
border-bottom-left-radius: 2cm;
 /* only one value is required if they are equal */

Alternately, you can specify multiple values in the shorthand border-radius
property. Multiple values are assigned in clockwise order starting from top left;
if two or three values are given, the missing values are taken from the opposite
corner. If vertical radii are different, they are specified separately after a slash (/)
character:

border-radius: 0 4cm 0 2cm / 0 2cm;
 /* same result as the previous two properties */

158 | Chapter 5: Building Blocks

Percentages in border-radius are measured against the outside width or
height of the border itself. This is different from SVG, where percentages are
measured in the same coordinate system used to set the rectangle’s width and
height. Also unlike in SVG, percentage lengths are always measured against
the edge to which they apply, regardless of whether they were specified with
the short or full syntax.

The exact shape of the curve is complicated by the fact that borders may have
different thicknesses on each side, as may the padding that separates the bor-
ders from the content. The border radius (or radii) specified in the CSS defines
the outside edge of the border curve. The inside edge of the border (the out-
side edge of the padding), as well as the edge of the content itself, are also
rounded but only to the degree required to line up with the start and end of
the outside curve.

The following image shows the SVG from Figure 5-6 embedded in HTML as an
, with 0.5cm of padding, a border that is 1cm thick top and bottom and
0.5cm left and right, and the border radius properties specified in the previous
code snippets:

Cutting Corners | 159

Note that the corners of the image itself are clipped to match the curve. Also
notice that while the bottom-left corner is symmetrical on the outer edge, the
uneven border width results in asymmetrical inner curves.

The CSS border-radius property allows individual corners to be curved up to
the full width or height of the element. If the sum of the curves of two adja-
cent corners is greater than the available space, both are scaled back propor-
tionately until they just fit.

In contrast, there is no way to only round certain corners of an SVG <rect>, or
to round different corners by different amounts, or to create curvatures greater
than half the width or height of the rectangle. You can create these shapes
(and many more) with a <path> element, but the syntax is very different.

Circular Logic
The next step from rounded rectangles is to create completely roun‐
ded shapes: circles and their extended cousins, ellipses.

In Chapter 3, we showed how you can make a rectangular CSS lay‐
out box to look like a circle by setting the border radius to half the
box’s width and height. The same approach could be used to create
an ellipse from a <rect> element. In fact, we’ve already done that:
the outermost ripple rectangle in Example 5-4 was actually an
ellipse!

There is a more intuitive way to draw ellipses in SVG, however: the
<ellipse> element. The rx and ry attributes are used again to spec‐
ify horizontal and vertical radii, but there’s no need to specify width
and height separately—they will always be exactly twice the corre‐
sponding radius.

Unlike with rounded rectangles, SVG 1 did not
define any special automatic-sizing behavior for
ellipses if you set one of rx or ry, but not the
other. SVG 2 adds in this automatic behavior as
part of the changes to make geometry more
compatible with CSS. The default would be
equivalent to a new auto keyword.
At the time of writing, auto behavior for ellipses
isn’t supported in web browsers.

160 | Chapter 5: Building Blocks

One further difference between rounded rectangles and ellipses is
how they are positioned. Rectangles are positioned by the x and y
coordinates of their top-left corner, even when that corner is roun‐
ded off. Ellipses, in contrast, are positioned by their center point,
through the same cx and cy attributes that we used when position‐
ing circles in Chapter 1.

The largest, elliptical ripple <rect> from Example 5-4 was drawn
with this code:

<rect x="0.5cm" y="0.5cm" width="13cm" height="10cm"
 rx="6.5cm" ry="5cm" />

The exact same size and shape can be drawn as follows:

<ellipse cx="7cm" cy="5.5cm" rx="6.5cm" ry="5cm" />

The second version is not only DRY-er (because width and height
don’t need to be set separately from the corresponding radii), it is
also much more clear at a glance that it is an ellipse.

As with lines and rectangles, if you don’t specify a geometric
attribute, it defaults to 0; if either rx or ry is 0, the ellipse will not be
drawn at all. If rx and ry compute to the same length, the ellipse
becomes a circle.

However, if you want a circle, an ellipse isn’t your DRY-est option: as
we saw in Chapter 1, circles can be drawn more concisely using the
<circle> element. A circle uses cx and cy to position the center
point, but takes a single radius parameter, r, instead of rx and ry.

Both ellipses and circles are used in Example 5-5, with various units
of measurements in the positioning and sizing attributes. (If you’re
not used to imperial units, it may help to know that there are 72pt in
an inch.) The resulting face, Figure 5-7, may not be terribly artistic,
but it demonstrates how you can create detailed drawings by layer‐
ing simple shapes.

Circular Logic | 161

Figure 5-7. A funny-looking face making a funny face

Example 5-5. Positioning and sizing circles and ellipses in a drawing

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 width="4.3in" height="4.8in">
 <title>Quizzical Elliptical Face</title>
 <ellipse fill="chocolate"
 rx="55%" ry="60%" cx="50%" cy="50%" />
 <g fill="sienna">
 <ellipse cx="1.1in" cy="1.3in" rx="1in" ry="48pt" />
 <ellipse cx="3.2in" cy="1.3in" rx="1in" ry="40pt" />
 <ellipse cx="50%" cy="55%" rx="8%" ry="22%" />
 <circle cx="45%" cy="71%" r="6%"/>
 <circle cx="56%" cy="68%" r="6%"/>
 </g>

162 | Chapter 5: Building Blocks

 <g fill="white">
 <ellipse cx="1.1in" cy="1.3in" rx="70pt" ry="38pt" />
 <ellipse cx="3.2in" cy="1.3in" rx="70pt" ry="24pt" />
 </g>
 <g fill="black"
 stroke="blue" stroke-width="16pt" stroke-opacity="0.6">
 <circle cx="1.6in" cy="1.3in" r="16pt" />
 <circle cx="3.5in" cy="1.3in" r="16pt" />
 </g>
 <ellipse fill="white"
 stroke="crimson" stroke-width="20pt"
 cx="2.8in" cy="4in" rx="32pt" ry="18pt" />
 <g fill="none" stroke="#310" stroke-width="6pt">
 <ellipse cx="45%" cy="22pt" rx="30pt" ry="22pt" />
 <ellipse cx="40%" cy="10pt" rx="30pt" ry="20pt" />
 <ellipse cx="30%" cy="16pt" rx="30pt" ry="22pt" />
 <ellipse cx="20%" cy="16pt" rx="24pt" ry="20pt" />
 <ellipse cx="15%" cy="22pt" rx="22pt" ry="16pt" />
 <ellipse cx="50%" cy="16pt" rx="24pt" ry="22pt" />
 <ellipse cx="55%" cy="22pt" rx="30pt" ry="20pt" />
 <ellipse cx="60%" cy="10pt" rx="30pt" ry="22pt" />
 <ellipse cx="75%" cy="16pt" rx="34pt" ry="18pt" />
 <ellipse cx="80%" cy="12pt" rx="24pt" ry="22pt" />
 <ellipse cx="85%" cy="24pt" rx="22pt" ry="16pt" />
 </g>
</svg>

Looking at Figure 5-7, you may be surprised to look back at the code
and count the number of <circle> elements. There is only one for
each eye. The bull’s-eye pattern of the iris and pupil is created by a
thick, partially transparent stroke.

The example demonstrates two features of strokes that we haven’t
previously emphasized: they are drawn centered over the edge of the
shape, and are drawn on top of the shape’s fill. When you make the
stroke partially transparent (by setting the stroke-opacity prop‐
erty, as in the example, or by using a partially transparent color), this
creates a two-toned effect; the fill is partially visible through the
inner half of the stroke. We’ll discuss strokes in more detail in Chap‐
ter 13.

There’s also a hidden complication in the markup for the “nose”
shape, which uses percentages:

<ellipse cx="50%" cy="55%" rx="8%" ry="22%" />
<circle cx="45%" cy="71%" r="6%"/>
<circle cx="56%" cy="68%" r="6%"/>

Circular Logic | 163

Positioning circles and ellipses with percentages (for cx and cy) is
fairly straightforward. But sizing them with percentages (in rx, ry,
or r) can be nonintuitive, especially for circles.

We mentioned when drawing rectangles that the same percentage
value for height and for width might represent different actual
lengths. Similarly, an ellipse with rx="50%" and ry="50%" will usu‐
ally not be a circle, because rx is relative to the SVG width while ry
is relative to the SVG height. But what happens when you use per‐
centages for r, which is always a single radius value for a circle? Is
that relative to width or height?

The answer is neither, and both. Percentage lengths in SVG, if they
are neither horizontal nor vertical, are calculated such that they
grow and shrink proportional to the length of the diagonal of the
SVG region.

That doesn’t mean that they are percentages of the diagonal, how‐
ever. Instead, they are percentages of the diagonal’s length divided
by the square root of two (√2, approximately 1.41).

More Online
Why the square root of two? Because that way, if the SVG is square
—and therefore percentages are equal for width and for height—
then the adjusted “diagonal” percentages will match as well.

Read more about how percentage radius values are calculated, and
see an example of how it affects a circle in SVGs of different dimen-
sions, in “Perplexing Percentages”:

https://oreillymedia.github.io/Using_SVG/extras/ch05-
percentages.html

These same “adjusted diagonal” percentages are used for any length
in SVG that isn’t clearly associated with either the horizontal or ver‐
tical direction, including stroke widths and stroke dash lengths.

164 | Chapter 5: Building Blocks

https://oreillymedia.github.io/Using_SVG/extras/ch05-percentages.html
https://oreillymedia.github.io/Using_SVG/extras/ch05-percentages.html

CSS Versus SVG
Shapes in Stylesheets

As CSS3 has introduced more complex graphical layouts, it has needed a way
to define shapes that go beyond border-radius.

The CSS Shapes module introduces a series of shape functions that can be
used to define geometric shapes as the value of other properties. The same
module introduces the shape-outside property, which uses these shape
functions to control how text wraps around floated objects in the layout. But
these functions are also used for other properties, such as clip-path.

The syntax for circles and ellipses, which was based on the CSS radial gradient
syntax, is designed to be flexible and follow natural language:

circle(radius at
 horizontal-position vertical-position)
ellipse(x-radius y-radius at
 horizontal-position vertical-position)

Positions and percentages are relative to a reference CSS layout box for the
element (for example, the content-box, padding-box, border-box, or
margin-box). The specific box would be determined by the rest of the CSS
property that is using the shape function. The CSS circle() function treats a
percentage radius using the same method as SVG: relative to the diagonal divi-
ded by √2.

You can also size CSS circles and ellipses with keyword values in order to create
shapes that just fit within the layout box, whatever its aspect ratio: closest-
side to fit to the first edge encountered, or farthest-side to expand to fill
the box. Similarly, you can use the keywords top, bottom, left, right, and
center for the position of the center point, using the same syntax as the CSS
background-position property.

Both the radius parameters and the position parameters are optional; if omit-
ted, the default radius is closest-side, while the default position is center.

CSS Shapes also supports rounded rectangles, defined with the inset() func-
tion. It specifies the rectangle’s size as an inset from the reference CSS layout
box. The inset distances are specified with the same syntax as CSS margins or
paddings:

Circular Logic | 165

inset(inset-distance)
inset(top-bottom-inset right-left-inset)
inset(top-inset right-inset bottom-inset left-inset)

You specify rounded corners of an inset box by adding a round keyword, and
then a set of lengths using any syntax that is valid in the CSS border-radius
property, such as:

inset(inset-distance round corner-radius)
inset(inset-distance
 round horizontal-radius / vertical-radius)

The layout box that determines the overall size of the inset shape is not part of
the shape function. For outside-shape and clip-path, it is defined as a sep-
arate keyword in the style value. A complete shape declaration could be:

img {
 height: 12em;
 border: navy solid 1em;
 float: left;
 margin-right: 1em;
 shape-outside: inset(0px round 0 0 8em) margin-box;
 clip-path: circle(15em at top left);
}

You’d more commonly use the same shape for both
the clip and the text layout shape-outside, but we’re
trying to show all your options here! We’ll talk more
about clipping paths (including the better-supported
SVG version) in Chapter 15.

With those styles applied to our SVG image from Figure 5-7, and some filler
text to show the layout, you have a page that looks like this (in Chrome 57,
where both features are supported):

166 | Chapter 5: Building Blocks

Summary: Basic Shapes
The SVG basic shapes are each defined by an element in the
markup. Their size, position, and proportions are controlled by
individual attributes.

The value of each attribute can be specified as a length, percentage,
or number. Numbers are lengths in user units, which are equivalent
to px units. Percentages are proportional to the SVG size: its width,
its height, or its diagonal divided by √2, depending on whether the
measurement is horizontal, vertical, or other.

The <circle>, the <ellipse>, the <rect>, and the <line> are the
only “standard” shapes of SVG. There is no <triangle>, no
<pentagon>, and no <semi-circle> or <pie-slice>. At first, this
may seem strange—a graphics language with only a handful of
shapes doesn’t seem like much of a language—but the reality is that
these shapes are standard only because rectangles, circles, lines, and
ellipses occur often enough that it makes sense to mark them out as
special.

Summary: Basic Shapes | 167

Every other shape can be rendered by other means, through the
<polygon>, <polyline>, and—most especially—the <path> element.

More Online
The chapter has introduced a large number of elements, attributes,
and values. A sorted syntax reference for the shapes markup is avail-
able in the “Shape Elements” section of our elements and attributes
guide:

https://oreillymedia.github.io/Using_SVG/guide/
markup.html#shapes

A separate guide defines all the length units—and percentages:

https://oreillymedia.github.io/Using_SVG/guide/units.html

A reference for CSS shapes is provided in the “CSS Shape Functions”
guide:

https://oreillymedia.github.io/Using_SVG/guide/css-shapes.html

168 | Chapter 5: Building Blocks

https://oreillymedia.github.io/Using_SVG/guide/markup.html#shapes
https://oreillymedia.github.io/Using_SVG/guide/markup.html#shapes
https://oreillymedia.github.io/Using_SVG/guide/units.html
https://oreillymedia.github.io/Using_SVG/guide/css-shapes.html

CHAPTER 6

Following Your Own Path
Custom Shapes

A complete vector drawing format requires a way to draw arbitrary
shapes and curves. The basic shape elements introduced in Chap‐
ter 5 may be useful building blocks, but they are no more flexible
than CSS layout when it comes to crafting custom designs.

The <path> element is the drawing toolbox of SVG. Chances are, if
you open up an SVG clip-art image or a diagram created with a
graphics editor, you will find dozens or hundreds of kilobytes’ worth
of <path> statements with only a smattering of <g> elements to pro‐
vide positional organization. With <path> you can draw shapes that
have straight or curved sections (or both), open-ended lines and
curves, disconnected regions that act as a single shape, and even
holes within the filled areas.

Understand paths, and you understand SVG.

The other custom shapes, <polygon> and <polyline>, are essen‐
tially shorthands for paths that only contain straight line segments.

This chapter introduces the instruction set for drawing custom
shapes step by step, creating the outline by carefully plotting out
each line segment and curve. For icons and images, it is relatively
rare to write out the code this way, as opposed to drawing the shape
in a graphics editor. With data visualization and other dynamically
generated graphics, however, programmatically constructing a shape
point by point is common, so learning the syntax is more important.

169

Even within graphic design, there will be times when you want to
draw a simple, geometrically precise shape. Using SVG custom
shapes, you can often do this with a few lines of code, instead of by
painstakingly dragging a pointer around a screen.

In other situations, you will want to edit or duplicate a particular
section of a shape or drawing. By the end of this chapter, you should
have enough basic familiarity with how paths work to safely open up
the code and start fussing.

If you can’t imagine ever drawing a shape by writing out a sequence
of instructions, it is safe to skip ahead to future chapters. Regardless
of whether an SVG graphic was created in a code editor or in a
graphics editor, you manipulate and style it in the same way.

Giving Directions: The d Attribute
A <path> may be able to draw incredibly complex shapes, but the
attribute structure for a <path> element is very simple:

<path d="path-data"/>

The d attribute holds the path instruction set, which can be thought
of as a separate coding language within SVG. It consists of a
sequence of points and single letter instructions that give the direc‐
tions for drawing the shape.

When SVG was first in the development stage, a
number of different avenues for paths were
explored, including one where each point or
curve segment in a path was its own XML ele‐
ment. This was found to be fairly inefficient
compared to parsing a string of commands. The
chosen approach is also consistent with the phi‐
losophy that the shape—not the point—is the
fundamental object within SVG.

Understanding how to draw with SVG <path> elements is therefore
a matter of understanding the path-data code.

To allow paths of any complexity, the <path> element lets you spec‐
ify as many pieces of the path as you need, each using a basic mathe‐
matical shape. Straight lines, Bézier curves, and elliptical curves of
any length can be specified. Each piece is defined by the type of

170 | Chapter 6: Following Your Own Path

drawing command, indicated by a letter code, and a series of numer‐
ical parameters.

The same path instructions are used outside of SVG. The HTML
Canvas2D API (for drawing on a <canvas> element with JavaScript)
can now accept path-data strings as input. The same code is also
used for paths in Android’s “vector drawables,” which use an XML
format that is similar to SVG.

You can create SVG shapes—in a visual editor or
with code—and then copy and paste the path
data string, from the d attribute, into your Java‐
Script or Android code.

The path instructions are written as a single string of data, and are
followed in order. Each path segment starts from the end point of
the previous statement; the command letter is followed by coordi‐
nates that specify the new end point and—for the more complex
curves—the route to get there. Each letter is an abbreviation for a
specific command: M, for instance, is short for move-to, while C is
cubic curve-to.

More Online
The “Path Commands” guide summarizes the complete instruction
set in reference format:

https://oreillymedia.github.io/Using_SVG/guide/path-data.html

There are generally two approaches to rendering the path. In the
first approach, path coordinates are given in absolute terms, explic‐
itly describing points in the coordinate system. The single letter
commands that control absolute positioning are given as uppercase
characters: M, L, A, C, Q, and so on. Changing one point only affects
the line segments that directly include that point.

The second approach is to use relative coordinates, indicated by
lowercase command letters: m, l, a, c, q, and so on. For relative com‐
mands, the coordinates describe the offset from the end of the previ‐
ous segment, rather than the position relative to the origin of the

Giving Directions: The d Attribute | 171

https://oreillymedia.github.io/Using_SVG/guide/path-data.html

coordinate system. You can move around a path defined entirely in
relative coordinates by changing the first point.

Both absolute and relative path commands can
be used in the same path.

The shorthand custom shapes, <polygon> and <polyline>, only use
straight line segments and absolute coordinates. There are no code
letters, just a list of points given in the (aptly named) points
attribute of each shape:

<polygon points="list of x,y points"/>
<polyline points="list of x,y points"/>

Before getting into the difference between <polygon> and
<polyline>, we’ll first go back to <path> (which can substitute for
either), and consider what it means to draw a shape from a list of
points.

Future Focus
Piecewise Paths

Encoding a complex shape in a single element’s attributes may be efficient,
but it does have its limitations. Sections of shapes cannot be duplicated or
manipulated individually. For example, in a map you often have two adjacent
regions with the same complex border shared between them; it would be
convenient to only have to encode the shape of the border once, and then
share it between the two elements.

There have been a few proposals for extensions of SVG that would make it
possible to reuse path segments between multiple shapes. This feature is likely
to be adopted into the language eventually, but it is not included in SVG 2.

172 | Chapter 6: Following Your Own Path

Straight Shooters: The move-to and line-to
Commands
The easiest-to-understand path instructions are those that create
straight-line shapes. The only numbers you need to include in the
directions are the coordinates of the start and end points of the dif‐
ferent line segments.

The basic commands you need to know are the M (or m) move-to
instruction, and the L (or l) line-to command. For instance, this
code creates a path in the shape of a diamond—technically, a rhom‐
bus—centered around the point (10,10):

<path d="M3,10 L10,0 L17,10 L10,20 L3,10" />

Filled in red, that looks like this:

The directions in the path data can be read as follows:

• M3,10: move to the point (3,10), meaning the point where x=3
and y=10, without drawing any line;

• L10,0: draw a line from the previous point to the position
(10,0);

• L17,10: draw another line from there to (17,10);
• L10,20: draw a third line to (10,20); and finally,
• L3,10: draw a line back to (3,10).

Figure 6-1 shows how the five points in the shape would be posi‐
tioned if they were marked out on graph paper. The final point
exactly overlaps the first.

Straight Shooters: The move-to and line-to Commands | 173

Figure 6-1. A diamond drawn with straight-line path segments

Because we’re focusing on the path data, this
chapter uses a lot of short code snippets, instead
of complete examples. To follow along, start
with the basic inline SVG code (Example 1-1) or
standalone SVG code from Chapter 1. Add the
<path> element, and give it a fill color with pre‐
sentation attributes or CSS.
You may also want to add a viewBox attribute to
the <svg> element, so that the icons will scale up
to a size larger than 20px tall. The versions dis‐
played with the graph-paper grid use
viewBox="-5 -5 30 30". We’ll explain what
those numbers mean in Chapter 8.

174 | Chapter 6: Following Your Own Path

Using relative coordinates, you can define the same path with the
following code:

<path d="m3,10 l7,-10 l7,10 l-7,10 l-7,-10"/>

The end result is identical:

In this case, the instructions read:

• m3,10: move 3 units right and 10 units down from the origin;
• l7,-10: draw a straight line starting from the previous point,

ending at a new point that is 7 units to the right and 10 units up
(that is, 10 units in the negative y direction);

• l7,10: draw another line that ends at a point 7 units further to
the right and 10 units back down;

• l-7,10: draw a third line moving back 7 units to the left (the
negative x direction) and another 10 units down; and

• l-7,-10: draw a line moving another 7 units left and 10 units
up.

To create the same size diamond at a different position, you would
only need to change the initial move-to coordinates; everything else
is relative to that point.

All paths must start with a move-to command,
even if it is M0,0.

The relative move-to command in the second snippet may seem
equivalent to an absolute M command. Moving x and y units relative
to the coordinate system origin is the same as moving to the abso‐
lute point (x,y).

However, the move-to commands can also be used partway through
the path data. In that case, an m command, with relative coordinates,
is not equivalent to an M command with absolute coordinates. Just

Straight Shooters: The move-to and line-to Commands | 175

like with lines, the relative coordinates will then be measured rela‐
tive to the last end point.

Unlike with lines, the move command is a “pen up” command. The
context point is changed, but no line is drawn: no stroke is applied,
and the area in between is not enclosed in the fill region. We’ll show
an example of move commands in the middle of a path in “Hole-y
Orders and Fill Rules” on page 178.

Finishing Touches: The close-path Command
The solid fill that was used in Figure 6-1 disguises a problem with
paths created only via move-to and line-to commands. If you were to
add a stroke with a large stroke width, like in Figure 6-2, you would
notice that the left corner, where the path starts and ends, does not
match the others.

When a path is drawn, the stroke is open-ended unless it is specifi‐
cally terminated. What that means is that the stroke will not connect
the last point and the first point of a region, even if the two points
are the same. The strokes will be drawn as loose ends instead of as
corners.

We’ll discuss more about stroking styles for line
ends and corners in Chapter 13. These figures
use the default miter corner style.

To close a path, use the Z or z close-path command. It tells the
browser to connect the end of the path back to the begining, draw‐
ing a final straight line from the last point back to the start if neces‐
sary. The closing line will have length 0 if the two points coincide.

A close-path command doesn’t include any coor‐
dinates, so there is no difference between the
absolute Z and relative z versions of the
command.

176 | Chapter 6: Following Your Own Path

Figure 6-2. An open-path diamond shape, with a thick stroke

The following versions of the diamond each have a closed path; in
the second case, it is used to replace the final line-to command,
which is preferred:

<path d="M3,10 L10,0 L17,10 L10,20 L3,10 Z" />
<path d="m3,10 l7,-10 l7,10 l-7,10 z"/>

These versions of the path, when stroked using the same styles as
before, create the shape shown in Figure 6-3.

Finishing Touches: The close-path Command | 177

Figure 6-3. A closed-path diamond shape, with a thick stroke

Again, closing a path only affects the stroke, not the fill; the fill
region of an open path will always match the closed path, created by
drawing a straight line from the final point back to the beginning.

When a path has multiple subpaths created with move-to com‐
mands, the close-path command closes the most recent subpath. In
other words, it connects to the point defined by the most recent
move-to command.

Hole-y Orders and Fill Rules
A useful feature of the “pen-up” move-to command is that it allows
you to draw several distinct fill regions in the same path, simply by
including additional M or m instructions to start a new section. The
different subpaths may be spread across the graphic, visually

178 | Chapter 6: Following Your Own Path

distinct, but they remain a single element for styling and for interac‐
tion with user events.

With multiple subpaths—or even with a single subpath that criss-
crosses itself—you can also create “holes” within the path’s fill
region. The following version of the diamond includes cut-away
regions to suggest light reflecting off a three-dimensional shape, as
demonstrated in Figure 6-4.

<path d="M3,10 L10,0 17,10 10,20 Z
 M9,11 L10,18 10,10 15,10 11,9 10,2 10,10 5,10 Z" />

Multiple coordinate pairs after a line-to com‐
mand create multiple lines; you don’t need to
repeat the L each time.

At the default scale, that looks like this:

Figure 6-4 shows how the points are located in the grid. The points
are numbered in order, like a connect-the-dots drawing.

Although we haven’t mentioned it so far, the outside diamond shape
was intentionally drawn in a clockwise direction. The inner cutout is
drawn in a counterclockwise direction. By convention in SVG and
other vector graphics languages, the counterclockwise path cancels
out the clockwise path, returning the center cutout to the “outside”
of the path’s fill region.

If the inside subpath were also clockwise, or if both subpaths were
counterclockwise, then it gets more complicated. By default, the
inner path would have added to the outside one, and the center
region would have still been filled in.

This additive behavior can be controlled with the fill-rule style
property. The default value is nonzero; if you switch it to evenodd,
cutouts will always be cut out, regardless of the direction of the path.

Hole-y Orders and Fill Rules | 179

Figure 6-4. A diamond drawn with a cut-out subpath region

Which rule should you use? Which direction should you draw your
shapes?

As with most things in programming, it depends.

If both subpaths are drawn in the same direction, you can use fill-
rule to control whether they add together (nonzero, the default) or
cancel out (evenodd). So you’ll have flexibility later. It’s easier to
change a style property than to change your path data.

When a cutout region is drawn in the opposite direction from the
main path shape (as in the code for Figure 6-4), it will always be a
cutout. So you have predictability.

180 | Chapter 6: Following Your Own Path

Most visual editors have an option to reverse the
direction of a path. Illustrator also automatically
reverses paths when you combine them—creat‐
ing cutout holes—if one of the original paths
entirely overlaps the other.

A fill-rule of evenodd forces the shape to alternate between
“inside” and “outside” the path every time it crosses an edge, regard‐
less of whether it is clockwise or counterclockwise. That’s nice and
simple, but it means that any overlapping regions are cut out. This
can be problematic with complex shapes that have many curves,
which might loop around on themselves slightly.

A nonzero fill ensures that these accidental overlaps add together:
you have to explictly reverse direction to create a hole.

Although the nonzero fill rule is the default in
the SVG specifications, some visual vector
graphics programs automatically apply evenodd
style rules to their SVG exports.
Inkscape uses evenodd when you draw a shape,
but will sometimes switch to nonzero mode if
you merge multiple paths or shapes into a single
element. You can manually switch the fill-
rule in the fill options dialog, and your choice is
saved for the next shape.
Illustrator uses nonzero by default, but you can
manually switch the mode for compound paths.
Photoshop vector layers always use evenodd
mode.
Most vector font formats use nonzero mode.

More Online
Why does fill-rule have to be so complicated? And why are the
keywords nonzero and evenodd?

Read more about the winding order number of path regions, and
how they are calculated, in “The Winding Order of the Fill Rule”:

Hole-y Orders and Fill Rules | 181

https://oreillymedia.github.io/Using_SVG/extras/ch06-fill-rule.html

The fill-rule style property is inherited. It can be declared once
for the entire SVG, or it can be defined for individual shapes.

Following the Grid: Horizontal and
Vertical Lines
When you define a line with an L (or l) command, you specify both
horizontal and vertical coordinates (or offsets, for l). If either the
horizontal or vertical position is staying the same, however, there’s a
shortcut available.

Precise horizontal and vertical lines can be written concisely with
dedicated path commands: H (or h) for horizontal lines, and V (or v)
for vertical lines.

These command letters are followed by a single coordinate for the
value that is changing. In a horizontal line, the y-value stays the
same, so only the x-value is required; in a vertical line, the x-value is
constant, so only the y-value is needed.

The following paths therefore both define a 20×10 rectangle with its
top-left corner at (10,5) and its bottom-right corner at (30,15). The
first path uses absolute coordinates, while the second uses relative
offsets:

<path d="M10,5 H30 V15 H0 Z" />
<path d="M10,5 h20 v10 h-20 z" />

Of course, we already have the <rect> element for rectangles. But
horizontal and vertical lines show up in many other places. You can
create a complete set of gridlines for a chart as a single path with M,
H, and V commands. The grids used in the figures in this chapter use
a single element for each color and thickness of line:

<path id="axes"
 fill="none" stroke="royalBlue" stroke-width="0.3"
 d="M-5, 0H25 M 0,-5V25"/>
<path id="major-grid"
 fill="none" stroke="cornflowerBlue" stroke-width="0.15"
 d="M-5, 5H25 M 5,-5V25
 M-5,10H25 M10,-5V25
 M-5,15H25 M15,-5V25

182 | Chapter 6: Following Your Own Path

https://oreillymedia.github.io/Using_SVG/extras/ch06-fill-rule.html

 M-5,20H25 M20,-5V25"/>
<!-- And one more, for the minor grid -->

Of course, you can also mix horizontal and vertical with diagonal
lines (or curves!) to create all sorts of complex shapes.

The cutout path used for the decorative diamond in Figure 6-4 con‐
tains vertical and horizontal lines. After being rewritten to use the
shorthand commands, the complete code for the diamond is given
in Example 6-1.

Example 6-1. An SVG diamond icon using a multipart path

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 height="20px" width="20px">
 <title>Diamond</title>
 <path fill="red"
 d="M3,10 L10,0 17,10 10,20 Z
 M9,11 L10,18 V10 H15 L11,9 10,2 V10 H5 Z" />
</svg>

To create a larger version of the icon, you can
change the height and width, but you’ll also
need to add a viewBox (as mentioned before).
viewBox="0 0 20 20" will create a tight square
around the 20-unit-high icon.

Using horizontal and vertical commands helps reduce file size, but
more importantly: it helps keep your code DRY. It’s easier to change
things later if coordinates are not repeated when they don’t have to
be.

Of course, reducing file size is a common concern of SVG, and path
data was designed with that in mind.

Crunching Characters
This book tries to keep path data legible, by using commas to sepa‐
rate x,y coordinates for a single point and spaces between separate
coordinates or separate commands. However, the path syntax is
designed to encourage brevity, allowing the path instructions to be
condensed considerably:

Crunching Characters | 183

• Whitespace and commas are interchangeable, and are only
required in order to separate numbers that could be mistaken
for a single multidigit value.

• The initial zero in a small decimal number can be omitted. This
can be combined with the previous rule, so that a line to the
point (0.5, 0.7) could be written as L.5.7: you can’t have two
decimal places in the same number, so the second . starts a new
number.

• The command letter can be omitted when it is the same as the
previous path segment, except for multiple move-to commands.
Multiple coordinates after a move-to command will be inter‐
preted as line-to commands of the same type (relative or
absolute).

Many software export and optimization tools
will “uglify” SVG path data in order to cram it
into the absolute minimum number of charac‐
ters. If you will be dissecting the path data later,
it may help to turn off path-optimization set‐
tings, other than the settings that round decimal
numbers.

The following is a valid equivalent to the diamond shape from
Example 6-1. It switches between absolute and relative commands,
eliminates separators wherever possible, and uses spaces if a separa‐
tor is required, without regard to keeping coordinate pairs
organized:

<path d="m3 10 7-10 7 10-7 10zM9 11l1 7V10h5l-4-1-1-7v8H5Z"/>

This uses 49 characters to create the same shape that was originally
defined in 66 characters plus an indented newline:

<path d="M3,10 L10,0 17,10 10,20 Z
 M9,11 L10,18 V10 H15 L11,9 10,2 V10 H5 Z" />

That’s a savings of more than 25%, which can be significant when
you consider that path data often makes up a large portion of SVG
file sizes. We highly encourage you to use SVG optimizer tools to
condense very large path data strings. But for handwriting code—
and reading it later—we’ll be sticking with the “pretty” versions.

184 | Chapter 6: Following Your Own Path

Short and Sweet Shapes: Polygons and
Polylines
There’s another, more legible way to simplify straight-line paths: use
a <polygon> or <polyline> element.

Both of these elements allow you to create straight-line shapes sim‐
ply by giving a list of the corner points in the points attribute. The
points in a <polyline> create an open path when stroked; for
<polygon>, the shape is closed from the last point back to the first.

The coordinates are always absolute, and can be separated by white‐
space or commas, in whichever organization makes sense to you.
Here is the basic diamond once again, as a four-point <polygon>:

<polygon points="3,10 10,0 17,10 10,20" />

There are a number of features of SVG that (in SVG 1.1) are only
available for <path> elements, and not other shapes. This includes
text on a path (which we’ll introduce in Chapter 7) and the Java‐
Script functions for accessing the length of a path (which we’ll dis‐
cuss in Chapter 13).

If need be, you can always convert the simple list of points for
<polygon> to a <path> data attribute by inserting an M at the begin‐
ning and a Z at the end. For a <polyline>, skip the Z to keep the
path open-ended.

Another reason to convert polygons to paths is to combine multiple
shapes into subpaths of a single complex shape. Polygons and poly‐
lines can only have a single, continuous shape.

Even without distinct subpaths, polygons can have “holes” created
by criss-crossing edges. Because the edges will all be part of the same
continuous shape, the winding order won’t change, so the fill rules
are simpler than for multipart paths. The overlapping sections will
only be treated as holes if you set fill-rule: evenodd.

Fill rules have the same effect for a filled-in
<polyline> as for <polygon>; the two shapes
only differ when stroked.

Short and Sweet Shapes: Polygons and Polylines | 185

The remaining sections of the chapter focus on curved paths, which
means we’re focusing exclusively on the <path> element, not on
<polygon> or <polyline>.

CSS Versus SVG
Polygon Points

The CSS Shapes specification supports straight-line shapes with the
polygon() function.

Similar to SVG, the shape is defined by a list of corner points. Unlike SVG, CSS
doesn’t treat whitespace and commas as interchangeable; CSS syntax uses
spaces to separate multipart values, and commas to separate items in a list of
repeated values. In this case, that means spaces to separate the x- and y-
values, and commas to separate the points.

The CSS syntax to describe the diamond shape would be:

polygon(3px 10px, 10px 0px, 17px 10px, 10px 20px)

A more significant difference between CSS and SVG polygons is that the coor-
dinates in CSS require units (or percentages). In contrast, SVG polygons, poly-
lines, and paths only accept user coordinate values, without units.

CSS polygons also use evenodd and nonzero to control fill rules. You can
optionally specify one of the keywords as the first parameter in the polygon()
function, separated from the list of points by a comma. As with SVG, the
default is nonzero, meaning criss-crossing lines add to the total shape;
evenodd must be specified explicitly, as in the following shape:

polygon(evenodd,
 0 0, 50% calc(100% - 2em), 100% 0, 50% 0,
 50% 2em, 0 100%, 100% 100%, 50% 2em, 50% 0);

The polygon starts at the top left, draws a diagonal down to the center of the
screen and almost the bottom, angles back up to the top right, follows the
edge of the container to the center top, adjusts down slightly, draws the lower
triangle, then connects back up to the top of the screen.

In practice, that looks like the following, where the orange-gold gradient is the
polygon and the blue is the background:

186 | Chapter 6: Following Your Own Path

Without evenodd, the center region would be included in the orange shape.

We created that image by using the polygon() function in the clip-path
property (which we’ll discuss more in Chapter 15). Here’s the complete code
for this CSS vector graphics design:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Fill rule and CSS shapes</title>
 <style>
body {
 background: royalblue;
 margin: 0;
}
div {
 height: 100vh;
 background: linear-gradient(tomato, gold);
 clip-path: polygon(evenodd,
 0 0, 50% calc(100% - 2em), 100% 0, 50% 0,
 50% 2em, 0 100%, 100% 100%, 50% 2em, 50% 0);
}

Short and Sweet Shapes: Polygons and Polylines | 187

 </style>
</head>
<body>
 <div></div>
</body>
</html>

Curve Balls: The Quadratic Bézier Command
Anyone who has ever put together a connect-the-dots picture knows
that straight lines, while useful for getting a general feel for a given
shape, are at best a loose approximation of the real world. For a
graphics language, the ability to generate curved segments between
points is essential.

SVG paths use three types of curves: quadratic Bézier curves, cubic
Bézier curves, and elliptical curves. Bézier curves are also available
with shorthand smooth-curve commands, and each curve com‐
mand can be expressed in absolute or relative coordinates. All these
options can be a little daunting on first impression, but understand‐
ing this breakdown can make the selection of the best curve forms
easier.

Bézier curves are a relatively recent contribution
to geometry. In 1962, French industrial engineer
Pierre Bézier adapted the graphing algorithms of
French mathematician Paul de Casteljau in
order to better design car bodies for the Renault
automobile company, creating a simpler nota‐
tion for curves. Bézier defined a curve using
“control” points that made it possible to graphi‐
cally parameterize the equations in early CAD
(computer-assisted drafting) applications.

Bézier curves rely on two convenient truths:

• You can express close approximations to most continuous
curves by using a series of quadratic or cubic equations (equa‐
tions where the y position is related to x2 or x3, respectively)
connected together in a spline, such that the curve flows
smoothly from one segment to the next.

188 | Chapter 6: Following Your Own Path

It’s not always a perfect approximation—in equations where
more complex mathematical relationships predominate, finding
an exact match with a Bézier equation can be difficult at best—
but you can always improve the approximation by using a
greater number of shorter curve segments, smoothed together.

• You can calculate quadratic and cubic curves over a finite area
as a weighted average of multiple x,y points: end points for the
curve segment and control points defining its shape.
Computers can calculate these weighted averages much more
efficiently than they can squares or cubes, and many times faster
than they can calculate more complicated mathematical
relationships.

What does “a weighted average of multiple x,y points” mean?
Consider Figure 6-5, which is an exact repeat of Figure 5-2 from
Chapter 5.

The start points of each line in the top right of the graphic are each a
percentage of the distance between (0,0) and the point (10cm, 0); the
end points of each line are each positioned at a matching percentage
of the distance between (10cm, 0) and (10cm, 10cm). This is a direct
result of how the lines were created in the JavaScript loops.

Less obvious is that the same percentages apply to the apparent
curved line created by the overlapping, intersecting lines. The first
line, the one whose start and end points are weighted entirely to the
initial positions, sketches out the very beginning of the curve. The
second line, which starts and ends 10% of the way along the square’s
edges, intersects that curve at 10% of its (the line’s) length. And so
on for the rest of the lines: the middle line, which spans from (5cm,
0) to (10cm, 5cm), crosses the curve at its halfway point; the line
from (8cm, 0) to (10cm, 8cm) crosses the curve 80% of the way to its
end point.

The apparent curve created by those intersecting straight lines can
be directly drawn as a quadratic Bézier curve. A quadratic Bézier
requires three points: the start point, an end point, and a single con‐
trol point between them that establishes the farthest extent of the
mesh envelope (aka the string art). For the curves created by the
lines in Figure 6-5, the start and end points are (0,0) and (10cm,
10cm); the control points are (10cm, 0) for the top half of the curve
and (0, 10cm) for the lower half.

Curve Balls: The Quadratic Bézier Command | 189

Figure 6-5. String art “curves” created from SVG lines

Figure 6-6 adds those two Bézier curves, as two halves of a filled-in
shape, to the SVG. As you can see, the lines perfectly brush the edges
of the curved shape.

In SVG path notation, the command letter for quadratic curves is Q
(or q for relative coordinates). As with all path commands, the start
point is taken from the end point of the previous command in the
path. That means that a Q is followed by two pairs of x,y coordinates:
the first pair of numbers describes the control point, and the second
pair defines the end point.

190 | Chapter 6: Following Your Own Path

Figure 6-6. A quadratic Bézier path, and the string art mesh that
encloses it

Curves shaped like those in Figure 6-6 would be written as follows,
in a 10×10 coordinate system:

<path d="M0,0 Q 10, 0 10,10
 Q 0,10 0,0 Z" />

It starts from the top-left (0,0) point, moves clockwise around the
upper curve to the bottom corner, then moves back up along the
bottom curve.

In relative coordinates, the curve would be:

<path d="m0,0 q 10,0 10,10
 q-10,0 -10,-10 z" />

Curve Balls: The Quadratic Bézier Command | 191

Since the path starts from (0,0), the numbers in the first segment
haven’t changed; the numbers in the second segment are all relative
to the (10,10) point from the end of the first curve.

When you’re using relative coordinates for Béz‐
ier curves, both the control points and the end
point are relative to the start point of that path
segment, not relative to each other.

There’s just one more complication. As we briefly mentioned earlier,
you cannot use units like cm in path data coordinates; you must use
user coordinate numbers. The preceding paths draw shapes 10px tall
and wide, not 10cm.

In Chapter 8 we’ll discuss how you can use nested coordinate sys‐
tems to scale a specific number of user coordinates to exactly match
a chosen length. For now, we’ll take advantage of the fact that user
coordinates are equivalent to CSS px units, and all modern browsers
scale real-world units so that there are 96px per in. Since there are
2.54cm per inch—in the real world or in your browser—this means
that 10cm is (10*96/2.54) user units, or approximately 377.95 units.

The following path therefore draws the two quadratic curves in
Figure 6-6:

<path d="M0,0 Q377.95,0 377.95,377.95
 Q0,377.95 0,0 Z"
 fill="royalBlue" />

Future Focus
Beyond Simple Coordinates

Although paths are incredibly flexible, they are limited by the requirement that
path directions (and also polygon/polyline points) may only use user coordi-
nates, not lengths with units or percentages. It is possible to scale the path as a
whole, changing the size of the user coordinates relative to the rest of the
graphic. However, it is not currently possible to have some parts of a path scale
according to percentage values while other points stay at a fixed offset.

In contrast, the CSS Shapes polygon function allows a mixture of units and
percentages. It also allows you to define individual coordinates using calc()

192 | Chapter 6: Following Your Own Path

expressions, so a point can be a percentage plus or minus a fixed offset. (Like
calc(100% - 2em), which we used in the clip-path polygon example.)

Future versions of SVG will probably introduce a way to use units, percentages,
and arithmetic expressions in path coordinates. However, at the time of writ-
ing, there is no accepted proposal for how to do so.

One difficulty is that the condensed path syntax, with letters and numbers fol-
lowing each other, would be confused by having additional letters (units)
mixed in. Another issue is the efficiency of the graphical calculations. Currently,
when a path is duplicated with <use>, its geometrical structure is preserved,
and SVG implementations may make use of this to simplify their calculations. If
the points of the path included a mix of relative units, absolute units, and per-
centages, the shape of the path would depend on the context in which it is
used.

Smooth Operators: The Smooth Quadratic
Command
The two quadratic curves used in Figure 6-6 meet at sharp points.
However, earlier we mentioned that you can create continuous
curves by connecting multiple Bézier curves smoothly.

What makes a smooth connection between curves? A smooth curve
does not have any sudden changes in direction. In order to connect
two curved path segments smoothly, the direction of the curve as it
reaches the end of the first segment must exactly match the direc‐
tion of the curve as it begins the next segment.

Take a look at Figure 6-6 again. The direction of the start of each
curve segment is the direction of the line from the start point to the
control point. The direction of the end of each segment matches the
line from the control point to the end point. Those lines are tangent
to the start and end of the curve. Line them up so one tangent is a
continuation of the other, and your curve will look continuous too.

SVG has a shortcut to make smooth curves easier. The T (or t) com‐
mand creates a quadratic curve that smoothly extends the previous
Bézier curve segment. The control point is calculated automatically,
based on the control point from the previous segment; the new con‐
trol point is positioned the same distance from its start point (the

Smooth Operators: The Smooth Quadratic Command | 193

previous segment’s end point) as the other control point is, but in a
straight line on the opposite side.

Because the control point is implicit, the T is
only followed by a single coordinate pair, which
specifies the new end point.

Figure 6-7 shows what that looks like. The distance from the control
point of the first segment to the mid-point is 3 units right and 5
units down. The reflected control point for the next segment is
therefore an additional 3 units right and 5 units down. Note that
while the control points are reflected, the final shape of the curve is
not a mirror reflection. (It could be, but only if the other points were
all arranged symmetrically, too.)

Figure 6-7. A curve made of two quadratic segments, with the control
point reflected from the first segment to the second

If the curve segment prior to a T command wasn’t a quadratic Bézier
(smooth or otherwise), the control point for the new segment
defaults to its start point. This effectively turns the T segment into a
straight line, and turns your smooth connection into a sharp corner.

194 | Chapter 6: Following Your Own Path

The smooth curve command is not the only way to smoothly con‐
nect Bézier curves. If the second curve should be much deeper or
shallower than the previous one, you may need to move the control
point to be closer or farther away from the end point, without
changing the direction of the tangent line.

To do this, make sure the slope of the tangent lines remains the
same: the ratio of the change in y-values to the change in x-values.
You can also use this calculation to create a curve that smoothly
extends from a straight line; the line is its own tangent.

If you can arrange it so that the tangent lines are
perfectly horizontal or perfectly vertical, you can
avoid any arithmetic. Simply make sure that the
next control point is also on that horizontal or
vertical line.

Example 6-2 uses quadratic curves to create a heart icon to match
the diamond, with a mix of manual and shorthand smooth connec‐
tions. The end result should look like this:

Example 6-2. An SVG heart icon using quadratic Bézier curves

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 height="20px" width="20px">
 <title>Heart</title>
 <path fill="red"
 d="M 10,6
 Q 10,0 15,0
 T 20,6
 Q 20,10 15,14
 T 10,20
 Q 10,18 5,14
 T 0,6
 Q 0,0 5,0
 T 10,6
 Z" />
</svg>

Figure 6-8 shows the shape, scaled up on the grid. The connect-the-
dots numbers have been omitted so we can instead emphasize the

Smooth Operators: The Smooth Quadratic Command | 195

positions of the control points. Explicit control points (the ones
specified in the code) are marked with solid lines and dark markers;
the reflected control points are shown with dotted lines and white
square markers.

Figure 6-8. A heart drawn with quadratic Bézier curves, showing the
control points

The first half of the path directions can be read as follows:

• M 10,6 starts the path at the dimple of the heart, horizontally
centered in the 20px width.

• Q 10,0 15,0 creates the first curve segment, tracing the shape
of the heart in a clockwise direction. The control point is (10,0)
and the end point is (15,0), at the top of the right lobe of the
heart.

196 | Chapter 6: Following Your Own Path

• T 20,6 creates a smooth quadratic curve to the far rightmost
edge of the heart. The missing control point can be calculated
from the previous segment: the tangent line from (10,0) to
(15,0) moved 5 units in the x-direction and 0 units vertically;
you locate the new control point by repeating that vector, from
(15,0) to (20,0).

• Q 20,10 15,14 manually creates a smooth connection to the
next quadratic curve. The ending tangent of the previous seg‐
ment, from (20,0) to (20,6), was perfectly vertical, so it was easy
to position the new control point, (20,10), along the same line.
Using that control point, the path segment curves inward to
(15,14).

• T 10,20 smoothly extends the curve, inflecting it back down‐
ward to the bottom point of the heart shape. The line from the
previous control point (20,10) to the start/end point (15,14) was
equal to –5 x units and +4 y units, so the automatically calcula‐
ted control point will be that same offset again, from (15,14) to
(10,18).

The next segment is not a smooth continuation of the curve; the bot‐
tom of the heart is a sharp point. The rest of the heart is symmetrical
to the part drawn so far, reflected around the line y=10.

This type of symmetry, it turns out, doesn’t make very good use of
the automatically calculated control points; in order to recreate the
same curves on the other side of the heart, you need to know the
control points from the first half. The Q 10,18 5,14 segment is
the reflection of the T 10,20 segment, but in this case the (10,18)
control point needs to be explicitly stated.

With quadratic curves, eight curve segments are required to draw
the heart. Each segment can only curve in a single direction, and the
start and end points for each segment must be chosen so that a sin‐
gle control point can define both the tangent line that starts the
curve and the tangent line that ends it.

To gain more flexibility—to allow the ending tangent of the curve
segment to be defined independently from the starting tangent—
you need to use cubic curves. But rather than redrawing the heart,
the next section uses cubic curves to add a spade to our set of card
suit icons.

Smooth Operators: The Smooth Quadratic Command | 197

CSS Versus SVG
Paths Beyond SVG

The initial CSS Shapes specification did not include a way to define complex
curved paths. This proved limiting as other CSS specifications adopted the use
of shapes.

The chosen solution is a path() CSS shapes function that accepts a string of
SVG path data. Like the polygon() function, it would also be possible to spec-
ify a fill-rule keyword as an optional first parameter.

This means that any curved shape that can be created with SVG could be used
in any CSS property that accepts shape functions. So far, those properties
include clip paths, shape-outside for curved wrapping around floated
images, and motion paths. However, SVG path syntax has its limitations as well:
no way to specify coordinates using percentages or relative units, and no easy
way (yet) to combine reusable path segments into a single compound path.

This isn’t the first time SVG path data has been adopted outside of SVG. As we
mentioned briefly earlier, path data strings based on the SVG syntax are used
in some HTML canvas drawing functions, and in Android’s “vector drawables”
XML format.

Wave Motion: The Cubic Bézier Commands
A quadratic Bézier curve is a parabola—useful for creating gentle
curves that have a single bend. A cubic Bézier curve, on the other
hand, is much more flexible.

A cubic curve is defined by two control points. The first defines the
tangent line from the start point, and the second defines the tangent
line to the end point.

If the tangent lines point in opposite directions, a cubic curve seg‐
ment may have two bends, curving like a letter S in opposite direc‐
tions. With other control points, the segment may look more like a
letter C. A cubic curve may also look not that different from a quad‐
ratic curve, with only one gentle bend—or no bend at all, if the two
control points fall directly on the line between the start and end
points.

198 | Chapter 6: Following Your Own Path

Most drawing applications primarily use cubic Bézier curves
because they are more flexible than quadratic ones.

Figure 6-9 shows how this flexibility can create curves that no longer
feel neat and geometric. The curve consists of two cubic segments,
which are smoothly joined with reflecting control points in the mid‐
dle. But the control points on the ends angle out in completely unre‐
lated directions.

Figure 6-9. A curve made from two cubic Bézier segments, showing the
control points

More Online
Geometrically, cubic Bézier curves are created similar to the string
art from Figure 6-5, but everything is done twice. It’s difficult to pic-
ture, but for the computer, it is just a weighted average of weighted
averages of all the points.

Read more (and see some best attempts at picturing the construc-
tion) in “Calculating Cubic Béziers”:

https://oreillymedia.github.io/Using_SVG/extras/ch06-cubic-
bezier.html

Wave Motion: The Cubic Bézier Commands | 199

https://oreillymedia.github.io/Using_SVG/extras/ch06-cubic-bezier.html
https://oreillymedia.github.io/Using_SVG/extras/ch06-cubic-bezier.html

In the path directions, cubic curves use the letter C (or c) followed
by three sets of coordinates, for the first and second control points
and the end point. As always, the start point is taken from the end of
the previous command.

Smooth cubic Béziers curves can be used in a similar manner to
smooth quadratics. The command letter is S (or s) and it is followed
by two sets of coordinates, for the second control point and the end
point. The curve in Figure 6-9 uses the following code:

<path d="M 3,10
 C 7,4 4,16 12,14
 S 19,4 13,8 " />

The first control point for the smooth segment is calculated
automatically.

As with the quadratic smooth curve command, the smooth short‐
hand only works in certain situations. If you use an S command
after a segment that wasn’t a cubic Bézier—including after a quad‐
ratic Bézier—the automatically calculated control point will default
to the curve’s start point. This doesn’t convert the curve to a straight
line (as it did for T), since the second control point will still intro‐
duce a bend. But it will destroy the smoothness of the connection.

To smoothly connect quadratic and cubic
curves, you can upgrade the quadratic segments
to cubic commands by repeating the control
point coordinates; a cubic curve where both
control points are the same is effectively a quad‐
ratic curve.

Example 6-3 continues our series of card suit icons, drawing the fol‐
lowing spade shape using cubic Bézier curves:

Example 6-3. An SVG spade icon using cubic Bézier curves

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 height="20px" width="20px">
 <title>Spade</title>
 <path fill="black"

200 | Chapter 6: Following Your Own Path

 d="M 9,15
 C 9,20 0,21 0,16
 S 6,9 10,0
 C 14,9 20,11 20,16
 S 11,20 11,15
 Q 11,20 13,20
 H 7
 Q 9,20 9,15 Z" />
</svg>

Figure 6-10 shows the scaled-up result with the points marked out
on the grid. Again, the solid lines and diamonds mark the explicitly
defined control points, while the dotted line and white squares mark
the reflected control points. The control points for the cubic and
quadratic curves overlap at the stem.

The directions can be read as follows:

• M 9,15 positions the start of the path at the point where the left
lobe connects with the stem. As usual, the path will progress
clockwise around the shape—direction might not matter if
you’re not creating cutouts, but it’s a good habit to always use
clockwise shapes.

• C 9,20 0,21 0,16 draws the entire lower curve of the left lobe.
The initial tangent line points directly downward, from (9,15) to
(9,20), while the ending tangent line points directly upward,
from (0,21) to the end point of (0,16).

• S 6,9 10,0 creates a smooth continuation of the curve, ending
with a tangent line from (6,9) to the center point of (10,0).

• C 14,9 20,11 20,16 creates the symmetrical curve: the initial
(14,9) control point is the reflection of the (6,9) point from the
previous curve, while the second control point (20,11) is the
reflection of the point that had been automatically calculated in
the previous segment. The (20,16) end point matches the (0,16)
point from the initial cubic curve.

• S 11,20 11,15 draws the right lower lobe, reflecting the shape
of the left lower lobe.

• Q 11,20 13,20 creates a quadratic curve for the right side of the
stem.

• H 7 draws the horizontal line across the bottom of the stem.

Wave Motion: The Cubic Bézier Commands | 201

• Q 9,20 9,15 Z draws the matching quadratic curve for the
opposite edge of the stem, and closes off the path.

Figure 6-10. A spade drawn with cubic Bézier curves, showing the con‐
trol points

Using cubic curves, each lobe of the spade was drawn with two path
segments, compared to the four quadratic segments required for
each lobe of the heart.

202 | Chapter 6: Following Your Own Path

Future Focus
Closing Curves

The Z close-path command, as defined in SVG 1, can only be used to close off a
shape using a straight line. To close a curved shape, you need to explicitly
repeat the starting coordinate as the ending coordinate of the curve com-
mand, and then add a zero-length Z command to connect the strokes.

That zero-length Z segment is problematic when you use line markers (dis-
cussed in Chapter 14) to emphasize every segment. Furthermore, the need to
exactly match the starting coordinate can be problematic if your curves use
relative coordinates, instead of absolute.

SVG 2 proposes a new approach, where a Z (or z, doesn’t matter) can replace
the end point from a curve command. The curve would be drawn as if the
missing coordinates were replaced by the starting point of that subpath, and
then the ends would be joined without any zero-length connection.

Building the Arcs
In general, cubic Bézier curves can be used to encode nearly any
type of shape you might want to draw. However, as mentioned pre‐
viously, Bézier curves will never perfectly match shapes based on
mathematical relationships other than quadratic or cubic functions.
You can never draw a perfect circle or ellipse with a Bézier curve.
Because perfect circular arcs are expected in many diagrams, SVG
includes a separate command specifically for them.

The final path command in the SVG toolbox is the arc segment (A
or a), which creates a circular arc between two points. This is useful
for creating circular arcs for pie charts and elliptical arcs for…um,
flattened pie charts? It also allows you to create the asymmetrical
rounded rectangles that we alluded to in Chapter 5.

The syntax for the arc command is a little more complex than for
the Bézier segments. The required parameters are as follows:

A rx ry x-axis-rotation large-arc-flag sweep-flag x y

The x and y values at the end of the command are the coordinates of
the end point of the arc. These are the only values that differ
between absolute (A) and relative (a) arc commands.

Building the Arcs | 203

The rx and ry parameters specify the horizontal and vertical radii
lengths of the ellipse from which the arc will be extracted. There’s no
separate syntax for circular arcs; just set rx and ry to the same value.

The next number (x-axis-rotation) allows you to rotate the x-axis
of the ellipse relative to the x-axis of the coordinate system. The
rotation number is interpreted in degrees; positive values are clock‐
wise rotation, and negative values are counterclockwise. For circular
arcs, this value is usually 0; rotating a circle has no visible effect on
its shape.

The next two parameters tend to confuse people. To fully under‐
stand the large-arc-flag and sweep-flag, it may help to try draw‐
ing arcs by hand.

Grab your coffee mug, get a coin out of your pocket, or use a jar,
tube, or anything else circular—or elliptical, if you can find an
ellipse! Your circular/elliptical design aid, whatever it is, has a fixed
radius in both directions. If it’s elliptical, try to hold it at a fixed
angle, too. Try out this exercise:

1. Take a piece of paper, and mark two points on it for your arc’s
start point and end point. Don’t make them too far apart.

2. Set your coin/coffee mug down on the paper and adjust it until
it touches both points.

3. Trace a curve around your circular object to connect the points.
4. Then, trace another curve around the other side of your circle.
5. Take your circle and shift it so that its center point is on the

opposite side of the straight line between your start and end
points. Readjust it so that it just touches the start and end
points.

6. Trace around the circle to connect up the points again, from
both directions.

7. Remove your coin/coffee mug. You should have a drawing that
looks vaguely like Figure 6-11.

204 | Chapter 6: Following Your Own Path

Figure 6-11. The many ways to connect two points with a coffee mug
stain

Each of the four arcs in Figure 6-11 has been labeled by (a) whether
it goes around the longer route (large arc) or the shorter route
(small arc), and (b) whether the path from start to end goes around
the circle clockwise or counterclockwise. These are the parameters
that you specify with the large-arc-flag and sweep-flag. These
parameters are flags, meaning that they are “true” (value 1) if the arc
should have that property, and “false” (value 0) otherwise.

The sweep-flag could be called the clockwise-flag, but that would
only confuse things once we start transforming the coordinate sys‐
tem. Transformations can create mirror-reflected situations where
clockwise isn’t clockwise anymore.

Building the Arcs | 205

If this seems overly confusing, it is. The elliptical arc is one of those
commands that gives up in legibility more than what it gains in flex‐
ibility. In order to integrate arcs into continuous paths, they need to
be defined by precise start and end points, which isn’t how arcs are
usually defined in geometry.

If you don’t need perfect arcs, you can often cre‐
ate a good approximation with quadratic or
cubic curves.

The code to draw Figure 6-11 is provided in the online supplemen‐
tary material. The four arcs are all the same except for the 0 or 1
values in the flag parameters:

<path d="M100,350 A180,180 0 1 1 350,100" />
<path d="M100,350 A180,180 0 0 1 350,100" />
<path d="M100,350 A180,180 0 0 0 350,100" />
<path d="M100,350 A180,180 0 1 0 350,100" />

Make sure you know which one is which!

Using arcs, we can complete the card suit icon set. The code for this
club icon is given in Example 6-4:

Example 6-4. An SVG club icon using arcs

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 height="20px" width="20px">
 <title>Club</title>
 <path fill="black"
 d="M 9,15.5
 A 5,5 0 1 1 5.5,7.5
 A 5,5 0 1 1 14.5,7.5
 A 5,5 0 1 1 11,15.5
 Q 11,20 13,20
 H 7
 Q 9,20 9,15.5 Z" />
</svg>

206 | Chapter 6: Following Your Own Path

All three arcs are “large,” and the entire shape is drawn in a clock‐
wise direction, so both flags are set to 1 for each A command. The
stem is the same as for the spade in Example 6-3.

Figure 6-12 shows the enlarged figure, including the complete cir‐
cles from which the arcs are extracted.

Figure 6-12. A club drawn with path arc commands, showing the
underlying geometry

Building the Arcs | 207

Future Focus
New Directions in Path Commands

SVG 2 introduces a new path command, which provides a different way to
interpret path directions.

The B or b command will allow you to change the bearing (direction) of the
path axis, rotating the definition of a horizontal line. A bearing command on its
own would not draw anything, but all relative coordinates for other path com-
mands would be calculated relative to current bearing angle, as would the arc-
rotation angle in relative arc commands. The bearing would not affect
absolute-coordinate commands.

The relative bearing command, b, would rotate the bearing angle relative to
the tangent direction—rather than the end point—of the previous path
segment.

Another proposed extension would provide a different way of defining curves.
A R or r spline curve command would allow you to connect a series of points
with a continuous smooth curve. The shape will be calculated by the Catmull-
Rom algorithm, which adjusts the curve of a segment between each pair of
points so that it visually connects to the previous and subsequent points. The
exact syntax has not been settled at the time of writing; it will be included in a
future SVG Paths module.

Summary: Custom Shapes
The core concept of SVG (and vector graphics, in general) is that
drawings can be described through a set of precise mathematical
instructions. With the exception of the few common shape elements
described in Chapter 5, most SVG shapes are drawn point by point,
using <polygon>, <polyline>, or the infinitely flexible <path>.

While <polygon> and <polyline> elements can be described by a
simple list of points, the <path> uses its own language to describe
what type of line to draw and how.

Drawing a shape is the first step in creating a piece of artwork, and
the tools that SVG provides here are extremely robust. The next step
is to be able to position and manipulate those shapes within the vec‐
tor coordinate system.

208 | Chapter 6: Following Your Own Path

The basic shapes <line>, <rect>, <circle>, and <ellipse>, while
limited in geometry, are incredibly flexible in size because each geo‐
metric attribute can be set independently with user coordinates,
units, or percentages. In contrast, <path>, <polygon>, and
<polyline> allow complete customization of the shape, but all the
points must be defined relative to the user coordinate system. To
create flexibility in their position and size, you need to manipulate
the coordinate system directly, something we’ll explore in Part III.

Before we get there, however, we have one final set of SVG shapes to
discuss: letters! And numbers! And emoji! In other words, text—the
topic of Chapter 7.

More Online
The new elements and attributes introduced in this chapter are
included in the “Shape Elements” section of our markup guide:

https://oreillymedia.github.io/Using_SVG/guide/
markup.html#shapes

The “Path Commands” guide is a reference for the syntax for path
data:

https://oreillymedia.github.io/Using_SVG/guide/path-data.html

A reference for CSS shapes is provided in the “CSS Shape Functions”
guide:

https://oreillymedia.github.io/Using_SVG/guide/css-shapes.html

Summary: Custom Shapes | 209

https://oreillymedia.github.io/Using_SVG/guide/markup.html#shapes
https://oreillymedia.github.io/Using_SVG/guide/markup.html#shapes
https://oreillymedia.github.io/Using_SVG/guide/path-data.html
https://oreillymedia.github.io/Using_SVG/guide/css-shapes.html

CHAPTER 7

The Art of the Word
Graphical Text Layout

Text in SVG is treated very similarly to shapes. Individual letters can
be positioned anywhere in the graphic and can be filled or stroked
(or both). Instead of using geometric attributes to define this “text
shape,” you use the text content of the element itself, combined with
font-selection style properties and a few SVG-specific text layout
attributes and properties.

The font-selection properties in SVG are entirely borrowed from
core CSS. If you’re familiar with styling text with CSS (and we’re
assuming you are) you are halfway to styling SVG text. You can even
use web fonts declared with an @font-face rule, although external
font files—like external stylesheets—are restricted in some SVG
contexts.

SVG text layout, in contrast, does not reuse CSS layout. When used
to style HTML, CSS lays out text by dividing the page into boxes and
then wrapping streams of text within them. If you change the styles
of a section of HTML text so that it takes up more space, the rest of
the text is pushed out of the way, or wraps to a new line. SVG text
doesn’t (yet) work like that.

In SVG, each <text> element is independent, positioned exactly
where you place it, even if it overlaps other content. There are ways
to make SVG text flow in continuous streams, but it takes much
more work than the equivalent CSS layout. SVG text is therefore
best reserved for its intended purposes: figure labels and short snip‐
pets of precisely positioned decorative text.

211

1 Amelia Bellamy-Royds and Kurt Cagle, SVG Text Layout (Sebastopol, CA: O’Reilly,
2015).

Better support for large blocks of automatically
wrapping text has long been a requested feature
for SVG. A few programs, such as Inkscape,
implemented a proposal from the SVG 1.2/SVG
Tiny 1.2 specifications, but it is not supported
on the web.
A new proposal, with better CSS integration, is
part of SVG 2 but has not been implemented in
mainstream browsers (as of mid-2017).

There are numerous complexities to SVG text layout, and—unfortu‐
nately—numerous areas where browser implementations are incom‐
plete or inconsistent. If you are interested in all the details, we have
written a complete book on the subject.1

This chapter briefly introduces the three main types of SVG text
layout:

• short labels positioned around a single anchor point
• precise character-by-character positioned graphical text
• text arranged on a path

The features described here are relatively well-supported in web
browsers, at least for Western languages. If you are using right-to-
left languages such as Hebrew or Arabic, or scripted languages that
use complex text shaping (changing or re-arranging the appearance
of characters based on their context), beware of browsers making a
mess of your text when using character positioning or text on a
path.

The original SVG specifications also included a
way to define entire custom fonts as SVG graph‐
ics; however, SVG fonts aren’t supported in most
browsers and can’t be relied upon for their origi‐
nal purpose of providing consistent, cross-
application text rendering.

212 | Chapter 7: The Art of the Word

http://shop.oreilly.com/product/0636920043072.do

SVG fonts are not part of the SVG 2 specifica‐
tion. Instead, the SVG in OpenType specification
aims to integrate SVG graphics into OpenType,
the most commonly used format for defining
font metadata.

We’re not going to talk about designing your own fonts here, but we
do have some tips on working with web fonts and fallback system
fonts.

When Text Isn’t Text
There are many benefits to using SVG for decorative text that you
can’t easily create with regular CSS. But those benefits come with
some qualifications and complications.

Before starting with SVG text, it’s important to understand how the
text will be used on the page, since that will determine the techni‐
ques you use to produce the final result. Images behave very differ‐
ently from objects or inline SVG.

If you embed an SVG with text elements into a web page with a
 tag, or if you use it as a CSS background image, you should be
aware of a few restrictions:

No web fonts
Browsers prevent external file downloads with SVG used as an
image, so any @font-face references to web fonts will be
ignored.

Loss of accessibility
Text in the image won’t be read by screen readers; you must
provide an accessible equivalent using the element’s alt
attribute (or ARIA attributes).

No text selection
Text in the image can’t be selected or copied by the user. This
means users cannot easily look up or translate unfamiliar
words, and text can’t be searched with browser “Find”
commands.

When Text Isn’t Text | 213

Lowered editability
You won’t be able to edit the text directly when working with
the HTML; you’d have to make changes in the SVG document,
upload the file, and refresh the HTML page that references it.
There is also no way to update the text via script.

Due to these limitations, when an SVG will be used as an image, it’s
fairly common to convert text inside it into paths in the shape of the
letters. Converting text to paths is particularly useful for logos,
where the text must be rendered in exactly the right way every time.

The conversion process must be done by an application that has
access to the desired font: in Adobe Illustrator, for example, the
option is called “Create Outlines” under the Type menu. Newer ver‐
sions also allow you to apply the conversion in the SVG export pro‐
cess. In Inkscape, use “Object to Path” in the Path menu.

Naturally, this dramatically alters the editability of the text: with
paths, you can move points and change stroke and fill, but can no
longer treat the shapes as actual text.

When converting text to paths, always save a
separate copy of the graphic with the editable
text, in case you need to change it later.

Converting text to paths can also change the sizing of gradients or
patterns, as we’ll discuss in Chapter 12.

In contrast, when SVG markup containing <text> elements is
placed inline as part of an HTML page, the disadvantages associated
with text-as-image disappear: the text is editable, uses @font-face
settings, is fully accessible, and can be copied by users or found with
browser page-search features.

The accessibility improvements should also apply for SVG files
embedded as interactive <object> or <embed> elements, although
browsers have a tendency to be buggy with accessibility of SVG con‐
tent inside an embedded object—so test carefully! The SVG text
remains in a separate file, of course, so must be edited separately
from the main web page. Whether this is an advantage or disadvan‐
tage depends on whether the test is reused on many pages (logos or

214 | Chapter 7: The Art of the Word

advertisements), or specific to the current page (like decorative
headings).

Whether inline, image, or object, SVG text retains a number of
advantages. Compared to bitmap images of text (which were once
commonly used for decorative headings on the web), SVG text
remains crisp at any scale, so is accessible to those that need higher
magnification. Compared to bitmaps or to text converted to paths, it
is easily editable if you need to change it later. These benefits remain
even when the text uses highly convoluted layouts, or is enhanced
with decorative filters, masks, or gradients.

Working with Web Fonts
Real SVG text requires real fonts to tell the browser how to draw
each letter. You have three options:

• Use only common fonts that will be available on most systems.
• Use web font files that are linked by a CSS @font-face rule.
• Use web font data embedded in your SVG.

In the first two cases, you need to think carefully about fallbacks to
use if your chosen font isn’t available. If you’re using a graphics edi‐
tor, they won’t add fallbacks for you. You’ll need to open up your file
in a code editor and edit the styles to change the font-family list.

If you’re using web fonts, you’ll also need to add an @font-face rule
for each typeface. The format of the @font-face rule is the same as
for CSS-styled HTML. Place the rule where you need it:

• If you’re using inline SVG, it automatically shares the @font-
face rules that apply to the rest of the page.

• If you’re sharing web fonts between your SVG objects and the
rest of the website, you can link your existing stylesheet (using
the methods discussed in “External stylesheets” on page 79, in
Chapter 3).

• Otherwise, create a <style> element in your SVG, and add the
@font-face there.

If fallback fonts are a design problem, embedding the font data in
the SVG can be an attractive option. It means that the complete

Working with Web Fonts | 215

drawing instructions are contained in a single .svg file, which still
uses real, accessible text.

Embedding was one of the goals behind SVG fonts, which defined
font data through SVG , <glyph>, and related elements,
which could be included in the same file. But SVG fonts had other
problems and are now deprecated, with very poor browser support.

Instead, the best approach to embedding fonts today is to use an
OpenType font format (such as WOFF), converted to a data URI.

More Online
Data URI fonts should not be your default choice. If used carelessly
or excessively, they can considerably limit performance.

Read more about data URI fonts, when to use them, and how to cre-
ate them, in “Creating Embeddable Fonts as Data URIs”:

https://oreillymedia.github.io/Using_SVG/extras/ch07-dataURI-
fonts.html

The browser’s final choice of typeface for each character is based on
a complicated font-matching and fallback algorithm. However, this
algorithm is the same for SVG as it is for other CSS-styled text.

Typewriter Text
The bare minimum for SVG text, as we showed in Chapter 1, is a
<text> element with x and/or y attributes. It can be quickly
enhanced with CSS rules or presentation attributes to define styles.

Unlike HTML, SVG will not automatically ren‐
der text simply typed into the document; text in
SVG must appear inside a <text> element.

Example 7-1 shows the basic markup to style some text and include
it in an SVG; Figure 7-1 is the output. We’ll discuss the attributes
one at a time.

216 | Chapter 7: The Art of the Word

https://oreillymedia.github.io/Using_SVG/extras/ch07-dataURI-fonts.html
https://oreillymedia.github.io/Using_SVG/extras/ch07-dataURI-fonts.html

Figure 7-1. SVG text, with minimal style and layout

Example 7-1. Defining basic text in an SVG

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 width="500" height="80">
 <text x="1em" y="60"
 font-size="64" font-weight="bold"
 font-family="Brush Script MT, Brush Script,
 Segoe Script, cursive">
 Some Test SVG Text
 </text>
</svg>

The x,y position you specify is—by default—the position of the
baseline of the first letter in the text. The baseline is the invisible
line that letters “sit” on, lining up the bottoms of most of the letters.
The browser then “types” the rest of the text in a straight line from
there.

As with the geometric attributes for basic
shapes, SVG text positioning attributes can have
different units, or no units at all. The font-
relative em unit is particularly useful for text.

Note that SVG does not wrap text when it runs out of room: words
in a <text> element that extend outside the SVG dimensions simply
disappear. (Or overflow, if you’re using inline SVG with overflow:
visible.)

Disappearing text can also be an issue if you omit the y attribute of a
<text> element, as it defaults to 0. In a simple SVG like this, this
means your text would be drawn so it is sitting on the top edge of
your SVG frame, with only the descenders (the tails of letters like p
and y) visible.

Typewriter Text | 217

Under most circumstances, the y value of a <text> element should
be at least (or almost) as large as its font-size, to ensure that the
text is seen.

Starting in Chapter 8, we will introduce another
solution: change the coordinate system so 0 isn’t
right at the top!

As with HTML text, extra spaces in the markup for an SVG <text>
element are normally ignored, and collapse to a single space. Spaces
at the beginning or end of an element, however, have more compli‐
cated collapsing rules and inconsistent behavior cross-browser, both
of which can sometimes throw off your layout.

It often helps to put your start and end tags right up next to the text
content:

<text x="50%" y="3em">like this</text>
<text x="50%" y="5em" font-family="long family name"
 >or like this</text>

The remaining attributes used in Example 7-1 are presentation
attributes for standard CSS font properties: font-size, font-
weight, and font-family.

The SVG font-family attribute uses the same cascading fallback as
the CSS font-family property. Other properties, like font-weight
(for boldness) and font-style (for italics), are similarly familiar.

When specified in a presentation attribute, font-size can be given
as a plain number and is assumed to be measured in pixels (this is
what we did in Example 7-1). In CSS, however, the px must be speci‐
fied explicitly. Like all other measurements in SVG, font size scales
along with the coordinate system, so the actual used font size will
depend on how large or small the SVG is drawn.

These presentation attributes map directly to their CSS equivalents.
It’s often more efficient to write them in CSS format, as in
Example 7-2 (which looks identical to Figure 7-1 when displayed).

218 | Chapter 7: The Art of the Word

Example 7-2. Using CSS rules to style text in an SVG

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 width="500" height="80">
 <title>Sample SVG Text, styled with CSS</title>
 <style>
 text {
 font-family: Brush Script MT, Brush Script,
 Segoe Script, cursive;
 font-size: 64px;
 font-weight: bold;
 }
 </style>
 <text y="60" x="1em">Some Test SVG Text</text>
</svg>

If you’re using CSS (but not if you’re using presentation attributes),
you can also use the font shorthand to set all these properties. The
styles in Example 7-2 could be replaced by one declaration:

text {
 font: bold 64px Brush Script MT, Brush Script,
 Segoe Script, cursive;
}

In inline SVG, all the font properties inherit from the surrounding
page. For standalone SVG, the browser’s default font settings are
used if you don’t change them.

A declared font-size (in absolute units) is rec‐
ommended for standalone SVG files: older Web‐
Kit and Blink browser versions unfortunately
applied a default font size of 0 (i.e., infinitely
small) in SVG images, with unpredictable
results.

Future Focus
Positioning Text with CSS

In both SVG 1.1 and SVG 2, the x and y values cannot be set with CSS proper-
ties: they must be written as attributes.

In Chapter 5, we mentioned how the x and y attributes on <rect> and other
elements are redefined in SVG 2 as geometry properties that can be controlled
in CSS. However, text elements use a different syntax for these attributes (as

Typewriter Text | 219

we’ll see in the section “Adjusting the Typewriter” on page 234), and so the
spec couldn’t include them in the same property without changing its syntax
for all elements. One proposed option is to create separate text-x and text-
y properties, but no decision has been made.

Colorful Language
An important difference between CSS-styled HTML text and SVG
text is that color does not change the color of text in SVG. Instead,
SVG text uses fill, as either an attribute or a CSS property:

text { fill: red; }

To coordinate inline SVG text with the color of surrounding text,
use fill: currentColor. This sets the fill value to match the
inherited color value.

The same trick doesn’t work with embedded
images or objects: style values from the main
page do not inherit into the external file!

Text can also be stroked in SVG, achieving an effect that cannot yet
be reliably recreated in CSS cross-browser:

text { fill: red; stroke: black; stroke-width: 2px; }

When those additional styles are added to the code from Examples
7-1 and 7-2, the result is Figure 7-2.

Figure 7-2. SVG text, filled in red and stroked in black

As we showed in Chapter 1, the fill and stroke values can instead
reference gradients or other SVG paint server effects, the same as for
filling and stroking SVG shapes.

220 | Chapter 7: The Art of the Word

Simple typewriter-style text layout like this may not be particularly
artistic, but it still has an important role in graphics. The next sec‐
tion looks at SVG text for labels in a figure or diagram.

CSS Versus SVG
Filling and Stroking Non-SVG Text

The proposed CSS Fill and Stroke module would extend the SVG fill and
stroke properties to any CSS-styled text.

Currently, solid-color strokes are supported in many browsers with the non-
standard -webkit-text-stroke-color property. You can use -webkit-
text-fill-color to change the fill color only in browsers that support the
stroke. Gradient or image fills can also be faked with -webkit-background-
clip: text in combination with a transparent -webkit-text-fill-color,
but this risks creating invisible text if your background image does not load.

Responsive Text Scaling
To demonstrate how SVG text can be used to label a figure, we’re
going to add labels to a photograph. Unlike labels that are added
directly to a photo with Photoshop or other editors, the SVG labels
will remain accessible, easy to edit, and crisp at any scale. But in case
that’s not enough, we’re going to expand the show off one of SVG
text’s superpowers, using CSS to make the labels responsive.

A photograph in an SVG? But of course!
We’ll talk more about the <image> element in
Chapter 10. For now, just trust that it is similar
to the HTML element, and allows you to
embed another image file in your SVG
document.

The photograph we’re using is of a Lynskey 2017 Vialé bicycle; we’ll
label it to highlight product features. Example 7-3 gives the code for
importing the photograph into an SVG, and adding the <text>
labels on top. The original photograph is 1,000×586 pixels, so those
are the dimensions we’ve used for the SVG (the image is then set to

Responsive Text Scaling | 221

take up 100% of the SVG dimensions). Figure 7-3 shows the labeled
result.

Figure 7-3. The labeled photograph

Example 7-3. Using SVG text to label a photograph

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="1000px" height="586px" id="lynskey">
 <title>Lynskey 2017 Vialé Technical Details</title>
 <style>
 svg text {
 font: 20px sans-serif;
 fill: darkBlue;
 }
 </style>
 <image width="100%" height="100%" xlink:href="viale.jpg" />
 <text x="360" y="520">DTSwiss TK540/X.9 Wheelset</text>
 <text x="80" y="120">Selle Italia X1 Flow Saddle</text>
 <text x="420" y="200">Titanium frame</text>
 <text x="80" y="570">SRAM Apex rear dérailleur</text>
</svg>

Figure 7-3 shows the result when the SVG file from Example 7-3 is
viewed directly. To add it to a web page, you would need to embed it
either by copying the code inline, or by using an HTML <object>.
(Or <embed>. Or <iframe>. They are functionally much the same as
<object>.)

222 | Chapter 7: The Art of the Word

Using an HTML isn’t an option. As we’ve already mentioned
earlier in this chapter, the text labels wouldn’t be accessible in an
image. But in this case, there’s an even greater reason: the photo‐
graph won’t be shown at all if the SVG is displayed as an ,
because it’s an external asset file, and external files aren’t loaded
when SVG is used as an image.

If we’re going to embed the graphic in a web page, we probably want
to be able to control its size, so it can scale down on mobile devices.
That means adding a viewBox attribute (which we’ll talk more about
in Chapter 8). In the simplest version of a viewBox, the width and
height in pixels are used as the third and fourth values in the
viewBox attribute:

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 viewBox="0 0 1000 586" id="lynskey">

The viewBox creates a responsive SVG that scales to fit the available
space. Now the SVG and the photograph inside it will scale to fit
within whatever CSS dimensions we set on the HTML <object> (or
on the <svg> itself, if we copy the markup directly into the HTML).

Unfortunately, however, the text will also scale down. The 20px font
size that is clear and easy to read full-screen can become miniscule if
the SVG is displayed on a mobile screen, or as a preview in a cata‐
logue page.

For this reason, you may want to adjust the used font-size of SVG
text at certain breakpoints to make it more readable. When the
available space is smaller, the declared font-size (before scaling
down) should be larger. Assuming the SVG will be used as an
<object>, the following media queries can be added to the code:

@media (max-width: 600px), (max-height: 342px) {
 svg text { font-size: 28px; }
}
@media (max-width: 400px), (max-height: 235px) {
 svg text { font-size: 36px; }
}

Responsive Text Scaling | 223

As we warned in Chapter 3, the appropriate
media queries will be different when the SVG is
a standalone document versus when it is inline
in an HTML document. With an <object>, the
media queries are directly related to the SVG
dimensions. In inline SVG, you would need to
consider the overall layout.

To make the font-size change a little smoother when the size of the
SVG embedded object changes, you can add in a CSS transition
effect:

svg text { transition: font-size 0.5s; }

Figure 7-4 shows scaled-down versions of the labeled diagram. On
the left is the original scaled-down text, and on the right is the result
of adding in the media queries; in this case, the second query is in
effect, so the text is at 36px font size, relative to the SVG scale. It’s
not perfect, because the text now overlaps the dark lines in the pho‐
tograph, but it is probably still easier to read for many people.

Figure 7-4. The labeled photograph, scaled down, with and without
font-size media queries

The displayed font size will never be 36px, of course: the media
query only kicks in when the entire SVG is drawn at 40% scale or
smaller, so the net font size will be 14px or less.

224 | Chapter 7: The Art of the Word

More Online
Being responsive to size changes is only one of SVG text’s super-
powers, relative to standard image formats. We can also make the
text interactive by changing styles or text visibility as the user inter-
acts with the web page.

Read more in “Interactive Text”, which shows how we can make the
labels from Example 7-3 appear and disappear as the user hovers
over the figure:

https://oreillymedia.github.io/Using_SVG/extras/ch07-interactive-
labels.html

While interaction and media queries can add a lot of functionality to
this diagram, the text labels aren’t particularly artistic. For a simple
labeled figure, that’s fine, but not in other cases. Posters, album cov‐
ers, comic books, and many other graphics need more precise con‐
trol over lettering. The rest of this chapter looks at the more
graphical side of text layout in SVG.

Anchors and Alignment
To demonstrate advanced text layout in a practical setting, the next
few sections use text in comic book–style speech bubbles.

Text is, of course, a key aspect of most comic books, and the layout
and styles of the text are often used to convey the tone of voice, so
we want to get them just right. Many (most) online comic books use
bitmap image formats to save the text as part of the drawing, but
that means inaccessible text that can’t be selected or found in a
search. SVG has the ability to provide the necessary layout control
with accessible text, but we’ll need a few more attributes and style
properties to do so.

For starters, comic books will often need multiple lines of text to be
aligned into a single speech bubble. As we’ve mentioned a few times,
SVG (version 1.1) doesn’t support automatically wrapping text, but
you can of course position multiple text lines one after another.

Anchors and Alignment | 225

https://oreillymedia.github.io/Using_SVG/extras/ch07-interactive-labels.html
https://oreillymedia.github.io/Using_SVG/extras/ch07-interactive-labels.html

A simple approach is shown in Example 7-4. It uses three separate
<text> elements to convey a quote from Herman Melville’s Moby
Dick, with the result displayed in Figure 7-5.

Figure 7-5. SVG text in a comic book bubble

Example 7-4. Positioning graphical SVG text

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 viewBox="0 0 216 175">
 <title>Moby Dick—Comic Book text</title>
 <style>
@font-face {
 font-family: 'SequentialistBB';
 src: url('fonts/SequentialistBB.woff2') format('woff2'),
 url('fonts/SequentialistBB.woff') format('woff');
 font-style: normal;
 font-weight: 400;
}
path {
 fill: #fff;
 stroke: #000;
 stroke-width: 2;
}
text {

226 | Chapter 7: The Art of the Word

 font-family: SequentialistBB, cursive;
}
.gasp-lines {
 stroke: #000;
 stroke-width: 1px;
}
 </style>
 <path d="...long path data string omitted..." />
 <text font-size="20" y="45" x="30">FROM HELL’s HEART</text>
 <text font-size="18" y="65" x="80">I STAB</text>
 <text font-size="14" y="80" x="80">AT THEE…</text>
 <g class="gasp-lines" aria-label="(gasp)">
 <line x1="137" y1="72" x2="140" y2="74" />
 <line x1="144" y1="74" x2="147" y2="72" />
 <line x1="146" y1="76" x2="150" y2="76" />
 <line x1="146" y1="78" x2="150" y2="80" />
 <line x1="137" y1="80" x2="140" y2="78" />
 <line x1="135" y1="76" x2="140" y2="76" />
 </g>
</svg>

The graphic uses a “fainting” text effect, with each line smaller than
the last, as set by the font-size presentation attributes. However, each
<text> element is still a simple typewriter-style label of matching
characters in a single line.

In the next section, “Switching Styles with
<tspan>” on page 232, we’ll show how you can
modify font styles within a single line of text,
without ruining the layout.

Example 7-4 uses a custom font, included with a CSS @font-face
rule. If the web font is downloaded and used, Figure 7-5 is the result.
However, if the web font isn’t used—because of network issues,
because the browser doesn’t support WOFF fonts, or because the
user has turned off font downloads—the font-family rule instructs
the browser to use its default cursive font.

Figure 7-6 shows what that will look like in the most common
cursive fonts in Windows (Comic Sans, on the left) and in Mac
(Apple Chancery, on the right).

Anchors and Alignment | 227

Figure 7-6. SVG text in a comic book bubble, displayed in default
handwriting fonts

Uh oh. Beyond the stylistic differences caused by the change in type‐
face, the fallback renderings in Figure 7-6 have some serious layout
issues: text is getting cut off, and is overlapping graphical details. We
can help fix these issues by improving our font stack, and by chang‐
ing how we lay out the text.

First, the layout fixes.

So far, we’ve been laying out text lines by defining the position of the
first character. This is the default, but it’s not the only option. The
x,y point we use to layout SVG text is called an anchor point. The
text-anchor style property or presentation attribute lets us change
whether that point marks the start (default), middle, or end of the
line.

Why not left, center, and right instead of
start, middle, and end? Because SVG text was
also designed for vertical and right-to-left text
layouts: start and end aren’t always left and right.

For a speech bubble effect, you usually want text centered in the
middle of the bubble. We can do this by adding text-anchor:
middle to the text elements (as a CSS rule or presentation attribute),
and adjusting the x attribute accordingly.

For the last line in Example 7-4, however, there’s an extra complica‐
tion: the “breath mark” (signifying a last gasp or sigh) drawn with
SVG lines, which should be aligned right after the text. Moving the

228 | Chapter 7: The Art of the Word

lines to fit the text would require JavaScript; it’s easier to right-align
the text to the lines with text-anchor: end, so that it never
overlaps.

The following changed markup shows those alterations, with the
text-anchor for each line set with presentation attributes:

<text font-size="20" y="45" x="103" text-anchor="middle">
 FROM HELL’s HEART</text>
<text font-size="18" y="65" x="103" text-anchor="middle">
 I STAB</text>
<text font-size="14" y="80" x="127" text-anchor="end">
 AT THEE…</text>

The x attributes have been adjusted so that there is barely any move‐
ment of the text when the web font is used; with our chosen font, it
will look almost exactly like Figure 7-5.

Rather than figure out all the changed positions
with trial and error, the browser can do the cal‐
culations for you. We outline the most impor‐
tant text-related DOM methods in “Measuring
the Message” on page 250.

With this new markup, the fallback renderings are improved, as
shown in Figure 7-7. The text no longer overlaps the breath mark
icon, and it mostly fits in the SVG—although still not completely in
the speech bubble!

Figure 7-7. SVG text in a comic book bubble, after text anchors are
adjusted, displayed in default handwriting fonts

Anchors and Alignment | 229

We’re going to need some better fallback fonts. The font from the
original design, Sequentialist BB, is a relatively condensed (narrow)
font, at least as far as capital letters go. It took a bit of experimenting
to find similarly condensed fonts among those that come preinstal‐
led on common operating systems.

There are a number of websites that list operat‐
ing system fonts and fallbacks for CSS; unfortu‐
nately, many are not kept up to date anymore.
The two that were most useful for this example
were fontfamily.io, which tells you which fonts
would be most likely used for a given font-
family declaration, and A Padded Cell’s “Com‐
plete Guide to Pre-Installed Fonts in Linux,
Mac, and Windows”, which provides a compari‐
son table of available fonts, with screenshots of
their appearance.

The final CSS for the font fallbacks is as follows:

text {
 font-family: SequentialistBB,
 Papyrus-condensed, Impact,
 sans-serif-condensed, sans-serif;
 font-stretch: condensed;
}

If the Sequentialist BB web font is available it will be used. Other‐
wise, the font-family stack is searched in order:

• Papyrus if it is available in condensed version (it is on most Mac
and iPhones);

• Impact (available on all Windows systems, desktop Mac, and in
a common font extension for Linux systems);

• sans-serif-condensed, which is a special keyword available in
Android that usually matches to Roboto Condensed;

• Otherwise, the default sans-serif font (which is likely to be less
extravagant than a cursive font). The font-stretch property
ensures that a condensed version of that font is used if available.

The net result, on a standard Windows or Mac desktop, is shown in
Figure 7-8.

230 | Chapter 7: The Art of the Word

http://fontfamily.io/
http://www.apaddedcell.com/sites/www.apaddedcell.com/files/fonts-article/final/index.html
http://www.apaddedcell.com/sites/www.apaddedcell.com/files/fonts-article/final/index.html
http://www.apaddedcell.com/sites/www.apaddedcell.com/files/fonts-article/final/index.html

2 Mobile screenshots generated using the Cross Browser Testing online service.

Figure 7-8. SVG text in a comic book bubble, after text anchors are
adjusted and fallback fonts are specified

In other operating systems, there is more variation, but it is usually
readable, as shown in the mobile browser screenshots in Figure 7-9.2

Figure 7-9. SVG comic book text, with fallback fonts in mobile brows‐
ers

There are two more tools you can use to get SVG text to fit:

• The font-size-adjust style property, which adjusts fallback
font sizes to match the ex height instead of the em height;
unfortunately, it’s currently only supported in Firefox.

Anchors and Alignment | 231

https://crossbrowsertesting.com/

• The textLength SVG attribute, which is best for minor adjust‐
ments or for intentionally distorted text; we’ll discuss how it
works later in the chapter.

Getting good fallback fonts for a graphic isn’t easy. It’s easy to under‐
stand why many designers convert text to paths in their SVG editor,
while they still have full control of the fonts. However, for a text-
heavy graphic like a comic book, poster, or diagram, having fully
accessible, selectable text will be appreciated by many end users.

Switching Styles with <tspan>
Each text element in Example 7-4 uses a different font size. They
could have easily also used different font styles or fill colors, just by
setting different styles on each element.

In order to change styles—with CSS or with presentation attributes
—you need a new element. That was easy enough when we were
changing an entire line at a time. But what happens when you only
want to style part of a line? For example, to emphasize a word with
italic text, like that?

After all the examples of fallback fonts, you should be wise enough
not to try to position separate <text> elements side-by-side, pre‐
tending to be one continuous line of text. You need a way to switch
up the styles without resetting the layout.

The key to this is SVG <tspan> element: much like the HTML
 element, <tspan> wraps around words, characters, or short
phrases to provide a different appearence for part of a <text> ele‐
ment. Also like , a <tspan> makes no difference by itself:
some sort of style or attribute must be applied to it to make a
change.

A <tspan> cannot be used on its own: it must be
contained inside a <text> element.

Example 7-5 provides the core markup for another comic book bub‐
ble, this time containing the “Fe Fi Fo Fum” chant of the giant in
Jack and the Beanstalk. Some words are made bold or italic via

232 | Chapter 7: The Art of the Word

<tspan>, including nested <tspan> elements. Nonetheless, they are
all laid out as a single line of text. Figure 7-10 shows the rendering.

Example 7-5. Using <tspan> to modify text styles

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 viewBox="0 0 216 175">
 <style>
 /* omitted */
 </style>
 <path d="M45,5 l20,20 c60-5 120,-5 125,40
 s-70,28 -80,30 -100,0 -100-30 10,-40 35-40Z" />
 <text font-size="28" y="70" x="100" text-anchor="middle">
 Fe <tspan font-style="italic">Fi</tspan>
 Fo <tspan font-weight="bold"
 >Fum<tspan font-style="italic">!</tspan></tspan>
 </text>
</svg>

Figure 7-10. Styled SVG text in a comic book bubble

The styles have been excluded from Example 7-5 because they are
mostly the same as Example 7-4 (after adding in all the fallback
fonts, of course!). To support the different type styles in
Example 7-5, an extra @font-face declaration was added to the
<style> block, providing the italic version of the font.

An astute observer will note that Example 7-5 actually uses four dif‐
ferent type-faces: regular, italic, bold, and bold italic. The bold ver‐
sions are synthesized by the browser, essentially by drawing a black

Switching Styles with <tspan> | 233

stroke around the letters. Synthesized bold type is generally consid‐
ered a typographic atrocity by designers, but for this particular font
family it doesn’t look that bad.

Why not use stroke: black instead of font-
weight: bold, if the end result is the same?
Because it won’t be the same for the fallback
fonts: for those, we want the browser to use
proper bold typefaces.

We applied the actual bold and italic formatting using presentation
attributes. There aren’t any semantic (inherently meaningful) text
formatting elements in SVG, like and in HTML. A
<tspan> must be used for all formatting changes.

There is actually one element that provides for
meaningful markup within an SVG <text>, and
can be styled accordingly: the <a> element for
creating hyperlinks, which we’ll discuss in Chap‐
ter 18.

Of course, the style changes on the <tspan> elements could have
been assigned with CSS rules, instead of attributes.

Adjusting the Typewriter
So far, we’ve been positioning SVG <text> elements as complete
blocks, one line at a time. Individual characters follow from wher‐
ever the baseline is set with x and y attributes. Although
Example 7-4 created the appearance of multiline text, it was really
three independent <text> elements, carefully aligned one after
another.

However, by adding positioning attributes to a <tspan>, it is possible
to break a single text element into multiple “chunks” for layout pur‐
poses. It’s also possible to typeset individual characters to their own
positions, which is neccessary for some text special effects that are
impossible or very difficult to achieve in standard HTML text.

For <tspan>, the attributes most commonly applied are dx and dy,
which provide values for a relative shift in position (horizontal and

234 | Chapter 7: The Art of the Word

vertical, respectively) for the associated text, away from the normal,
default position.

In contrast, x and y attributes represent absolute positions, measured
from the origin of the coordinate system.

You can move the text baseline up and down by wrapping the rele‐
vant characters in <tspan> elements with dy values to apply a verti‐
cal offset without changing the horizontal flow:

<text font-size="28" y="55" x="100" text-anchor="middle">
 Fe <tspan dy="10" font-style="italic">Fi</tspan>
 <tspan dy="10">Fo</tspan>
 <tspan dy="10" font-weight="bold"
 >Fum<tspan font-style="italic">!</tspan></tspan>
</text>

The basic y value for the <text> element has been shifted up (rela‐
tive to Example 7-5), and then each dy value shifts the vertical posi‐
tion of the text down 10 units, as shown in Figure 7-11. The
horizontal position, including the text-anchor centering, is not
affected.

Figure 7-11. Styled and vertically staggered SVG text in a comic book
bubble

The dy values are cumulative, even though the <tspan> elements are
not nested: the shift in the “typewriter” position persists outside the
end of the element with the attribute.

Adjusting the Typewriter | 235

In contrast, the baseline-shift style property
is designed for temporary shifts in position that
revert to the original baseline after the affected
element is closed. Unfortunately, baseline-

shift browser support is still poor.

You can use any combination of default positioning, x or y absolute
positioning, and dx or dy relative positioning. A common pattern is
to use an absolute x value to reset the horizontal position, and then a
dy value to shift the text down a line, in effect creating multiline text.

In the days of electric typewriters, hard line
breaks were always encoded this way: a “carriage
return” (CR) character to reset the horizontal
position, followed by a “line feed” (LF) character
to shift the print head down. This legacy still
haunts us in the discrepancy between text
encodings on Windows (two-character, CRLF
line breaks by default) versus Linux/Mac (one-
character, LF line breaks).

Using this approach, we can combine the three separate <text> ele‐
ments from Example 7-4 into a single <text> laid out with <tspan>
elements:

<text font-size="20" y="45" x="103" text-anchor="middle">
 FROM HELL’s HEART
 <tspan font-size="18" dy="1.1em" x="103">
 I STAB</tspan>
 <tspan font-size="14" dy="1.1em" x="127" text-anchor="end">
 AT THEE…</tspan>
</text>

Each <tspan> in this example has its own alignment anchor, created
by the absolute x value, as does the initial line that is positioned with
attributes on the <text>. The type of text-anchor (middle versus
end) is inherited from the parent <text> element, except where it is
explicitly changed on the span.

236 | Chapter 7: The Art of the Word

Future Focus
Automatically Positioned Multiline SVG Text

As mentioned briefly in the chapter introduction, SVG 2 adds proper multiline
text support, in three forms:

• Preformatted text, using white-space: pre to preserve line breaks,
spaces, and tabs from the markup. Each hardcoded line break causes the
text position to be reset to the last x position, with the y position
advanced by the value of the line-height property. (Or the reverse, for
vertical text modes.)

• Simple auto-wrapping text, using the inline-size property to define
the maximum length of each line of text. If the text extends beyond this
length, the browser should automatically insert line breaks, which have
the same effect on layout as the preformatted breaks.

• Text in a shape, using the shape-inside property to define the shape
that the text should fit inside of (as a CSS Shapes function or a url()
reference to an SVG shape element). The shape-inside property is also
proposed for use with CSS text layout, in the CSS Shapes level 2 module.
Text inside the shape would be laid out like text in CSS layout boxes, with
the text-align property used for justification and alignment.

At the time of writing (mid-2017), Firefox has implemented the first option, but
no browser has implemented automatically-wrapping SVG text.

Full-Control Characters
All this is very well for adjusting the layout of chunks of text. But
what if you want to play with the layout of individual characters, like
in Figure 7-12?

Full-Control Characters | 237

Figure 7-12. SVG text with staggered letters

Figure 7-12 is a double-shot pop culture refer‐
ence: The “talking like Shatner…” text and its
wavery layout are directly borrowed from a
frame of the Marvel comic Deadpool. These are
real-world text layout requirements!

In order to “stagger” the characters in Figure 7-12 using <tspan>
elements, we’d need to wrap each individual character in its own
<tspan> element, and provide it with a new y or dy value.

Obviously, this can get tiresome, bloating our markup and making it
difficult to read and edit. Thankfully, SVG has a shortcut method to
sequentially affect all of the characters in a <text> or <tspan> ele‐
ment, without adding more markup. The text markup for this is
provided in Example 7-6; styles would be the same as the last few
examples.

Example 7-6. Using multiple values in text positioning attributes

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 viewBox="0 0 550 200">
 <!-- styles and speech-bubble path omitted -->
 <text x="210" y="85" dy="0 0 -5 5 5 0 0 -5 5 0 0 0 -3 5 0 3
 -3 -3 3 3 -2">
 …TALKING… LIKE
 <tspan x="250" y="120" class="shatner">SHATNER…</tspan>
 </text>
</svg>

The first value for the dy attribute operates on the first glyph—the
ellipsis—the second on the T, the third on the A, and so on. The

238 | Chapter 7: The Art of the Word

count includes spaces used in the final layout, but extra whitespace
characters are collapsed before the dy values are assigned.

The <tspan> resets the absolute x and y positions for the second line
of text, but still inherits the dy adjustments specified on the parent
<text> element, with the dy adjustment for the S applied after the y
value is changed.

A CSS class applies the remaining style changes; the rest of the styles
would be the same as the previous comic-book examples:

text {
 font-size: 36px;
}
.shatner {
 font-style: italic;
 font-weight: bolder;
 font-size: 40px;
}

You can use per-character list values for any of the positioning
attributes: x, y, dx, or dy. However, lists are generally easier to use
with dx and dy, because you can always insert a 0 for any character
you don’t want to change. Any of the attributes can be set on either
the <text> element or a <tspan>.

If both a <tspan> element and its parent specify
x, y, dx, or dy values for a given character, the
child element wins out.

The counting of “characters” uses the same rules as for JavaScript
strings, based on UTF-16 blocks. Emoji and other multibyte charac‐
ters will be assigned two (or sometimes more) positioning values
from the attribute, but will only use the first value. The same goes
for ligatures (multiple characters drawn with a single combined
glyph-shape from the font): they get positioned based on the first
character in the block.

While it’s not quite as useful as dy (in horizontal text layout), dx can
be used to move characters left and right, allowing you to precisely
space glyphs exactly where you want and need them. Unlike re-
setting the x value, dx doesn’t break the text into separate chunks for
text-anchor alignment.

Full-Control Characters | 239

3 https://bugzilla.mozilla.org/show_bug.cgi?id=371787

You should also be able to control character
spacing with the CSS letter-spacing and
word-spacing properties. Unfortunately, Firefox
has a long-standing bug3 such that these proper‐
ties aren’t supported in SVG.

In vertical text, all these rules are swapped: an absolute y value
defines the anchor point for (vertically) aligning text with text-
anchor, and dy values can be used to control spacing, while x and dx
shift characters in the cross-axis.

More Online
Vertical text? Of course!

Well, sort of…SVG 1 defined a complete set of properties to prop-
erly format vertical or sideways text, but for a long time browser
support has been limited. However, CSS3 has adopted and updated
the vertical text properties (in the Writing Modes module), and
browsers seem to finally all be on board.

There is one more attribute that can be added to <text> or <tspan>
elements to change the position of individual characters: rotate. As
you might guess, rotate rotates the character from its normal hori-
zontal position. However, it’s only recommended when you are
positioning characters one at a time: it doesn’t create neat typo-
graphical alignment automatically.

Read more about vertical and rotated text in SVG, in “Beyond Hori-
zontal: Rotated and Vertical Text”:

https://oreillymedia.github.io/Using_SVG/extras/ch07-rotate-
vertical.html

Twists and Turns: The <textPath> Element
As the past few examples have shown, SVG text is about more than
just adding words to graphics—it’s about using text layout itself as a
graphical effect. Informative text on a diagram is often useful, but

240 | Chapter 7: The Art of the Word

https://bugzilla.mozilla.org/show_bug.cgi?id=371787
https://oreillymedia.github.io/Using_SVG/extras/ch07-rotate-vertical.html
https://oreillymedia.github.io/Using_SVG/extras/ch07-rotate-vertical.html

sometimes text going in a straight line is, well, dull. It’s fun to use
text as art: to bend and twist and flow text in circles or spirals, per‐
haps even track it along the edge of a given image.

Smoothly flowing nonlinear text layouts like this can be accom‐
plished with the <textPath> element. With <textPath>, you don’t
control the text layout one character at a time. Instead, you define
the overall shape of the line of text, and the browser positions the
letters along it.

Not only will the letters be positioned along the path, but each let‐
ter’s base is always tangent to the path itself. This makes it possible
to wrap text around a circle, have it spiral inward or outward, jump
from one region to another, and otherwise behave in a manner more
frivolous and fun than any text has a right to.

Browsers are currently very buggy and inconsis‐
tent when using <textPath> for right-to-left
languages, or for languages with letters that
change shape according to which letters come
before and after.

Placing text on a path currently requires four components as
follows:

• A <path> element, which must have a valid id attribute. If you
don’t want to draw the path itself, be sure to include it in a
<defs> section of the SVG.

• A <text> element.
• A <textPath> element, which must appear inside the <text>

element. The <textPath> must have an xlink:href attribute
that links to the id of the <path> you just created.

• Some text inside the <textPath> element.

In code, your basic text-path boilerplate looks like this:

<defs>
 <path id="path-for-text" d="M50,100 Q100,0 250,100" />
</defs>
<text><textPath xlink:href="#path-for-text"
 >Text for path</textPath></text>

Twists and Turns: The <textPath> Element | 241

Add that to boilerplate SVG markup (like Example 1-1) and you
have Figure 7-13. Change the path’s d directions and the text content
as required.

Figure 7-13. Curved text positioned using <textPath>

You can also have <textPath> inside of <tspan>
and <tspan> inside of <textPath>. However,
both <textPath> and <tspan> must always be
inside a <text>.

The text must fit on the path, when written in the selected font and
font size. If the text continues past the path end point, excess charac‐
ters will not being shown. To accommodate differences from fall‐
back fonts, it is often a good idea to make the path longer than
required.

Figure 7-14. Curved text positioned using multiple <textPath>
elements

242 | Chapter 7: The Art of the Word

We’re going to create a slightly more creative example for exploring
the details of <textPath>. Example 7-7 uses text paths to set the first
verse of Lewis Carroll’s The Walrus and the Carpenter as a series of
waves. Each line is a separate <textPath> element, all contained
within a single <text>. Figure 7-14 shows the result of the code as
written.

Example 7-7. Arranging text using <textPath> elements

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 viewBox="0 0 320 180" >
 <title>The Walrus and the Carpenter—Lewis Carroll</title>
 <defs>
 <path id="wave1" d="M10,35 q50,25 100,0 t100,0 t100,0"/>
 <path id="wave2" d="M10,60 q50,25 100,0 t100,0 t100,0"/>
 <path id="wave3" d="M10,85 q50,25 100,0 t100,0 t100,0"/>
 <path id="wave4" d="M10,110 q50,25 100,0 t100,0 t100,0"/>
 <path id="wave5" d="M10,135 q50,25 100,0 t100,0 t100,0"/>
 <path id="wave6" d="M10,160 q50,25 100,0 t100,0 t100,0"/>
 </defs>
 <rect width="100%" height="100%" fill="azure" />
 <text font-size="18px"
 font-family="Georgia, serif"
 fill="midnightBlue">
 <textPath xlink:href="#wave1"
 >The sun was shining on the sea,</textPath>
 <textPath xlink:href="#wave2"
 >Shining with all his might:</textPath>
 <textPath xlink:href="#wave3"
 >He did his very best to make</textPath>
 <textPath xlink:href="#wave4"
 >The billows smooth and bright—</textPath>
 <textPath xlink:href="#wave5"
 >And this was odd, because it was</textPath>
 <textPath xlink:href="#wave6"
 >The middle of the night.</textPath>
 </text>
</svg>

Figure 7-15 shows how it would look if you also drew a stroked ver‐
sion of each path.

Twists and Turns: The <textPath> Element | 243

Figure 7-15. The paths used to position the curved text

Normally, if you were drawing six identical wavy lines at different
points in the page (like in Figure 7-15), you would only define the
<path> once, and then would use <use> elements to copy it, reposi‐
tioning each copy with a y attribute. Unfortunately, there are no
attributes available on <textPath> to reposition the path when it is
used, so reusing a single <path> element for all six <textPath> ele‐
ments is not so simple.

You can use a transform attribute (which we’ll
discuss in Chapter 11) to reposition separate
chunks of text, after aligning them all to the
same path, but you cannot transform the
<textPath> itself. You would need to separate
out each path into a separate <text> element,
and transform each <text> into place.

In previous examples, we created multiline text by using dy on a
<tspan> to shift the text to a new line. Why not do that here?

We can, but the result will look rather different.

Applying x and y adjustments on text inside a <textPath> no longer
moves letters in simple horizontal and vertical offsets. Instead, dx
moves letters along the path, and dy moves them perpendicular to
the path. Similarly, an absolute x resets the text anchor position

244 | Chapter 7: The Art of the Word

relative to the start of the path. In vertical writing mode, the x and y
relationships are reversed: y and dy values are measured along the
path, and dx offsets are perpendicular.

The SVG specifications do not support absolute
y values for characters inside a horizontal
writing-mode <textPath>, nor absolute x values
for vertical writing mode. Some browsers sup‐
port it, and some don’t.

It’s easier to explain with an example. Example 7-8 gives the code for
arranging the verse from The Walrus and the Carpenter as multiline
<tspan> elements, with x and dy creating line breaks. All the lines
are contained in a single <textPath> that references a single version
of the wavy path. For clarity, the <path> itself is drawn with a visible
stroke. Figure 7-16 shows the end result.

Figure 7-16. Curved text positioned using multiple lines offset from a
single <textPath>

Example 7-8. Positioning multiple lines of text above and below the
same path

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 viewBox="0 0 320 180" >
 <title>The Walrus and the Carpenter—Lewis Carroll</title>

Twists and Turns: The <textPath> Element | 245

 <rect width="100%" height="100%" fill="azure" />
 <path id="wave" d="M10,90 q50,25 100,0 t100,0 t100,0"
 fill="none" stroke="darkSlateGray" stroke-opacity="0.2"/>
 <text font-size="18px"
 font-family="Georgia, serif"
 fill="midnightBlue">
 <textPath xlink:href="#wave">
 <tspan x="0" dy="-3.2em"
 >The sun was shining on the sea,</tspan>
 <tspan x="0" dy="1.4em"
 >Shining with all his might:</tspan>
 <tspan x="0" dy="1.4em"
 >He did his very best to make</tspan>
 <tspan x="0" dy="1.4em"
 >The billows smooth and bright—</tspan>
 <tspan x="0" dy="1.4em"
 >And this was odd, because it was</tspan>
 <tspan x="0" dy="1.4em"
 >The middle of the night.</tspan>
 </textPath>
 </text>
</svg>

What’s happening? As we mentioned, dy moves letters perpendicular
to the path. That’s measured relative to the slope of the path at the
particular point. On a curved path like this, the perpendicular lines
radiate outward or inward, stretching out or condensing the letters
in fan shapes, as they get farther from the original path.

To further complicate matters, you can’t add any of the normal text-
positioning attributes (x, y, dx, or dy) to the <textPath> itself: they
need to be specified on the parent <text> element or a parent or
child <tspan>. For better browser support, use a child <tspan>, as
we did in Example 7-8.

Sliding Text Along a Path with startOffset
Although <textPath> does not accept the same positioning
attributes as <text> and <tspan>, it has a positioning attribute of its
own: startOffset. This defines the point on the path that should be
used as the anchor or origin for the text.

246 | Chapter 7: The Art of the Word

Watch out for the capitalization of startOffset:
that’s a capital O.
As with other mixed-case attributes in SVG, the
HTML parser will correct it for you, but an
incorrectly capitalized attribute won’t have any
effect in XML, or if created from JavaScript.

startOffset is a simple XML attribute, not a presentation attribute.
It cannot be set with CSS.

In its simplest application, startOffset can be used to indent text
relative to the start of the path, without your having to redefine the
path shape:

<textPath xlink:href="#wave6" startOffset="1em"
 >The middle of the night.</textPath>

Applying startOffset="1em" adjustments like this to every second
<textPath> from Example 7-7 (the version of The Walrus and the
Carpenter with six separate <textPath> elements) results in
Figure 7-17.

Figure 7-17. <textPath> lines adjusted with startOffset

One advantage of startOffset, compared to dx, is that it accepts
percentage values that are calculated as a percent of the path length.

Sliding Text Along a Path with startOffset | 247

Centering text on a path looks like this:

<textPath startOffset="50%" text-anchor="middle"
 xlink:href="#p" >...</textPath>

To end-align text on a path, use startOffset="100%" with text-
anchor: end.

Browsers are currently very buggy about the
interaction of startOffset with absolute x posi‐
tions on characters inside a <textPath>. (It
wasn’t very well defined in the SVG specifica‐
tions.) Only use one or the other.

Text paths get a little more complicated if you want to exactly fit text
around a closed shape. For one thing, you probably no longer want
to overestimate the length of the path in order to be sure the text
will fit. Instead, you can use the textLength attribute—with its
value set to the length of the path—to force the browser to exactly fit
the text to the shape, regardless of the font used.

textLength is a regular XML attribute, not a
style property that can be set in CSS. Its value is
always a number, representing a distance in SVG
user units (px units).

A matching lengthAdjust attribute tells the browser what parts of
the text can be tweaked to make the text fit: the default spacing
value means that letter-spacing is adjusted. The alternate
spacingAndGlyphs value means that the letters themselves are
stretched or compressed.

Browser support for textLength is currently
very inconsistent. It really only works reliably in
all browsers if used on a plain <text> element
with no children. Test carefully.

You’ll still want to adjust the font size so that it fits nicely in your
chosen font, and only use textLength for extra enhancement and
fallback.

248 | Chapter 7: The Art of the Word

More Online
Getting the correct path for the text layout you want also becomes
more difficult with closed paths, especially if you’re trying to fit the
text to a shape that already exists in your drawing. In-browser meth-
ods aren’t much help, but graphical SVG editors can be, allowing
you to convert shapes to paths and change the path start position.

Read more (and see an example of a circular <textPath>) in “Per-
fecting Paths for <textPath>”:

https://oreillymedia.github.io/Using_SVG/extras/ch07-
textpaths.html

Future Focus
More Flexible Text Paths

In SVG 1.1 (and currently, in browsers), a <textPath> element must reference a
<path> element. In SVG 2, it instead references any shape element, or uses a
path attribute to directly include path data in the <textPath> element.

For text on basic shapes and also on paths with a single closed subpath, the
text would wrap around from the end to the beginning of the path, until it
reaches the startOffset position again.

SVG 2 also adds the side attribute to <textPath>; a value of right (instead of
the default left) reverses the directionality of a path for the purpose of text.
Using side will also allow the application of text on both the outside and
inside of rectangles and circles, without forcing you to convert them into
paths.

Finally, SVG 2 adds a path attribute that would allow you to specify the path
data directly on the <textPath> element, without needing to create a sepa-
rate element at all.

And of course—as we’ve already mentioned elsewhere—SVG 2 allows all
xlink:href attributes to be replaced with a simple href, without namespa-
ces. Most browsers now support simple href, but we use the xlink version
here for compatibility with Safari and older browsers.

Sliding Text Along a Path with startOffset | 249

https://oreillymedia.github.io/Using_SVG/extras/ch07-textpaths.html
https://oreillymedia.github.io/Using_SVG/extras/ch07-textpaths.html

Measuring the Message
When figuring out many aspects of SVG text layout, it helps to
know how much space that text takes up in the graphic. This is
essential when you’re dynamically generating text layouts for data
charts. Conveniently, the SVG specs define a number of DOM
methods that allow the browser to do the calculations for you.

You can use the same methods in your browser’s developer console,
when rearranging anchor points or setting textLength values to
ensure better fallback layouts. For creating fallback layouts, use a
browser that renders the correct layout, with your preferred fonts
installed. Calculate the text positions, then hardcode them to ensure
a consistent layout in other browsers or with fallback fonts.

All these DOM methods are available for any of
the SVG text-containing elements: <text>,
<tspan>, or <textPath>. They are object meth‐
ods, called with . notation, like t.method(),
where t is a text element.

The most essential method is getComputedTextLength(). It returns
the total displacement (horizontally for horizontal text, or vertically
for vertical text) of all the characters in the text element, in user
units. The computed text length is measured in the current font,
font-size, and other typographic style settings. It also includes dx
offsets (dy for vertical text), but not absolute (x or y) repositioning
values.

In other words, it’s directly comparable to the numbers used in
textLength attributes:

var t = document.querySelector("text");
if (t.getComputedTextLength() > maxLength)
 t.setAttribute("textLength", maxLength);

You can also use the computed length to calculate a new absolute
anchor (x or y) point when switching from the default start text-
anchoring to middle or end anchoring:

var endX = startX + t.getComputedTextLength(); //end anchor
var midX = startX + t.getComputedTextLength()/2; //middle

When dynamically setting text, you’ll often want to split too-long
text across multiple <tspan> lines (instead of squishing it with

250 | Chapter 7: The Art of the Word

textLength). The getSubStringLength() method lets you test the
computed length of a substring of the text, in order to decide where
to add a break. It takes two parameters:

• charIndex is the index (using JavaScript character counting) of
the first character in the substring, after collapsing whitespace
from the element’s text content

• numChars is the number of (JavaScript) characters in the
substring

To get even more positioning data, other methods help you figure
out where individual characters are located. This is useful if you
have a <textPath> arrangement that you wish to lock in place, by
converting it to an absolute layout with x, y, and rotate, or if you’re
trying to position drawing elements to match individual characters.
For details, see https://oreillymedia.github.io/Using_SVG/guide/
DOM.html.

Finally, for <textPath> elements, you also often want to know the
length of the path you’re using. A <path> element has a
getTotalLength() method that will answer that question.

The getTotalLength() method has many other
uses. In Chapter 13, we’ll use it to calculate
stroke dashing patterns. In Chapter 19, we’ll use
it to create motion along a path.

Summary: Graphical Text Layout and Fonts
SVG text layout is a hugely complex topic (which this chapter only
lightly touches on). At its most basic, SVG text consists of an
instruction to the browser to “type this text here.” At its most com‐
plex, it allows you to carefully position individual letters in geomet‐
ric patterns, with nearly as much control as you position your SVG
shapes.

Nearly as much control, but not quite. The individual glyph shapes,
their size, and their default spacing are all based on the font. You can
provide web fonts, but cannot guarantee they’ll be used. A well-
designed font stack and careful use of the text-anchoring options—
and lots of testing—is required for fallbacks.

Summary: Graphical Text Layout and Fonts | 251

https://oreillymedia.github.io/Using_SVG/guide/DOM.html
https://oreillymedia.github.io/Using_SVG/guide/DOM.html

Text is one area where SVG used as images are significantly different
from inline SVG or embedded objects. Text in images is isolated
from user interaction and from assistive tools such as screen-
readers. It also cannot access web font files. For this reason, design‐
ers commonly convert text into graphical shapes when creating logo
images.

When an SVG is interactive, then the fun begins: text styles can be
updated with JavaScript and CSS. For scripted SVG, a set of unique
helper functions can help you calculate the dimensions of dynamic
text content, and adjust the layout accordingly.

A key feature of SVG text is that it can be filled and stroked like any
SVG shape. In this chapter, we only used solid-color stroke and fill.
However, as we explore more graphical effects in Part IV, we will see
examples of more decorative text. Before we get there, Part III will
explore SVG structure, layout, and coordinate systems in detail.

More Online
A reference to the elements and attributes introduced in this chap-
ter is available in the “Text Elements” section of our markup guide:

https://oreillymedia.github.io/Using_SVG/guide/markup.html#text

The text-related style properties are included in the “SVG Style Prop-
erties” guide:

https://oreillymedia.github.io/Using_SVG/guide/style.html

252 | Chapter 7: The Art of the Word

https://oreillymedia.github.io/Using_SVG/guide/markup.html#text
https://oreillymedia.github.io/Using_SVG/guide/style.html

PART III

Putting Graphics in Their Place

In Parts I and II, we described the position and geometry of shapes
and text using x and y coordinates. But so far, we have not looked
too closely at how those numbers are converted into positions
within our SVG drawing.

The x and y coordinates used to position SVG shapes and text are
measured relative to an overall coordinate system. By manipulating
the coordinate system, you can draw the same shapes at different
positions and scales, or even stretched or slanted.

The next few chapters examine the SVG coordinate system more
closely, and introduce SVG’s structural markup. These structural ele‐
ments allow you to not only control coordinate systems, but also to
duplicate and embed graphical content. Together, these tools allow
you to create reusable graphics, such as you would want for an icon
set or charting library.

CHAPTER 8

Scaling Up
Defining Coordinate Systems

So far in this book, when talking about the layout of SVG shapes, we
have used the word default a lot. By default, the origin of the coordi‐
nate system is in the top-left corner. By default, user coordinates are
equal to CSS layout px units. By default, SVG coordinate systems
seem restrictive and arbitrary.

But you don’t have to use the default options.

In this chapter, we introduce the ways you can control the coordi‐
nate system. Which means we’ll introduce the scalable side of Scala‐
ble Vector Graphics. By controlling the coordinate system, you
control the size of your graphics.

This chapter focuses on defining the initial coordinate systems for
your graphic. Defining a coordinate system means setting the origin
point, establishing the size of a user unit, and determining the
meaning of 100% width or height. All of these are set with the pow‐
erful viewBox attribute we’ve already mentioned multiple times.
Other attributes control the size and alignment.

The coordinate system concepts discussed in this chapter will be
revisited in the following chapters. The attributes used to define the
initial coordinate system of an <svg> are also used in scaling reused
content (<use> and <image>), creating local coordinate systems
(with nested <svg>), and cropping the graphic during embedding
(with <view>).

255

Another way to modify coordinate systems is by geometrically
transforming them, as we’ll discuss in Chapter 11. Transformations
can also change the origin and the size of a user unit. Transforma‐
tions don’t change the meaning of 100% width and height (at least,
they don’t change it proportional to the size of a user unit). Trans‐
formations can also rotate or skew the x and y axes, which is not
possible when you’re creating coordinate systems with viewBox.

Coordinated Efforts
We’ve talked about the coordinate system in previous examples.
We’ve had to—it’s impossible to draw anything in SVG without
defining where to draw it, and how big to draw it, using coordinates.

The SVG coordinate system is a Cartesian coordinate system. That
means that positions in space are defined relative to an origin point
and axes that are at right angles to each other. The number of axes is
equal to the number of dimensions in space. For the two-
dimensional space used for SVG, the two axes are the x-axis describ‐
ing the horizontal distance from the origin and the y-axis describing
the vertical distance.

Axes (pronounced ax-EEZ) is the plural of axis
(ax-ISS), a reference direction in space. Not to
be confused with axes (pronounced AX-ez),
which is the plural of ax, the sharp implement
used to chop wood.

Conceptually, you start from the origin point, then measure the dis‐
tance along one axis until you’re as close to the desired point as you
can get, then turn at a right angle—so that your measuring stick is
parallel to the other axis—and measure the distance to the point.
Figure 8-1 shows how you could measure out the position where
x = 50 and y = 80. By convention, when talking about 2D points, the
horizontal x distance is given first, then the vertical y distance, so
this point is also known as (50,80).

The complete coordinate system is defined by (a) the position of the
origin point, (b) the direction of the axes, and (c) the scale of units
on each axis.

256 | Chapter 8: Scaling Up

Figure 8-1. Positioning a point in a 2D Cartesian coordinate systems;
black lines are the axes, while the orange-red (tomato) line shows how
the coordinates are measured

Cartesian coordinates are named after René
Descartes, a famous French mathematician and
philosopher. Something of a disreputable rogue,
Descartes’s work on probability theory was
inspired by his gambling. The story goes that he
developed coordinate geometry while sick in
bed, watching ants moving across the walls and
ceiling of his apartment.
Those ignominious beginnings led to a break‐
through with profound influence on the devel‐
opment of mathematics, physics, and eventually,
computer science—and SVG. Cartesian coordi‐
nates merged the then-new disciplines of algebra
and calculus to the centuries-old discipline of
geometry.

The Cartesian coordinate system that most people learn in high
school algebra has an origin—the “zero-point” where both x and y

Coordinated Efforts | 257

coordinates are given the value of 0—at the bottom left, or at the
center if both negative and positive coordinates are used. Genera‐
tions of schoolchildren have learned that the x-axis grows toward
the right, counting up 0, 1, 2, and so on. Moving left gets you into
negative numbers: –1, –2, –3, and so on. The y-axis used in school
math textbooks grows from bottom to top: positive numbers above
the origin and negative numbers below.

However, the history of computer graphics changed that somewhat.
The CRTs used for the original computer monitors had scan guns
that swept from left to right and from top to bottom. Because of this,
it made sense to use an inverted coordinate system.

The x-axis still goes from left to right (the same as algebra class), but
the y-axis starts from the top and increases as it progresses down the
screen or page. The origin is typically placed at the upper-left corner
of the screen. Figure 8-2 compares the familiar x/y coordinate sys‐
tem from algebra class against the SVG coordinate system, both for
the default origin (with only positive coordinates) and a centered
origin (both positive and negative coordinates).

This coordinate system is ingrained in most computer graphics sys‐
tems, with SVG being no exception. The origin is at the top left, x
coordinates increase from left to right, and y coordinates increase
from top to bottom:

• (150,100) is 150 units to the right and 100 units below the (0,0)
origin.

• (–150,–100) will be 150 units to the left and 100 units above the
origin.

With the default coordinate system, (–150,–100) would be offscreen.
You could move it onto the screen by defining the coordinate system
with a different origin, in the center of the graphic or somewhere
else. The point (–150,–100) would still be 150 units to the left and
100 units above the origin, wherever that origin is. You can only
change the directions of the axes using coordinate system transfor‐
mations, which we’ll get to in Chapter 11.

258 | Chapter 8: Scaling Up

Figure 8-2. Two-dimensional coordinate systems, as they are defined
in algebra textbooks (top) versus how they are defined in SVG (bot‐
tom); each coordinate system is 100 units wide and 100 units tall, and
the orange path is drawn from (0,0) to (50,50) in each.

The final aspect of SVG coordinate systems is not part of purely
mathematical Cartesian systems: their width and height. The width
and height of the SVG coordinate system are used to determine the
meaning of percentage lengths, as discussed in Chapter 5. But the
coordinate system’s width and height are not firm boundaries: you
can still use coordinates that are bigger or smaller than that range.

Coordinated Efforts | 259

Framing the View, with viewBox
In theory, the SVG coordinate plane is infinite in extent. Your inter‐
est, however, is usually in the fairly confined region that you can dis‐
play on a screen or print to a page.

This rectangular window into the infinite graphical plane is known
as a viewport. It defines what you actually see of the graphic.

You experience viewports every time you open a web page that is
too big to fit on your screen; the browser knows the position of the
rest of the text, but it won’t show it to you until you scroll. A more
graphical instance of viewports can be found on any digital map.
The mapping website or software has information about the whole
world, but it only shows you a small rectangle at a time.

On maps, elements are positioned by their longitude and latitude. In
SVG, they are positioned by their coordinates. You can tell the
browser to draw shapes at any coordinates you choose, but if the
resulting shape doesn’t overlap the viewport, you won’t see it.

Unlike with HTML web pages, most SVG view‐
ers currently do not allow you to scroll or pan to
content outside the declared width and height.

An SVG graphic with the root element <svg width="400px"

height="200px"> will create a default viewport with the origin of
(0,0) at the upper-left of the box and the point (400, 200) at the
lower-right corner of the viewport.

These points are defined in the internal user coordinates or user
units, which are always equal to px units, regardless of how the
width and height are defined—the fact that the width and height
were specified in px is only a convenience. If the coordinates were
given as <svg width="6in" height="4in">, the user coordinates
would still be equivalent to pixels. With 96 pixels to the inch, the
lower-right corner would be at the point (576, 384).

Both SVGs in Figure 8-3 have the exact same content: overlapping
vertical and horizontal rectangles arranged to create a grid (in
plaid!); circles and text elements mark the coordinates of points

260 | Chapter 8: Scaling Up

along the diagonal. In the top part, the SVG is set to 400px by
200px; at the bottom, the dimensions were changed to 6in and 4in.

Figure 8-3. A plaid SVG grid, in two differently sized SVG viewports

In total, the grid defined in the SVG file is 1,000 units wide and
1,000 units tall. But in both parts of Figure 8-3, most of the content
gets cropped off—including the text that sits above the y = 0 base‐
line. The size of the individual stripes does not change, only how
much of them are visible.

By default, when you declare the width and height of an <svg>, the
browser calculates how many pixels will fit in those dimensions. It

Framing the View, with viewBox | 261

then displays any and all SVG content whose coordinates fit in
between (0,0) and the calculated width and height, scaled at 1px per
user unit.

But oftentimes, this isn’t what you want.

Sometimes, it would be very convenient to have user units scale to a
different size. In Chapter 6, we discussed how it would have been
much easier (in Figure 6-6) if we could use centimeters, instead of
px, to define our curved path to match the lines we already drew
using cm units.

Sometimes, it would be convenient to locate the origin of the coor‐
dinate system at the visual center of a graphic rather than in the top-
left corner.

Most of the time, it would be convenient if your Scalable Vector
Graphics would scale to fit within a particular region on your web
page.

To do all of the above, you use a viewBox attribute. The viewBox
specifies which coordinates should be positioned within the
viewport created by the browser window or the web page layout. By
defining how many user units, in total, should fit, the viewBox
defines the size of the default units. By giving exact coordinate val‐
ues that should fit, the viewBox indirectly sets the position of the
coordinate system origin.

Viewports in SVG are similar to but different
from the viewport used in CSS viewport units.
The SVG viewport used for scaling is created by
the CSS layout box for the <svg> element, not by
the size of the screen (unless the SVG is set to fill
the screen exactly). The CSS vh, vw, vmin, and
vmax units follow the CSS meaning, even when
you’re drawing in SVG.

The number of user units specified by the viewBox is independent of
the width and height of the <svg> element (the viewport). The same
coordinates of the graphic will be shown, regardless of how large the
image is drawn; the graphic scales so that they will fit.

Figure 8-4 takes the plaid grid used in Figure 8-3 and adjusts the
attributes on the <svg> again. This time, the width and height create

262 | Chapter 8: Scaling Up

a 4-inch square, but the viewBox ensures that 1,000 units are scaled
to fit horizontally and vertically. The text ends up tiny, but it all fits.
Well, except for the very first text label, which still ends up on the
negative side of the origin and cropped off.

Figure 8-4. The same plaid SVG grid, scaled to fit the viewport using a
viewBox attribute

The graphical code within the SVG is the same as in Figure 8-3. The
only changes in the code for Figure 8-4 were the attributes on the
<svg> element: changed width and height, and the new attribute
viewBox="0,0 1000,1000".

The value of viewBox is a list of four numbers: min-x, min-y, width,
height. The four numbers can be separated by whitespace or by

Framing the View, with viewBox | 263

commas. The first two values give the minimum coordinate, in each
direction, that should be included in the viewport region. The width
and height values represent the total number of coordinates, in each
direction, that should fit within the viewport.

The width and height values must always be
positive numbers. They represent distances, not
the coordinates at the end of the range.

The minimum coordinates implicitly define where the origin of the
coordinate system—the (0,0) point—will be. The default coordinate
systems are equivalent to using 0,0 for these values. For the SVG
with a 400px width and 200px height, the default coordinate system
would be equivalent to a viewBox with the values "0,0 400,200".

What if you wanted the origin to be in the center of the SVG? That’s
the same as saying that you want half that width to the left of the
origin, half to the right, and half the height above and half below.
The minimum coordinates would therefore be negative values equiv‐
alent to half the width and half the height. In other words, the
viewBox would be "-200,-100 400,200".

In general: if you want the origin to be posi‐
tioned x units from the left side and y units from
the top, the first two values in the viewBox are –
x and –y.

Centered coordinate systems are often useful when you’re creating
geometric diagrams. They can make drawing some shapes easier,
but other shapes can be more difficult. Example 8-1 creates an
HTML web page with two 400×200 inline SVGs. Both have the same
graphical content, but one uses the default coordinate system while
the other has a centered coordinate system. Figure 8-5 shows the
result.

264 | Chapter 8: Scaling Up

Figure 8-5. Two SVGs with the same shapes, using (top) default and
(bottom) centered coordinate systems

Example 8-1. Using viewBox to create a centered coordinate system

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8" />
 <title>Default and centered SVG coordinate systems</title>
 <link rel="stylesheet" href="centered-viewBox.css">
</head>
<body>
 <svg width="400px" height="200px">
 <title>Default coordinates</title>
 <g id="content">
 <rect class="backdrop" width="100%" height="100%" />
 <g class="target">

Framing the View, with viewBox | 265

 <circle r="10" />
 <circle r="30" />
 <circle r="50" />
 <circle r="70" />
 <circle r="90" />
 </g>
 </g>
 </svg>
 <svg width="400px" height="200px"
 viewBox="-200 -100 400 200">
 <title>Centered coordinates</title>
 <use xlink:href="#content" />
 </svg>
</body>
</html>

The linked styles (not printed here) describe the layout of the
page and the coloring of the SVG shapes: dark purple fill for
class backdrop and tomato strokes for class target.

The first <svg> is sized with width and height only, no
viewBox; the default coordinate system will be used.

The backdrop rectangle is sized to 100% width and height. The
x and y attributes aren’t specified, so default to 0; this positions
the top-left corner of the rectangle in the top-left corner of the
SVG, so it completely fills the space.

The set of concentric circles doesn’t have cx or cy attributes;
these also default to 0. For circles, that means that three-
quarters of each circle will be cropped off, because they will be
centered on the top-left corner.

The second SVG is given a viewBox attribute to center the coor‐
dinate system, as described in the text.

The entire content of the first SVG is duplicated into the second
one. There are no positioning attributes on the <use> element,
so all the shapes will retain their original coordinates. Those
coordinates, however, will be positioned in the new coordinate
system.

The width and height of the rectangle has not changed in the second
SVG. However, it no longer fills the SVG, instead getting cropped at

266 | Chapter 8: Scaling Up

the bottom and right edges. The top-left corner of the rectangle is
still positioned at (0,0), but that is now the center of the graphic.

In order to create a rectangle that fills the SVG with a centered coor‐
dinate system, you have to set the rectangle’s x and y attributes to
negative values. The following are two possible ways of doing so:

<rect width="100%" height="100%" x="-200" y="-100"/>
<rect width="100%" height="100%" x="-50%" y="-50%"/>

In the first case, the positions are in user units and directly match
the viewBox offset; in the second case, the value of 50% is calculated
against the width or height from the viewBox, and the result is then
turned into a negative offset.

In contrast, the circles centered on (0,0) are nicely positioned in the
middle of the centered coordinate system, without requiring addi‐
tional attributes.

In current web browsers, when you use <use> to
duplicate a shape that is defined with percen‐
tages, those percentages are calculated based on
the original coordinate system width and height.
In other words, the size of the shape doesn’t
change, only its position. This was not well
defined in the original SVG specs; SVG 2 recom‐
mends using percentages from the new context.
In Example 8-1, the width and height of both
<svg> elements is the same, so this did not make
a difference. In other cases, it’s best to avoid
mixing percentages with <use>.
In Chapter 10, we’ll discuss the <symbol> ele‐
ment, which allows you to duplicate content and
have it scale to fit the new context.

Whether a centered coordinate system simplifies your SVG code, or
complicates it, will really depend on what you’re trying to draw.
Positioning “centered” shapes, such as circles and ellipses, can be
easier with a centered coordinate system, but shapes and elements
that are positioned from the top left, such as rectangles, require
extra arithmetic. In Chapter 11, we will see more examples of how
controlling the coordinate system origin can simplify your code.

Framing the View, with viewBox | 267

Future Focus
Selective Scaling

A frequently requested feature in SVG is to have some of the graphic scale, but
not all. For example, you might want the shapes to get bigger, but not the
thickness of the lines. You may want the images to stretch to fit, but not the
text. Or you may want the scale of a map or chart layout to increase, but not
the size of the individual data marker symbols.

You can achieve some of these effects with nested coordinate systems, which
will be discussed in Chapter 9. However, in many cases the only way to make
the correct adjustments is to rely on JavaScript to control the scale.

SVG 2 adds vector-effect options to reverse scaling of part of a graphic, to
create nonscaling stroke and text or symbols. At the time of writing (early
2017), the only value of the vector-effect property supported in web
browsers is non-scaling-stroke, which we’ll discuss in “Scaling Shapes
Without Scaling Strokes” on page 496 in Chapter 13.

Calibrating the Scales
When you use a viewBox, the units you define do not have to match
the px units used by the web page. If you want 1 unit per inch,
instead of 96, all you have to do is say so:

<svg width="6in" height="4in" viewBox="0,0 6,4">

This code defines a user coordinate system with 6 user units hori‐
zontally and 4 user units vertically. It then stretches that coordinate
system to fit within a space 6 inches wide and 4 inches tall. As a
result, each user unit is 1 inch long, in both directions. Because the
first two values of the viewBox are both 0, the origin of the coordi‐
nate system is in the top left.

You might think that you could now use in (inch) units inter‐
changeably with user coordinates. So you might try to add our 1-
inch square from Chapter 5 into this SVG:

<svg width="6in" height="4in" viewBox="0,0 6,4">
 <rect width="1in" height="1in" />
</svg>

But that will draw a square that overflows the SVG, many times over.

268 | Chapter 8: Scaling Up

When you scale up the coordinate system in SVG, the length units
get adjusted accordingly. A px is still equal to a user unit, and an in
is still 96px. At this scale, that would be drawn as 96 real-world
inches—8 feet!

The ratios between the different length units and
user coordinates never change when you scale
the SVG; all units scale equally.

If you’re going to use viewBox to set the scale of your user units, you
need to use those user units (i.e., no units at all) in your drawing:

<svg width="6in" height="4in" viewBox="0,0 6,4">
 <rect width="1" height="1" />
</svg>

If you need a unit (some CSS properties won’t accept plain num‐
bers), you can always use px as equal to the SVG user unit.

Scaling to Fit
The viewBox examples so far have all used SVGs of fixed size. In that
situation, viewBox is a convenience. It lets us use a coordinate sys‐
tem we choose, independent of the number of pixels.

But this means that we can define our paths and shapes once, then
change the width and height later. After all, SVG is scalable, right?

It is, if it has a viewBox!

The dimensions that you specify in the viewBox attribute will stretch
(or shrink) to fit whatever width and height you set. For example, all
the card-suit icons in Chapter 6 were defined as tiny 20px squares.
Adding viewBox="0,0 20,20" allows you to redraw the same icon
at any size, by setting width and height on the SVG.

For the full-sized figures in Chapter 6, we used
viewBox="-5,-5 30,30", to give 5 units of extra
room on all sides (including above and to the
left of the origin) for drawing grid lines and con‐
trol points. Changing the viewBox can also be
used to pad and crop an image.

Scaling to Fit | 269

The viewBox is most useful when you don’t know the final size of the
SVG. Maybe the SVG is sized to fit a browser window, or maybe it’s
an icon that adjusts to font-size.

Example 8-2 goes one step further, allowing the user to adjust the
size. It uses the CSS resize property to create an adjustable <div>
element. The <svg> inside is absolutely positioned to completely fill
that <div>, whatever its dimensions. The viewBox controls the scale
that is used to draw the <path>. Figure 8-6 shows multiple screen‐
shots.

Figure 8-6. Using viewBox to scale a graphic to fit, at various sizes

270 | Chapter 8: Scaling Up

Example 8-2. Using viewBox to scale a graphic to fit

HTML MARKUP:
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8" />
 <title>Scaling with viewBox</title>
 <link rel="stylesheet" href="flex-scale-viewBox.css" />
</head>
<body>
 <div class="wrapper">
 <svg viewBox="0,0 20,20">
 <title>Spade</title>
 <path d="M9,15C9,20 0,21 0,16S6,9 10,0C14,9 20,11 20,16
 S11,20 11,15Q11,20 13,20H7Q9,20 9,15Z" />
 </svg>
 </div>
</body>
</html>

That’s the path data for the spade from Example 6-3 in Chap‐
ter 6, just condensed onto fewer lines—more compact, less
readable. It still draws the same shape, in the same 20×20 square
region, matching the viewBox on the <svg>.

CSS STYLES: flex-scale-viewBox.css
html, body {
 height: 100%;
}
.wrapper {
 position: relative;
 height: 10em;
 width: 10em;
 resize: both;
 overflow: hidden;
 border: thin solid;
}
svg {
 display: block;
 position: absolute;
 height: 90%;
 width: 90%;
 top: 5%;
 left: 5%;

 background-color: darkSeaGreen;

Scaling to Fit | 271

}
path { fill: darkslateblue; }

The CSS resize property is not implemented in
Microsoft Edge or Internet Explorer, or in many
mobile browsers. To see the scaling effect in
those browsers, you can set the width and height
of the wrapper element with percentages or
viewport units, and then rescale your browser
window.

The final benefit of using viewBox to reset the coordinate system is
that you can scale the image according to a coordinate system that
makes sense for the data that you are using. For instance, if you were
making a map of North America, you might create a coordinate sys‐
tem in degrees latitude and longitude, with a viewBox of "-180,86
130,80", corresponding to a map that spans from (180°W 86°N) to
(50°W 6°N).

Directly converting longitude and latitude coor‐
dinates into horizontal and vertical coordinates
creates an equirectangular map projection. It is
very convenient for converting geographical
coordinates to SVG, but doesn’t always create a
good map. Because longitude lines (meridians)
are not actually parallel—they join together at
the North and South Poles—using the longitude
as a horizontal coordinate distorts the scale,
stretching east-west distances everywhere except
the equator.

When using real-world units like this, you need to keep an eye on
how big your numbers are—and how small the distances you are
trying to graph. Web browsers have limits on how much memory
they allocate to each number, and they use approximations for
mathematical calculations with large numbers.

For best results, only use real-world numbers if they are fairly close
in size to screen pixel values. Aim for no more than 100 px per unit,
or 100 units per px.

272 | Chapter 8: Scaling Up

More Online
SVG viewers are supposed to use “single precision” numbers for
coordinates, and “double precision” for intermediate calculations,
but that isn’t reliable on the web.

Read more about numeric precision, and what it means for SVG, in
“The Limits of Numbers in SVG”:

https://oreillymedia.github.io/Using_SVG/extras/ch08-
precision.html

A Poor Fit (and How preserveAspectRatio
Fixes It)
In the theoretical map of North America, the width declared in the
viewBox was 130 units, and the height was 80 units. Ideally, the
width and height attributes on the SVG should have the same width/
height ratio, equivalent to 130/80 or 1.625. In other words, if the
height is 200 pixels, the width should be 325 pixels.

Now suppose that, for reasons beyond the control of the SVG
designer, the aspect ratio—the ratio of width to height—of the SVG
on the page or screen has to be something other that 1.625, such as
1.5 or 2.0 or, more likely, some flexible region that will stretch and
shrink according to the user’s browser size.

There are three possible ways the SVG could scale to fit within this
mismatched space:

• The SVG graphic is contorted—stretched or squeezed—to fit
the available aspect ratio.

• The whole graphic is fit within the available space, with every‐
thing in the right proportions, but with extra blank areas filling
the too-large dimension.

• The graphic is scaled to completely fill the space without leaving
anything blank, but some parts of the graphic get cut off in the
too-small direction.

The choice between these options is controlled by the
preserveAspectRatio attribute on the <svg> element. This is used

A Poor Fit (and How preserveAspectRatio Fixes It) | 273

https://oreillymedia.github.io/Using_SVG/extras/ch08-precision.html
https://oreillymedia.github.io/Using_SVG/extras/ch08-precision.html

to determine how the picture fits into the available space, and has a
variety of values. It has no effect unless you define a viewBox on the
same element. The width and height from the viewBox value define
the intrinsic aspect ratio of your graphic; preserveAspectRatio tells
the browser what to do when the actual aspect ratio of the SVG
region doesn’t match.

The simplest property for preserveAspectRatio is "none". This is
not the default; you need to set it explicitly:

<svg viewBox="0,0 20,20" preserveAspectRatio="none">

In this mode, the graphic will conform to the size of the container,
even if that container has a different aspect ratio. One direction will
stretch, while the other will compress, until the exact number of
units specified in the viewBox width and height fit the SVG width
and height.

The resulting coordinate units are no longer square—one unit in the
x direction does not equal one unit in the y direction. Your graphic
will be distorted to match: circles stretched into ellipses, text looking
like it passed through a fun-house mirror, and even the stroke width
stretching or compressing depending on which direction it is going.

If you paid attention to the resizable graphic in Example 8-2, you
would have noticed that, by default, the aspect ratio is preserved. No
matter how you change the size of the SVG, the shape is never dis‐
torted. To see the difference, edit the <svg> to match the preceding
snippet.

Then, stretch and squish the icon. The results should look some‐
thing like Figure 8-7.

274 | Chapter 8: Scaling Up

Figure 8-7. Using viewBox to scale a graphic to fit, without preserving
the aspect ratio

If that’s not the default, what is? What is the opposite of none for
preserving aspect ratio?

It isn’t that simple. There isn’t just one preserveAspectRatio value
that tells the software drawing the SVG to preserve the aspect ratio:
there are 18. Each variant indicates how the software should size and
position the graphic within the drawing region, when the aspect
ratios don’t match.

The general format for these values is as follows:

xAlignYAlign meet-or-slice

A Poor Fit (and How preserveAspectRatio Fixes It) | 275

Keywords fill in the parts of that value:

• three options for xAlign: xMin, xMid, or xMax
• three for YAlign: YMin, YMid, or YMax
• two for meet-or-slice: not surprisingly, meet or slice

Multiply those out (3 × 3 × 2), and you get the 18 possible variants.

The xAlignYAlign keyword determines how the scaled graphic is
positioned in the available space. Specifically, it indicates which
point to align between the viewport (the region specified by the SVG
width and height) and the graphic’s viewBox.

A xMinYMin value means that the minimum values in both direc‐
tions—in other words, the top-left corner—will be aligned;
xMinYMax indicates that the lefthand side (xMin) and the bottom
edge (YMax) will be aligned; xMidYMid means that the center points,
in both directions, will be aligned.

The alignment values are indicated as a single
token (word), with no spaces in between. To
maintain proper camelCase capitalization, the
first letter—the x in the x-alignment value—is
lowercase, but the Y is uppercase.

After you define the anchor point with the alignment options, the
scale of the graphic depends on the choice between meet and slice.

The meet value indicates that the image is anchored at the alignment
point, and then expanded until it meets either the horizontal or ver‐
tical boundaries of the viewport. This ensures that the whole
viewBox image will be displayed, but the SVG may also include areas
outside the viewBox. This often means there will be blank space
around the graphic.

The slice attribute value, on the other hand, anchors the image,
then expands it until both dimensions of the graphic have reached a
viewport boundary. This will fill up the entire space of the container,
but at the cost of slicing off portions of the viewBox dimensions (or
causing them to overflow the SVG, for inline SVG with overflow:
visible).

276 | Chapter 8: Scaling Up

The default value for preserveAspectRatio is
xMidYMid meet; it fits the entire viewBox region
within the drawing area, and centers it in any
extra space. This behavior was demonstrated in
Figure 8-6.

You can test out the other options by editing the file from
Example 8-2. Figure 8-8 shows the same sizes of the graphic, but
when preserveAspectRatio is set to xMinYMax slice. The bottom-
right corner of the viewBox (minimum x and maximum y) is always
visible—but other parts get sliced off.

Figure 8-8. A graphic resized with viewBox and slice scaling, with
xMinYMax alignment

A Poor Fit (and How preserveAspectRatio Fixes It) | 277

More Online
If editing markup and refreshing your browser gets boring, you can
always write a script for that!

In “Dynamically Changing preserveAspectRatio,” we show you how
to build an HTML form for the different options, using JavaScript to
update the attribute on the SVG:

https://oreillymedia.github.io/Using_SVG/extras/ch08-
preserveAspectRatio-swap.html

As you experiment, it should become clear that only one of the
alignment options at a time has an effect. The graphic always exactly
fits one dimension of the available space. Whether it’s the x or y
dimension is determined both by the shape of the space, and by
meet versus slice.

The viewBox and preserveAspectRatio have a huge effect on the
final presentation of the graphic. One complication, however, is that
the perfect viewBox for a graphic can sometimes depend on the spe‐
cific styles you use. The spade in the previous examples was drawn
to just fit inside its viewBox. If you added a stroke to the shape, it
would extend outside the box.

One option is to adjust the viewBox to give a little extra room. How‐
ever, to make the change dynamically, you’ll need to use JavaScript:
CSS can’t change viewBox.

For inline SVG, you can instead use CSS padding to make room for
the stroke, setting the overflow property to visible to allow it to be
painted.

When you use SVG as a separate image or object, overflow isn’t an
option—the image is clipped to its canvas before being inserted in
the document. However, you can define completely separate alter‐
nate viewBox parameters, which you can turn on by changing the
embedding URL. Chapter 9 will describe how it works.

278 | Chapter 8: Scaling Up

https://oreillymedia.github.io/Using_SVG/extras/ch08-preserveAspectRatio-swap.html
https://oreillymedia.github.io/Using_SVG/extras/ch08-preserveAspectRatio-swap.html

CSS Versus SVG
Scaling to Fit

CSS has introduced features similar to preserveAspectRatio, allowing you to
control how an image fits into a box with a different aspect ratio; unfortu-
nately, the CSS terminology does not match the SVG keywords.

The first, and best supported, CSS option applies to background images. The
options are supported in any browser that supports layered backgrounds (and
a few that don’t).

The background-size property, instead of specifying a particular size, can use
the keyword values contain (equivalent to SVG meet) or cover (equivalent to
slice). The background-position property controls how the scaled image is
aligned within the box: min, mid, and max positions can be set by the key-
words left, center, or right for horizontal alignment and top, center, or
bottom for vertical alignment. The background-position can also be speci-
fied as a length or a percentage in either direction, allowing for greater control
than is currently possible in SVG.

But what about images, video, and other content in the main web page that
has a fixed aspect ratio? The CSS Images level 3 module introduces the
object-fit and object-position properties. The syntax for object-
position is the same as for background-position. The object-fit prop-
erty takes one of the following keyword values:

• fill (equivalent to the none value for preserveAspectRatio; this is the
default behavior),

• contain (same as for background-size; equivalent to meet for SVG),

• cover (same as for background-size; like SVG slice),

• none (meaning no scaling at all, not no aspect-ratio control!), or

• scale-down (equivalent to contain if that is smaller than the intrinsic
size, or none otherwise).

If you use the object-fit property on embedded SVG content, the CSS
object scaling is applied first, to create a drawing region size; the SVG is then
drawn in this region according to the preserveAspectRatio settings. If the
two values don’t align, this could create unintuitive interactions.

A Poor Fit (and How preserveAspectRatio Fixes It) | 279

Blink browsers and Firefox have supported object-fit and object-

position for a few years now; Safari has supported fit since version 8, and
position starting in version 10. At the time of writing, the properties have just
shipped in preview versions of Microsoft Edge; they should be stable in
EdgeHTML 16.

Just-Right Sizing
SVG’s aspect-ratio control options ensure that the graphic fits neatly
in the “frame” you give it. They assume that the size of that frame is
controlled by external forces: the screen or page size, or the CSS of
the embedding web page.

For small icons and logos, where you know the exact size you want
for the graphic, this usually makes sense. Set the width and height
properties on the , <object>, or (for inline SVG) <svg> ele‐
ment in the main web page, and you’re good to go.

An SVG file embedded in HTML using
<iframe> will not always rescale to fit the frame;
instead, scroll bars can be added. But browsers
are rather inconsistent with SVG scaling and
iframes, so use <object> if you can.

But often in web design, especially in responsive web design, you
want that frame to adjust to match the content. Specifically, you
might set a height or width on your SVG container element, and
want the other direction to be calculated automatically based on the
SVG aspect ratio, without any whitespace gaps or sliced-off bits
from the SVG’s aspect ratio adjustments.

Raster images in CSS-styled HTML have always had autosizing like
this: set either height or width to auto (the default), and it will be
calculated from the other dimension and the image’s aspect ratio.

Unfortunately, this inside-out approach to sizing wasn’t fully consid‐
ered when SVG was originally designed. It has taken a while for web
browsers to standardize around a consistent and useful approach to
the problem. You may need some hacks to get support in all brows‐
ers. How to solve it depends on how you are inserting the SVG into

280 | Chapter 8: Scaling Up

your web page, and on how much information you give the browser
to work with.

Autosizing Embedded SVG
The best results, cross-browser, for autosizing occur under the fol‐
lowing conditions:

• embedding an independent SVG file in your web page with an
 or <object> element;

• the root <svg> in the file has a viewBox attribute;
• the or <object> in the web page has either height or
width set to an explicit value with CSS, which could be a per‐
centage value.

In this case, scaling the SVG image works pretty much how it does
for raster image formats like PNG or JPEG. The auto dimension is
adjusted to exactly match the aspect ratio of the SVG from the
viewBox. But unlike with raster images, your graphic will be crisp
and clear at any size!

So, for example, if you want an SVG image to always scale to fit the
available width, you could use the following CSS code in your web
page:

img.full-width {
 width: 100%; /* height is auto by default */
}

So long as the SVG has a defined aspect ratio (the intrinsic aspect
ratio), the height of the image will scale to match the width. You
won’t have to worry about the preserveAspectRatio value. Your
image will end up not too big and not too small: just right.

Almost always just right, anyway. Things can get
weird with display: table or flexbox layout.
But that’s true for other images, too.

The most reliable way to define an aspect ratio is to use viewBox.

You can define an aspect ratio using both width and height
attributes on the root <svg>, without viewBox. But it can get buggy.

Just-Right Sizing | 281

As mentioned in Chapter 2, when your SVG file
has width and height attributes but not
viewBox, Internet Explorer won’t scale the draw‐
ing to match the size of the drawing region.
However, it will still autosize the embedding
 according to the aspect ratio.

In addition, when you embed with an <object>, the units in an SVG
without viewBox will never scale: it will be drawn at exactly the
specified width and height.

For these reasons, using width and height without viewBox is only
recommended if you have carefully designed your graphic to control
scaling yourself—for example, if you position elements entirely
using percentages or nested coordinate systems (which we’ll talk
about in Chapters 9 and 10).

That said: it is often helpful to add width and height, in addition to
viewBox. These set the default (intrinsic) size for your graphic.

The default size is what will be used if you embed an image in a web
page without any CSS sizing instructions—that is, with both width
and height set to the default auto. For raster images, the default size
is the pixel size. For SVG, it is the size set by the width and height
attributes on the root <svg> element in the file.

For consistent autosizing, the width and height
aspect ratio should match the viewBox aspect
ratio. (They don’t need to be the same numbers,
just the same ratio.)
If they don’t match, height and width take
precedence. The viewBox will be used to fit the
graphic in the resulting size, with gaps or slices.

If the SVG doesn’t have an intrinsic size (no width or height), and
the embedding web page doesn’t provide any size for the or
<object> (both width and height are auto), that’s when things get
buggy.

282 | Chapter 8: Scaling Up

At the time web browsers first started integrating SVG into web
pages, there were two competing sets of instructions about what to
do when an SVG didn’t have a set size:

• The HTML specs defined a “default object size” of 300px wide
and 150px tall.

• The SVG specs said that the width and height attributes had a
default of 100% (but then had a whole bunch of text about how
these attributes weren’t the same as CSS width and height).

Different browsers picked different combinations of these sizes to
apply:

• In Internet Explorer, the 100% values are used, but if a percent‐
age height can’t be calculated by CSS rules (which is common,
because height on web pages isn’t usually restricted), the 150px
height applied.

• In old Firefox, both the 300px width and 150px height were
applied.

• In old WebKit and Blink (Safari and Chrome) browsers, 100%
width was used, while height was set to 100% of the screen size
(100vh).

Newer browsers have settled on a de facto standard:

• If the SVG has a viewBox, the default size is 100% width and a
height based on the aspect ratio.

• Otherwise, the default object size of 300px wide and 150px tall
is used.

This isn’t quite based in any written standard, or logic for that mat‐
ter, but is often acceptable enough that it can be easy to forget to
apply an explicit width: 100% to your element.

For consistent results in Internet Explorer, and
older versions of other browsers, always include
some sizing information for your SVG: either
default width and height attributes in the SVG
file, or at least one of width or height CSS prop‐
erties on the or <object>.

Just-Right Sizing | 283

So to recap, when creating an SVG file that you’ll be embedding in a
web page:

• Use a viewBox unless you have specifically designed your
graphic to work without it.

• Include width and height values that provide a good default
size and match the viewBox aspect ratio, unless you know you’ll
always control the size from the web page. Even then, it rarely
hurts to add them.

• If you might be embedding the SVG in such a way that both
width and height are constricted (for example, to exactly fit the
screen size), decide whether you need a nondefault
preserveAspectRatio value.

If you’re exporting the SVG from a graphical editor like Illustrator
or Inkscape, look for options to ensure that viewBox is included, and
other options to include/remove the width and height attributes.

Resizing Inline SVG
That was for SVG files embedded as images and objects. What about
inline <svg>? It should work the same way, right? Just set the
viewBox attribute and the width property, and the height should
adjust to match.

It seems logical, but it wasn’t obvious when browsers first started
implementing inline SVG.

The SVG 1.1 specifications didn’t have rules for this situation, and
HTML didn’t clearly define it, either. Once again, browsers came up
with their own defaults for what to do if the width or height of an
inline SVG wasn’t set explicitly. Not surprisingly, those unstandar‐
dized defaults were not consistent with each other.

The situation is getting better: recent browsers (released since 2015)
will all happily autosize an inline <svg> to match the aspect ratio
defined in a viewBox attribute, just like they do with .

They also all now apply the same de facto standard as for images
when neither height nor width is set on the <svg>: 100% width if it
has a viewBox; 300px × 150px otherwise.

284 | Chapter 8: Scaling Up

Safari doesn’t update the size of an element with
auto width and height when the user resizes the
browser. Avoid this by explicitly setting 100%
width.
Browsers are also inconsistent about what to do
if percentage widths are not defined in the CSS
layout context (for example, within inline block
or floated boxes, which are sized to their con‐
tents). In some browsers, an SVG will scale
down to zero width and height in this case.

Unfortunately, at the time of writing (mid-2017), most web develop‐
ers still have to support older browsers that do not autosize inline
SVG based on its aspect ratio.

If you leave the height and/or width of an inline
<svg> as auto, Internet Explorer will apply the
default size for replaced content, 300px width
and 150px height, regardless of the SVG’s aspect
ratio.
Other older browsers will apply 100% width and
100vh height (i.e., the full height of the view‐
port).

What can you do to create scale-to-fit inline SVG in older browsers?

If it’s possible, the simplest solution is to set both width and height
of the inline SVG directly, with units that preserve the aspect ratio.

For icons and other smaller SVGs, use em units. In that way, you can
adjust the overall size (e.g., for smaller screens) by changing the font
size on the <svg> in a media query, without having to worry about
the aspect ratio each time you change the size.

For full-size diagrams that you want to fill the browser window, CSS
viewport units can often help. Because viewport units allow you to
set height proportional to width, and vice versa, you can set both
dimensions while maintaining an aspect ratio:

Just-Right Sizing | 285

svg.ratio-2-1 {
 width: 80vw;
 height: 40vw;
 max-width: 200vh;
 max-height: 100vh;
}

The preceding code will normally size the SVG to 80% of the
browser window’s width, with a 2:1 aspect ratio. However, the maxi‐
mum values ensure that the SVG never gets taller than the window’s
height, while still preserving the 2:1 ratio.

Viewport units are either buggy or not sup‐
ported on many older mobile browsers, so you’ll
also want to add fixed-size fallbacks.
Also, while Internet Explorer 9+ and MS Edge
support vw and vh units without problem, they
have assorted bugs with vmin and vmax units.

These solutions, however, don’t address the most common desire for
images: have them size to fit the available width, adjusting the height
to maintain the correct aspect ratio. To make that happen cross-
browser, you need to get creative with CSS layout rules.

Preserving Aspect Ratios, with CSS Padding
If the older browsers won’t allow us to use CSS to scale while using
SVG to preserve the aspect ratio, we’ll have to use CSS to preserve
the aspect ratio instead.

One strategy is to wrap the <svg> in an HTML element (e.g., a
<div> or <figure>) that is constrained to the correct aspect ratio,
and then use absolute positioning to make the SVG stretch to fit that
wrapper.

The absolute positioning approach we’ve seen before. In
Example 8-2, we positioned an SVG to fill the width and height of a
resizable HTML element. In that case, we were demonstrating how
the SVG adjusts to different aspect ratios. But how do you constrain
that container to a specific aspect ratio?

You do it by setting the element’s padding instead of its height.

286 | Chapter 8: Scaling Up

1 This statement is actually out of date. It used to be that percentage padding was always
proportional to the available width. Flexbox and grid layout have changed that. But if
you’re using flexbox and grid layout, you don’t need this layout hack.

In CSS layout, you cannot directly set the height of an element to be
proportional to its width, which is what you need for a controlled
aspect ratio. However, padding set using percentage values is always
proportional to the available width, even when it is padding on the
top and bottom.1 This is so that, when you set padding: 5%, the
padding space will be the same on all sides of the element.

But we can also use it to only set vertical padding, and have that ver‐
tical padding be proportional to the width.

This “padding hack” is also useful for many
other cases where you want to control the aspect
ratio of a container, such as to scale down
embedded videos or to frame a large back‐
ground image. It also works for SVG embedded
with <iframe>.

Example 8-3 demonstrates how this approach can be used to create
a large inline SVG figure that scales to fill the width of the web page.
Figure 8-9 shows what that web page looks like.

Just-Right Sizing | 287

Figure 8-9. A web page with an SVG that fills a controlled aspect ratio
container

288 | Chapter 8: Scaling Up

Example 8-3. Using an HTML element with padding-controlled aspect
ratio to scale an SVG evenly in both directions

HTML MARKUP:
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8" />
 <title>Scaling inline SVG using a padded wrapper</title>
 <link rel="stylesheet" href="fixed-ratio-wrapper.css" />
</head>
<body>
 <div class="svg-wrapper square">
 <svg viewBox="0,0 20,20">
 <title>Spade</title>
 <path d="M9,15C9,20 0,21 0,16S6,9 10,0C14,9 20,11 20,16
 S11,20 11,15Q11,20 13,20H7Q9,20 9,15Z" />
 </svg>
 </div>
 <p>The above SVG will always be square.</p>
 <div class="svg-wrapper ratio-2-1">
 <svg viewBox="0,0 40,20">
 <title>Double Diamond</title>
 <path d="m3,10 l7,-10 l7,10 l-7,10 l-7,-10z
 M20,0 m3,10 l7,-10 l7,10 l-7,10 l-7,-10z" />
 </svg>
 </div>
 <p>The second SVG will be twice as wide as it is tall.</p>
</body>
</html>

Each SVG is contained within an HTML element that has
classes that will trigger the relevant styles; the square class will
create a 1:1 aspect ratio.

The aspect ratio defined by the SVG viewBox will control how
the graphic is drawn in the available space, but it won’t affect the
layout of the web page as a whole.

The second SVG has a different viewBox, but it is the ratio-2-1
that will adjust the size to match.

CSS STYLES: fixed-ratio-wrapper.css
/* page styles */
body {
 padding: 0.5em 2em;
 font-family: sans-serif;

Just-Right Sizing | 289

 background-color: lightSteelBlue;
 color: indigo;
}
svg { background-color: plum; }
path { fill: currentColor; }

/* aspect-ratio control styles */
.svg-wrapper {
 position: relative;
 width: 100%;
 height: 1px;
 box-sizing: content-box;
 margin: 0;
 padding: 0;
}
.svg-wrapper.square {
 padding-bottom: 100%;
 padding-bottom: calc(100% - 1px);
}
.svg-wrapper.ratio-2-1 {
 padding-bottom: 50%;
 padding-bottom: calc(50% - 1px);
}
.svg-wrapper > svg {
 display: block;
 position: absolute;
 height: 100%;
 width: 100%;
}

The wrapper element uses nondefault positioning, so that it will
be the reference frame for its absolutely positioned child
content.

The wrapper uses up 100% of the available width, but is set to
1px height. We use 1px, and not 0, so that screen readers won’t
assume that this element is invisible.

The box-sizing property ensures that the specified zero height
is only the height of the content region of the wrapper; content-
box is the default for box-sizing, but many stylesheets override
the default, so be sure it is set correctly here. Similarly, margin
and padding are cancelled out, just in case.

We control the aspect ratio by setting the padding-bottom prop‐
erty. To make sure it cancels out the shorthand padding set in
the previous rule, the selector is a repeat of the previous selector,

290 | Chapter 8: Scaling Up

plus the aspect-ratio class. The square class means we need
height equal to width, so the padding is 100%, the same value as
the wrapper’s width property.

Except that 1px height will add to the padding. So, to be extra
precise, we use CSS calc() to cancel it out. But because this
code is all about backward compatibility, we keep the basic dec‐
laration as a fallback, in case calc() isn’t supported.

For the 2:1 aspect ratio, the height needs to be half the width.
Because the width is 100%, the padding-bottom is 50% (minus
1px).

The SVG itself is absolutely positioned within the wrapper. That
means that its available width and height includes the wrapper’s
padding region. It takes up 100% of that space, in both direc‐
tions.

The limitations of this strategy are that you need an extra markup
element (the wrapper) whose sole role is to control the layout of the
SVG. Furthermore, if you change the dimensions of the SVG, you’ll
need to change the styles on the wrapper to match, which can make
maintainability difficult.

A slightly more streamlined approach is to control the aspect ratio
of the inline <svg> element directly.

In an HTML page, the top-level inline SVG element is positioned
using the CSS box model, which means it can have margins, bor‐
ders, and padding. Normally, this padding area would not be used to
draw the SVG content. However, by using a slice option for
preserveAspectRatio, and an overflow: visible setting, you can
make an inline SVG spill out onto its padding region.

Example 8-4 provides the code for this approach. The result would
look exactly the same as Figure 8-9.

Example 8-4. Using sliced SVG scaling, visible overflow, and padding-
controlled aspect ratio to scale an SVG evenly in both directions

HTML MARKUP:
<!DOCTYPE html>
<html lang="en">

Just-Right Sizing | 291

<head>
 <meta charset="utf-8" />
 <title>Using slice and padding to scale inline SVG</title>
 <link rel="stylesheet" href="fixed-ratio-slice.css" />
</head>
<body>
 <svg class="sliced-svg square" viewBox="0,0 20,20"
 preserveAspectRatio="xMidYMin slice">
 <title>Spade</title>
 <path d="M9,15C9,20 0,21 0,16S6,9 10,0C14,9 20,11 20,16
 S11,20 11,15Q11,20 13,20H7Q9,20 9,15Z" />
 </svg>
 <p>The above SVG will always be square.</p>
 <svg class="sliced-svg ratio-2-1" viewBox="0,0 40,20"
 preserveAspectRatio="xMidYMin slice">
 <title>Double Diamond</title>
 <path d="m3,10 l7,-10 l7,10 l-7,10 l-7,-10z
 M20,0 m3,10 l7,-10 l7,10 l-7,10 l-7,-10z" />
 </svg>
 <p>The second SVG will be twice as wide as it is tall.</p>
</body>
</html>

The wrapper containers have been eliminated, and the square
aspect ratio class is now on the <svg> itself. So is the new
preserveAspectRatio attribute, which will align the top edge of
the graphic with the top edge of the SVG content box (using a
YMin alignment setting), then make it scale to fit the larger
dimension and spill out onto the padding (using a slice
setting).

Again, a separate class is required for a separate viewBox aspect
ratio, to set the different padding value.

CSS STYLES: fixed-ratio-slice.css
/* page styles haven't changed */

/* aspect-ratio control styles */
.sliced-svg {
 display: block;
 width: 100%;
 height: 1px;
 box-sizing: content-box;
 margin: 0;
 padding: 0;
 overflow: visible;
}
.sliced-svg.square {

292 | Chapter 8: Scaling Up

 padding-bottom: 100%;
 padding-bottom: calc(100% - 1px);
}
.sliced-svg.ratio-2-1 {
 padding-bottom: 50%;
 padding-bottom: calc(50% - 1px);
}

The 1px height is even more important now; if the SVG is set to
zero content height, it won’t be drawn at all.

The overflow: visible setting ensures that the graphic is visi‐
ble even where it extends beyond the content region. This isn’t
required in all browsers, but it is on Firefox; the HTML and
SVG specifications differ on whether the padding region should
be considered overflow.

Again, we control the aspect ratio of the entire layout box using
padding-bottom to define height as a percentage of the available
width.

The main benefit of this approach is that all the styles that control
the SVG are assigned to the <svg> element itself. If you have a non‐
standard aspect ratio, you could use inline styles to set the padding-
bottom value, so that it is right next to the corresponding viewBox in
your markup.

One limitation is that you cannot use hidden overflow or other
preserveAspectRatio settings to control which parts of your SVG
are visible. If your SVG had shapes that extended outside of the
viewBox (like the circles around the origin in the first half of
Figure 8-5), they will now spill out onto your HTML page.

Both methods (Examples 8-3 and 8-4) depend on the fact that the
percentage used to set padding-bottom, which is always a percent‐
age of the available width for the element, is directly proportional to
the 100% used width. If you do not want the element to use 100% of
the available width, you will need to either adjust the padding calcu‐
lation, or add another wrapper element that constrains the SVG to
the width you want.

The HTML5 <figure> element is a good choice for adding another
wrapper element to control layout. It is actually intended for this
purpose: to identify and set off a graphic or other supporting

Just-Right Sizing | 293

content that complements your main text. A <figcaption> (figure
caption) element enclosed within the <figure> can be used to add a
caption that is recognized by most screen readers and search
engines.

Figure 8-10 shows a slightly more realistic example of our SVG in a
web page layout, using a <figure> containing the <svg> (from
Example 8-4) and a <figcaption>.

Figure 8-10. A web page with a controlled aspect ratio SVG inside an
HTML5 figure

294 | Chapter 8: Scaling Up

The figure is styled with the following additional CSS:

figure {
 margin: 0.5em 0;
 padding: 4%;
 border: gray thin solid;
 background-color: white;
}
figcaption {
 text-align: center;
 font-style: italic;
 margin-top: 0.5em;
 margin-bottom: -0.35em;
}

The <svg> continues to take up 100% of the available width, as
defined by the content region of the <figure>, even if that isn’t
100% of the HTML body region.

Future Focus
Aspect-Ratio Control in CSS

Inline SVG isn’t the only case in web design where it would be convenient to
have a CSS layout box scale to fit the available space, while preserving a set
aspect ratio.

The “padding hack” described here was originally proposed by Thierry
Koblentz for videos (Flash <object> embeds, and later <video> elements). For
graphical CSS+HTML layouts, such as in headings, advertisements, or some
diagrams, JavaScript is often required to determine the correct scale as well as
the aspect ratio.

Even for regular images, scaling to fit aspect ratios can be a problem because
the browser does not know the aspect ratio until after the image file has
downloaded—which can cause the page layout to jump around as it loads.

Multiple suggestions have been made for CSS properties that could set the
aspect ratio of an element, or define the height proportional to width, or set a
scale factor that is based on available width. One proposal that covers both
needs involves making viewBox a CSS property and extending it to apply to
any element with a block CSS layout.

For SVG developers, viewBox in CSS would provide another much-desired fea-
ture: the ability to adjust the SVG viewBox using CSS media queries, or CSS
animations and transitions.

Just-Right Sizing | 295

https://github.com/w3c/fxtf-drafts/issues/7
https://github.com/w3c/fxtf-drafts/issues/7

However, there are implementation complexities. For embedded SVG files, the
viewBox aspect ratio can affect the size of the document used to calculate
media queries, so there is a potential to create loops if the media queries can
change the viewBox. And, as we’ll discover in Chapter 9, the viewBox used in
an embedded SVG file can be affected by the URL target fragment, in a way
that isn’t easily expressed in CSS.

At the time of writing, there is no complete specification of what a CSS
viewBox would look like, in all the edge-case details, let alone any commit-
ments from browser teams to implement it.

Summary: Defining Coordinate Systems
Vector graphics are defined by coordinates, and controlling the
coordinate system is essential for controlling how SVG appears.
When you define the coordinate system of an SVG, you define the
scale and reference point used for the graphical content. You also
define the intrinsic aspect ratio used when embedding that SVG in
other documents.

The coordinate system is established with a viewBox attribute, which
sets the x and y offset of the coordinate system relative to the top-left
corner, and the width and height of the coordinate system in user
units. Within the SVG graphic, those user units are equivalent to px
units, and all other units are scaled proportionately. The amount of
scaling depends on how the width and height defined in the viewBox
compare with the available width and height.

When the width and height defined in the viewBox do not match
the aspect ratio of the available drawing space, the preserve
AspectRatio attribute controls whether the graphic scales to match
the too-small dimension or the too-large dimension, or whether it
stretches to fit in each direction, ignoring the aspect ratio of the
graphic. The same attribute also sets the alignment to be used when
the aspect ratio is preserved.

Both viewBox and preserveAspectRatio are important attributes
for many of the elements we’ll discuss in Chapter 10, controlling the
scaling effects to use when content from one SVG coordinate system
is inserted into another. They are also fundamental to the SVG views
feature that we introduce next, in Chapter 9; we’ll also look at nested

296 | Chapter 8: Scaling Up

coordinate systems, using a child <svg> element to redefine a new
viewBox for part of a graphic.

Whether defining the original coordinate system on an <svg> or re-
defining it with an alternate view, you can significantly alter the final
appearance of the graphic using viewBox and preserve

AspectRatio.

More Online
A guide to the <svg> element and the attributes described in this
chapter is included in the “Document Structure Elements” section of
our markup guide:

https://oreillymedia.github.io/Using_SVG/guide/
markup.html#structure

Summary: Defining Coordinate Systems | 297

https://oreillymedia.github.io/Using_SVG/guide/markup.html#structure
https://oreillymedia.github.io/Using_SVG/guide/markup.html#structure

CHAPTER 9

A New Point of View
Cropping Embedded SVG Files

This chapter discusses ways to control the coordinate system when
you embed the SVG in a web page, changing the graphic’s scale or
crop, without editing the SVG file. These SVG view options allow
you to override the SVG file’s viewBox or preserveAspectRatio by
modifying the URL you use to access the SVG file.

There are two ways to apply views:

• by using a target fragment (the part of the URL after the # or
hash character) to reference the id of a <view> element in the
SVG file, or

• by using the SVG view fragment syntax to directly set the view
information in the URL.

The chapter also covers a related technique, known as SVG stacks,
which also uses URL fragments to activate different versions of the
same SVG file.

These techniques only apply to embedded SVG: a separate .svg file
that is included as an image or object in the HTML, or an image in
the CSS. They cannot be used with inline SVG markup that is part of
the main HTML document, since inline SVG does not have its own
URL. To change the view of an inline SVG, you need to directly edit
the viewBox and preserveAspectRatio attributes, either in the
markup or with JavaScript.

299

Use of these features is currently limited by a
number of bugs and restrictions in WebKit/
Safari. Even in other browsers, support for views
arrived later than other SVG features; older
browsers may not adjust the SVG to the view,
particularly when embedding images via CSS.
Finally, because they are not widely used, bugs
have a bad habit of slipping through browser
QA. Test carefully!

Since we’re working with embedded SVG, we’ll also be looking a lit‐
tle more closely at your embedding options (, <object>, and
<iframe>), and how they differ now that we’re working with
viewBox and scalable SVG. Unfortunately, that also includes how
they differ from one browser to another.

In the course of discussing these options, we’ll also introduce nested
SVG coordinate systems: <svg> inside <svg>. Thankfully, nested
SVG doesn’t have any big browser bugs to warn about.

Alternate Takes, with the <view> Element
The SVG <view> element defines alternate viewBox and
preserveAspectRatio options for the graphic. The <view> element
does not directly contain any graphics; instead, its attributes will
modify those of its parent <svg> element, changing how the rest of
the graphic appears within the drawing region.

Views can therefore be used to change the cropping or scaling and
alignment of SVG files, according to the needs of the web page using
the SVG. But if you’re going to use views for cropping, avoid using
percentage lengths in your graphic: changing the viewBox with a
<view> also changes the definition of 100% width and height!

Safari/WebKit does not apply views (as of ver‐
sion 10) for cross-origin file embeds, or embeds
from unencrypted (http:) origins. If your web
page and SVG aren’t both served from the same
HTTPS domain, only use SVG views for nones‐
sential adjustments, where the normal view of
the SVG is still an acceptable fallback.

300 | Chapter 9: A New Point of View

https://bugs.webkit.org/show_bug.cgi?id=91790#c20
https://bugs.webkit.org/show_bug.cgi?id=91790#c20

As mentioned in Chapter 3, WebKit and older
Blink browsers ignore target fragments on
image URLs specified in CSS files. Only use
them in CSS background images for nonessen‐
tial adjustments.

There can be any number of <view> elements within an SVG; each is
distinguished by its id attribute.

The following code defines two views for one of our card-suit icons.
The first expands the 20×20 viewBox to add an extra unit of padding
space (in the scaled coordinate system) on all sides; the second over‐
rides the default aspect-ratio control:

<view id="padding" viewBox="-1 -1 22 22" />
<view id="stretch" preserveAspectRatio="none" />

Any view attributes not specified in the <view> element are taken
from the <svg> itself—or from the default values, if the <svg> does
not have the attributes either. So, for the padding <view>, the
preserveAspectRatio option won’t be changed, and for the stretch
<view>, the viewBox will have the dimensions set for the main SVG.

Or at least, that’s how it’s supposed to work. A
bug in recent versions of Chrome (from approx‐
imately version 42 to at least 59) means that you
must always specify viewBox on the <view> ele‐
ment. The second view should therefore be:

<view id="stretch" viewBox="0 0 20 20"
 preserveAspectRatio="none" />

You use a view by adding a target fragment to the file URL, referenc‐
ing the ID of the <view> element. For example, you could specify the
view ID when embedding an SVG image in HTML:

Alternatively, you could link to the SVG file, so that it will be opened
directly in the browser. The following HTML link would open the
graphic in the frame with the browsing context name frame1 (if it
currently exists in the web page, or as another tab or window) or in
a new tab/window otherwise:

Show the icon

Alternate Takes, with the <view> Element | 301

Figure 9-1. A web page using SVG views, some of which can be
changed dynamically

302 | Chapter 9: A New Point of View

Example 9-1 uses all these snippets to create different views of a sin‐
gle icon file. The resulting web page—as it appears after some of the
links have been followed—is displayed in Figure 9-1.

Example 9-1. Using an SVG with multiple views in a web page

SVG FILE: club-alternate-views.svg
<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 viewBox="0 0 20 20" width="100%" height="200px">
 <title>Club, with alternate views</title>
 <view id="padding" viewBox="-1 -1 22 22" />
 <view id="stretch" viewBox="0 0 20 20"
 preserveAspectRatio="none" />
 <path fill="black"
 d="M9,15.5 A5,5 0 1 1 5.5,7.5
 A5,5 0 1 1 14.5,7.5 A5,5 0 1 1 11,15.5
 Q11,20 13,20 H7 Q9,20 9,15.5Z" />
</svg>

We’ve mixed up the width and height in the SVG file to be a
mix of percentage and absolute values, so you can see all the
scaling effects.

The <view> elements are as described in the text.

The <path> is the one from Example 6-4, but compacted into
fewer lines of code.

HTML MARKUP:
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8" />
 <title>Different views of an SVG</title>
 <style>
 img, iframe, object {
 display: block;
 width: 90%;
 height: 80px;
 margin: 10px auto;
 background-color: lightgreen;
 }
 h2 { margin: 0.3em 0 0; }
 a { display: block; }
 </style>
</head>

Alternate Takes, with the <view> Element | 303

<body>
 <h2><code>img</code></h2>

 <h2><code>iframe</code></h2>
 <iframe name="frame1" src="club-alternate-views.svg">
 </iframe>
 <a href="club-alternate-views.svg#padding"
 target="frame1">Add padding to the icon in the iframe
 <a href="club-alternate-views.svg#stretch"
 target="frame1">Stretch the icon in the iframe

 <h2><code>object</code></h2>
 <object name="object1" type="image/svg+xml"
 data="club-alternate-views.svg">
 </object>
 <a href="club-alternate-views.svg#padding"
 target="object1">Add padding to the icon in the object
 <a href="club-alternate-views.svg#stretch"
 target="object1">Stretch the icon in the object
</body>
</html>

The name attribute on the <iframe> defines the browsing con‐
text name for the embedded document.

The target attribute on the links matches the declared name on
the <iframe>.

The <object> also has a declared browsing context name, as
well as a type that indicates this object should always contain
SVG.

If you test out Example 9-1 in multiple web browsers, you will dis‐
cover a few disagreements (in addition to the Chrome bug that we
already adjusted the code for).

In most browsers (Chrome, Edge, IE, and older versions of Firefox),
the SVG inside the <iframe> does not scale to fit the available size of
the frame; instead, it is sized according to the 200px-tall height
from the SVG file, and scroll bars are added to the frame. Figure 9-1
shows this result, in Chrome 58.

304 | Chapter 9: A New Point of View

Safari and recent versions of Firefox (starting
with 51) do not use scroll bars on an SVG in an
<iframe>. Instead, they ignore the width and
height from the SVG file, so that an SVG in an
<iframe> scales just like one in an object.

In contrast, when <object> has a fixed width and height, like in this
demo, an SVG with a viewBox will be adjusted to fit within the
object; the height and width attributes on the <svg> in the file are
always ignored. This is consistent across browsers, and means that
SVG in objects scale like SVG in tags, so long as a viewBox is
included.

The improved cross-browser consistency is one reason that this
book mostly recommends <object> for embedding interactive SVG,
instead of <iframe>. Unfortunately, for this example, <object> has
its own browser bug:

Internet Explorer and MS Edge do not support
the name attribute to create a browsing context
name for an <object> element (as opposed to
an <iframe>). The links open in a separate
browser tab.

If you need the consistent scaling of <object>, but still want links to
replace the embedded SVG document, you could use JavaScript to
override the normal link activation behavior, directly changing the
object’s data source. But you’ll need to use some very careful
browser sniffing if you go this route—while writing up a sample
script, I discovered that Chrome (versions 57 to 59, anyway) can
freeze completely if you try to change an <object> element’s data
source from JavaScript to point to a <view> of the original file!

Another important difference between <object> and <iframe> is
that an <iframe> can be sandboxed (restricted) in modern browsers.
This can be important if you’re embedding documents you don’t
fully control. Adding a sandbox attribute to an <iframe> applies a
long list of security restrictions on the embedded file. The value of
the sandbox attribute is a list of permissions that are explicitly gran‐
ted, like allow-scripts or allow-top-navigation.

Alternate Takes, with the <view> Element | 305

If you are embedding interactive SVG files from other domains that
you don’t control, using a sandboxed <iframe> may be worth the
hassle of dealing with cross-browser scaling inconsistencies.

Rescaling on the Fly, with SVG View
Fragments
Alternate views created with a <view> element are known as prede‐
fined views. The author of the SVG file has specifically defined them
within the SVG markup.

However, web page authors can also create custom views of an SVG
when they embed the SVG, without having to alter the SVG file
itself. This view is instead defined with a special URL syntax, called
SVG view fragments.

The Safari/WebKit limitations on SVG view sup‐
port also apply to SVG view fragments.

The SVG view fragments are used instead of an element ID in the
fragment part of the URL (after the # character). The structure is as
follows:

fileURL#svgView(attributeName(value))

The attributeName would be one of the attributes that control the
view, such as viewBox or preserveAspectRatio. The value would
be the value that you would use for that attribute.

To accommodate software that does not support
whitespace within URL target fragments, the
SVG 1.1 specifications suggested that you use
commas (,) to separate parts of the attribute
value. This works fine for viewBox, for which
the numbers can always be separated by com‐
mas instead of whitespace. However, it is prob‐
lematic for preserveAspectRatio values like
xMinYMax slice.

306 | Chapter 9: A New Point of View

After trying various alternatives (using a
comma, using the %20 URL code for the space
character, and omitting the spacing entirely), we
found that the only option that was supported in
all current browsers was using an actual space
character in the URL.

In addition to viewBox and preserveAspectRatio, the other
allowed attribute names are:

• transform, which adds an extra coordinate system transforma‐
tion to the SVG element; this value syntax is the same as the
attribute we’ll discuss in Chapter 11, but browsers have some
problematic inconsistencies in how the svgView transformation
interacts with transformations and viewBox.

• zoomAndPan, which tells the SVG viewer whether to disable
zooming, but has no effect in current web browsers.

• viewTarget, which indicates the id of the element that would be
the target, if you weren’t busy changing the view; it also has no
effect in current browsers.

To specify multiple view attributes in the same fragment, separate
them with semicolons, as follows:

fileURL#svgView(attributeName(value);attributeName(value))

To show how SVG view fragments can be useful, we’re going to
adapt Example 9-1 so that it shows the heart icon instead of the club.
However, instead of creating a custom SVG file, we’ll directly reuse
the original 20px-square heart icon file from Example 6-2 in Chap‐
ter 6.

We won’t reprint all the code here, because it is a simple find-and-
replace change from Example 9-1. Wherever the original code refer‐
enced "club-alternate-views.svg#padding", the new code uses:

"heart.svg#svgView(viewBox(-1,-1,22,22))"

Wherever the original code referenced "club-alternate-

views.svg#stretch", the new code uses:

"heart.svg#svgView(viewBox(0,0,20,20);preserveAspectRatio(none))"

The resulting web page (after following some of the links) is shown
in Figure 9-2.

Rescaling on the Fly, with SVG View Fragments | 307

Figure 9-2. A web page using SVG view fragments to modify an exist‐
ing file

308 | Chapter 9: A New Point of View

As with the <view> element, any parameters not specified in the
SVG view fragment are taken from the values on the <svg> element
(or the defaults).

Blink browsers prior to Chromium version 42
(mid-2015) incorrectly ignored all view
attributes from the <svg> when an SVG view
fragment is used; for consistent cross-browser
results, include all the nondefault attributes in
the fragment.

In this case, the original file from Example 6-2 did not contain any
viewBox attributes, so it is always explicitly specified in order to trig‐
ger scaling.

As with Example 9-1, the sizing for the <iframe> varies by browser:
Figure 9-2 is from Chrome, and uses the 20px width and height
defined in the original file. The aspect ratio is therefore never distor‐
ted, and the padding only adds a single pixel between the heart and
the frame.

In contrast, the SVG-as-object fits to the <object> element size,
once the view fragment gives it a viewBox.

Future Focus
Cropping Any Image in a URL

The Media Fragments URI syntax is a proposal for view-based and time-based
subsetting of generic media files (images, video, and audio).

So far, the time aspect of media fragments has been more popular. It is used in
many JavaScript-based video embedding tools, and is supported in some
browsers for directly controlling HTML <video> and <audio>. SVG 2 adds
time-based media fragments to control animations (but that doesn’t have sup-
port yet).

The time-based media fragment structure is
#t=start,end, where start and end are times repre-
sented either as a number of seconds or as hh:mm:ss
format. Either the start or end value may be omitted
(meaning, the normal start or end of the file is used).

Rescaling on the Fly, with SVG View Fragments | 309

The view-like part of media fragments look like this:

fileURL#xywh=x,y,width,height

The meaning of x, y, width, and height is the same as the equivalent parts of a
viewBox value. You could therefore use it to crop a PNG or JPEG file in the
same way that a view can crop an SVG. For SVG, an xywh fragment could be
used instead of an svgView fragment. (But don’t, because of browser support.)

You could use a time fragment in combination with an SVG view fragment by
separating the values with an & (ampersand) character, to create a cropped
view of a video or animation.

Interactive Views
The code in Example 9-1 used HTML links to trigger the new views.
There is also an <a> link element in SVG, which can be used to link
out to other files or to link to a targeted view (predefined or via
#svgView() notation) in the same file. The link reference is indica‐
ted with a xlink:href attribute, but it is otherwise similar to
HTML.

An SVG <a> element is a generic grouping ele‐
ment that can contain either text or graphics.
We’ll discuss more about SVG links in Chap‐
ter 18.

By default, an SVG link will update the file that contains it, whether
that is inside an <object>, <iframe>, or the main tab. That means
you can link to a <view> in the same file without repeating the file‐
name, as in Example 9-2, which creates an SVG that can zoom in on
itself—and then back out again. Figure 9-3 shows both views of the
drawing.

310 | Chapter 9: A New Point of View

Figure 9-3. An interactive SVG, before and after being zoomed in to a
view

Example 9-2. Using SVG links and views to create interactive zooming

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink" id="top"
 height="200px" width="200px" viewBox="0,0 100,100">
 <title>Zoomable Interactive SVG</title>
 <style>
 text {
 font: 15px Snap ITC, Ravie, Markerfelt, Impact, sans-serif;
 text-anchor: middle;
 }
 text a { fill: indigo; }
 </style>
 <rect width="100" height="100" fill="lightBlue" />
 <path fill="palevioletred"
 d="M40,50 C-20,45 15,25 20,20 S45,-20 50,40
 C55,-20 75,15 80,20 S120,45 60,50
 C120,55 85,75 80,80 S55,120 50,60
 C45,120 25,85 20,80 S-20,55 40,50 Z" />
 <circle fill="gold" stroke="gold" stroke-width="3"
 stroke-dasharray="0.4 3" stroke-linecap="round"
 cx="50" cy="50" r="8" />
 <text y="100" dy="-0.5em" x="50">
 <a xlink:href="#zoom">Zoom in!</text>
 <view id="zoom" viewBox="40,40 20,20" />
 <text y="50" dy="0.5ex" x="50" style="font-size: 3px">
 <a xlink:href="#top">Zoom out!</text>
</svg>

The <svg> has a 100×100 viewBox, and the id of top.

Interactive Views | 311

The backdrop rectangle (and the rest of the graphic) is sized
with absolute lengths, not percentages, so it won’t move around
when we change the viewBox size.

The flower petals are a single <path> element. Each petal is a 90°
rotation of the previous—so it would have been a lot easier to
define if the bearing command from SVG 2 was supported
anywhere.

The lobed pattern on the center of the flower, in contrast, was
created from a simple <circle> and a lot of fancy stroke prop‐
erties—which you’ll learn all about in Chapter 13.

The <a> link with the “Zoom in!” text points to an element with
the id of zoom.

That id is located on the <view> element, which defines a new
viewBox that is 20×20 units, centered around the center of the
flower.

That conveniently happens to be where we drew the “Zoom
out!” link, in a much smaller font-size. This link points back
to the root <svg> element.

If this SVG were used in an interactive environment (e.g., embedded
as an <object>), clicking on the “Zoom in!” text would cause the
graphic to do just that, switching to the cropped view. Clicking on
“Zoom out!” would change the target fragment, cancelling the view
—and zooming back to the original scale. Of course, to be interac‐
tive, the SVG would need to be embedded in an <object> or
<iframe> (not an).

More Online
Interactive effects aren’t the only time you might want to switch
SVG views. When creating a responsive web layout, you often want
to change the view, cropping the image for different screen sizes or
orientations.

We’ve used CSS media queries within SVG to adjust font sizes and
stroke thicknesses for different-sized screens. But CSS can’t (yet)
change the viewBox from inside the SVG file.

312 | Chapter 9: A New Point of View

Instead, you need to change the URL of the file, from the web page
that embeds it. The HTML <picture> element allows you to do this
automatically, based on screen size or other media queries.

Read more about using <picture> with SVG views in “Picking the
Perfect View”:

https://oreillymedia.github.io/Using_SVG/extras/ch09-picture.html

Packaged Deals
The view examples so far have focused on fine-tuning the display of
a single graphic. The rest of the chapter looks at ways to pack multi‐
ple graphics into a single SVG file—and then use URL fragments to
show only one at a time.

The <view> element is key to one of the ways to create a single SVG
file with many icons within it. As we mentioned briefly in “Using
SVG Images Within CSS” on page 87 in Chapter 3, an image sprite
file is one in which a set of icons is laid out in a neat grid format;
you then show only one cell in that grid at a time.

Sprites reduce the number of files the browser downloads from the
web server, which can speed up page load times, and allow the Gzip
compression algorithm to condense repeated markup from one icon
to the next.

Traditional CSS sprites require you to coordinate your sprite layout
with CSS properties that crop the image when it is used. With SVG
views, you can predefine the cropping coordinates for each icon
within the SVG file, and use the sprites anywhere you can use an
image URL with a target fragment.

Sprites don’t qualify as “nonessential adjust‐
ments” of an image, so you’ll need to keep the
browser support limitations in mind: use them
in or <object>, not CSS background
images, and only if both the SVG and the HTML
page will be served from the same secure
domain.

Packaged Deals | 313

https://oreillymedia.github.io/Using_SVG/extras/ch09-picture.html

With this approach, we can create a single file with all four of the
card-suit icons.

If you were drawing the icons in a graphics program, you could use
rulers or guidelines to divide up the file into your different icon
regions, exactly matching the coordinates you’ll use for your views.

Since we already have all our shapes drawn to appear in a 20×20
region, we want to shift them in the main graphic without redefin‐
ing the coordinates. One way to do this would be to use coordinate
system transformations, as we’ll show in Chapter 11. For now, we’ll
take a different approach: defining local coordinate systems with
nested <svg> elements.

In an SVG graphic, you can always create a nested coordinate sys‐
tem simply by introducing a new <svg> element. Nested SVGs have
x, y, width, and height attributes that define the rectangle in which
the new coordinate system will be fit.

The nested <svg> can also have viewBox and preserveAspectRatio
attributes to create a custom coordinate system, the same as for a
root SVG. All graphical elements contained within the nested <svg>
element will be drawn in the new coordinate system.

By default, x and y are 0, width and height are
100%, and there is no viewBox scaling. So, by
default, your nested SVG exactly matches the
parent coordinate system.

Some points to consider when using nested SVGs:

• If you don’t include a viewBox, a default coordinate system is
created in which the length of the user units is the same as for
the parent SVG. However, the origin is reset to the top-left cor‐
ner of the nested SVG (defined by x and y) and percentages are
reset to use the nested SVG’s width and height.

• If the parent SVG used preserveAspectRatio= "none", the
vertical and horizontal units used to establish the new coordi‐
nate system may not be equal. The aspect ratio of the new coor‐
dinate system will be evaluated according to the length in parent
units, not according to the actual displayed aspect ratio.

314 | Chapter 9: A New Point of View

In other words, it is impossible to “reset” aspect ratio control
once it has been turned off.

• By default, any content that extends outside the width and
height of the nested <svg> will be clipped. You can change this
behavior by setting the CSS overflow property (or presentation
attribute) to visible.

When using <view> elements with nested <svg>
elements, do not nest the <view> inside the
inner <svg> regions. The SVG specifications
were not clear about how a <view> within a nes‐
ted <svg> should be interpreted, and each
browser handles it differently.
Instead, use a <view> as a sibling to the <svg>,
with its viewBox matching the x, y, width, and
height on the paired <svg>. The coordinates in
the view’s viewBox apply to the top-level SVG,
not the nested coordinate system.

As we warned at the top of the chapter, when using views to crop an
SVG (changing the viewBox width and height), don’t use percen‐
tages that depend on the main SVG’s dimensions. That means: don’t
use percentages to lay out your nested <svg> elements. However,
you can safely use percentages inside the nested coordinate systems,
because they have their own viewBox context.

With all that advice in mind, Example 9-3 takes the four suit icons
from Chapter 6 and arranges them in a grid within a single SVG file,
using nested <svg> elements. For each icon, a <view> element is
defined that sets the viewBox so it will show only that icon.

Example 9-3. Using views and nested SVGs to arrange multiple icons
in a single file

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 width="400px" height="400px" viewBox="0 0 200 200" >
 <title>Card Suits</title>

 <view id="diamond" viewBox="0 0 100 100"/>
 <svg height="100" width="100" viewBox="0 0 20 20">
 <title>Diamond</title>

Packaged Deals | 315

 <path fill="red"
 d="M3,10L10,0 17,10 10,20Z
 M9,11L10,18V10H15L11,9 10,2V10H5Z" />
 </svg>

 <view id="club" viewBox="100 0 100 100"/>
 <svg x="100" y="0" height="100" width="100" viewBox="0 0 20 20">
 <title>Club</title>
 <path fill="black"
 d="M9,15.5A5,5 0 1 1 5.5, 7.5
 A5,5 0 1 1 14.5, 7.5A5,5 0 1 1 11, 15.5
 Q11,20 13,20H7Q9,20 9,15.5Z" />
 </svg>

 <view id="spade" viewBox="0 100 100 100"/>
 <svg x="0" y="100" height="100" width="100" viewBox="0 0 20 20">
 <title>Spade</title>
 <path fill="black"
 d="M9,15C9,20 0,21 0,16S6,9 10,0C14,9 20,11 20,16
 S11,20 11,15Q11,20 13,20H7Q9,20 9,15Z" />
 </svg>

 <view id="heart" viewBox="100 100 100 100"/>
 <svg x="100" y="100" height="100" width="100" viewBox="0 0 20 20">
 <title>Heart</title>
 <path fill="red"
 d="M10,6 Q10,0 15,0T20,6Q20,10 15,14
 T10,20Q10,18 5,14T0,6Q0,0 5,0T10,6Z" />
 </svg>
</svg>

The default view of the SVG file—with all four icons visible—is
shown in Figure 9-4.

The SVG file from Example 9-3 can be used to display the icons in
HTML or <object> elements. You’d display individual icons
by adding the target fragment (#heart, #spade, etc.) to the URL.

316 | Chapter 9: A New Point of View

Figure 9-4. An SVG icon sprite

Example 9-4 creates a sample website that does just that, using the
icons as images in HTML. It uses the icons both as inline icons and
as illustrations, adding CSS background, borders, and padding to
the element to create a different appearance for the larger fig‐
ures. Figure 9-5 shows the result.

Packaged Deals | 317

Figure 9-5. A web page with many images that all come from one
image file

Example 9-4. Using an SVG view sprite within a web page

HTML MARKUP:
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8" />
 <title>Using SVG Icons from a Sprite Sheet with Views</title>

318 | Chapter 9: A New Point of View

 <link rel="stylesheet" href="sprites-suits.css" />
</head>
<body>
 <h2>Card suits</h2>
 <figure role="img" aria-label="The four card suits">

 </figure>
 <p>In playing cards, a suit is one of several categories into
 which the cards of a deck are divided. Most often, each card
 bears one of several symbols showing to which suit it belongs;
 the suit may alternatively or in addition be indicated by the
 color printed on the card. Most card decks also have a rank for
 each card and may include special cards in the deck that belong
 to no suit, often called jokers.</p>
 <p>The four suits in the standard French deck—also used
 in most English-speaking countries—are
 spades or <i lang="fr">piques</i>
 (<img class="icon inline" src="suits-views.svg#spade"
 alt="a black spade" width="16" height="16" />),
 hearts or <i lang="fr">couers</i>
 (<img class="icon inline" src="suits-views.svg#heart"
 alt="a red heart" width="16" height="16" />),
 clubs or <i lang="fr">trèfles</i>
 (<img class="icon inline" src="suits-views.svg#club"
 alt="a black club" width="16" height="16" />),
 and diamonds or <i lang="fr">carreaux</i>
 (<img class="icon inline" src="suits-views.svg#diamond"
 alt="a red diamond" width="16" height="16" />).
 </p>
 <small>Text adapted from
Wikipedia
 </small>
</body>
</html>

The role and aria-label on the <figure> element tell the
browser to treat the four graphics as a single image for accessi‐
bility purposes—while still allowing us the layout flexibility of
having four separate elements.

The inline images, in contrast, each have their own alt text.

Packaged Deals | 319

CSS STYLES: sprites-suits.css
body {
 font-family: serif;
 background-color: #CDF;
}
figure {
 padding: 0;
 margin: 0;
}
.icon {
 width: 1em;
 height: 1em;
}
.icon.big {
 width: 4em;
 height: 4em;
}
.icon.float {
 display: block;
 float: left;
 clear: left;
 margin: 0 0.5em 0.5em 0;
 padding: 0.2em;
 border: gray solid thin;
 background-color: white;
}
.icon.inline {
 display: inline;
 vertical-align: middle;
 padding: 0.1em;
}

There are two different types of icons used in the web page—large
floated graphics and the inline icons in the text—but the styling is
controlled by a set of logically independent classes.

The position and layout of each icon is controlled by one of the
classes inline or float. The float class also adds the border, back‐
ground, and padding for the illustrations.

The size of each icon is by default 1em square, but is enlarged to
4em square with the big class.

However, the intrinsic size of our SVG, defined by the width and
height in our suits-views.svg file (Example 9-3) is 400px square. If
our CSS doesn’t load, that’s the size that we’ll get. That would be
mildly problematic for the floated figures, but it would completely

320 | Chapter 9: A New Point of View

ruin the inline layout. To prevent that, we give the inline images a
default width and height of 16 (meaning 16px) in the markup.

The width and height attributes on HTML
 elements only accept integer values, for
the number of pixels. Just like SVG presentation
attributes, they will be overridden by any CSS
width and height properties on the element.

Even if the layout of the web page were much more flexible, you
would still usually need to set both width and height on the images,
controlling the aspect ratio to match the view.

If you don’t, you may find that your helpful sprites turn into trouble‐
some imps, sneaking in where they don’t belong.

Example 9-5 gives the code for a (very basic) web page layout where
each icon is drawn within a fixed-height image that stretches
according to the width of the page. Figure 9-6 shows the result.

Example 9-5. Using an SVG view sprite, without constraining the
image dimensions to the aspect ratio

HTML MARKUP:
<!DOCTYPE html>
<html lang="en">
<head>
 <title>SVG views, in Flexibly-Sized Images</title>
 <style>
 img {
 display: block;
 width: 90%;
 height: 80px;
 margin: 10px auto;
 background-color: lightgreen;
 }
 </style>
</head>
<body>
 <code>#diamond</code>
 <code>#heart</code>
 <code>#club</code>
 <code>#spade</code>
</body>
</html>

Packaged Deals | 321

Figure 9-6. An SVG icon sprite used in a web page, without clipping to
the icon dimensions

The extra icons appear because the (default) meet value for
preserveAspectRatio creates a view that only takes up part of the
available drawing space when the aspect ratio doesn’t match.

The viewBox for each <view> ensures that the selected icon will scale
to fit the drawing region, and it will be centered within the image.
However, it does not clip the content to that view. The CSS overflow

322 | Chapter 9: A New Point of View

property doesn’t help. Hiding overflow only clips to the drawing
region for the <svg>, not to the viewBox.

Ideally, you could use auto sizing to let the browser size the image to
match the view. Nearly all browsers support autosizing of SVG in
 and <object>, using the viewBox to determine the intrinsic
aspect ratio of the image when you set height or width but not
both. This should mean that the browser will automatically clip the
image to the specified view.

Unfortunately, this cannot be used reliably in practice:

When you use an SVG view to reset the
viewBox, web browsers currently do not update
the intrinsic aspect ratio that is used for auto
height and width. Instead, they use the aspect
ratio from the viewBox on the root <svg> to set
the image size, and use the view only for scaling.

In the SVG from Example 9-3, the aspect ratio of the image as a
whole (200:200) is equal to the aspect ratio of the individual views
(100:100). As a result, for this particular case you can safely use
views and autosizing in all browsers. With a fixed height and width:
auto, each image would become a square, cropped to the correct
icon.

But if you know the aspect ratio in advance, you could just set the
width to match.

For the more general case, a different approach is needed to ensure
that only one icon is displayed at a time.

One option is to space the icons out with lots of whitespace in
between: unlike with PNG sprites, this does not add to the SVG file
size. However, it is difficult to know in advance how much space you
would need, and the extra size can lead to extra memory require‐
ments in some browsers, which rasterize the entire image even if
only part is displayed.

The other strategy would be to use the CSS :target pseudoclass to
only show each graphic when the correct view is targeted. The fol‐
lowing CSS code, if added to Example 9-3, would hide the icons
unless the correct <view> (the previous sibling in the document)
was in effect:

Packaged Deals | 323

view:not(:target) + svg { display: none; }

Older versions of Firefox (prior to 39) did not
apply the :target pseudoclass for <view> ele‐
ment targets.

SVG 1 defined a viewTarget attribute for <view> elements that
would allow you to specify the logical “target” element for a view:
that is, the drawing element(s) that are visually emphasized by the
view. The value of viewTarget would be one or more element id
values:

<view id="diamond" viewBox="0 0 100 100"
 viewTarget="diamondsvg" />
<svg id="diamondsvg" viewBox="0 0 20 20"
 height="100" width="100">

The original specifications suggested that this could be somehow
used directly to style the targeted element. But that was never imple‐
mented in browsers; the sibling-selector (+ or ~) approach is the
only one that works.

Current drafts of SVG 2 have dropped
viewTarget. This reduces some of the semantic
logic of views, but doesn’t actually remove any
functionality in browsers.

Showing and hiding graphics with :target styles can also be used
without <view> elements, with a URL that targets the graphical con‐
tent directly. This is the basis of an SVG stack file.

Flat Pack Stacks
If only one icon will be displayed at any time—because of :target
styles—you don’t really need to space them out into a sprite grid.
Instead, you can stack them all on top of each other, as layers in the
same coordinate space—an SVG stack file.

By stacking all your icons in the same region of your SVG, you avoid
having to change the viewBox to switch from one to the other. But it
means that all the icons need to be drawn to fit in the same viewBox
dimensions.

324 | Chapter 9: A New Point of View

Of course, you would not normally see them stacked together in the
browser. The :target style hides nontargeted graphics, so if you
open the file in a browser without using a target fragment, you
wouldn’t see anything at all. But for many designers, it can be easier
to work with stacked icons in a graphics program. The software’s
layers feature can hide or show each icon, so the designer can ensure
that they are all neatly aligned in the same width and height.

Figure 9-7. An SVG stack used in a web page

Flat Pack Stacks | 325

Example 9-6 redefines the card-suit set so that it uses the SVG stack
structure. Figure 9-7 shows the result when this file is used in the
web page from Example 9-5.

Example 9-6. Using :target styles to stack multiple icons in a single file

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 width="100px" height="100px" viewBox="0 0 20 20" >
 <title>Card Suits</title>
 <style type="text/css">
 svg > svg:not(:target) {
 display: none;
 }
 </style>

 <svg id="diamond">
 <title>Diamond</title>
 <path fill="red"
 d="M3,10L10,0 17,10 10,20Z
 M9,11L10,18V10H15L11,9 10,2V10H5Z" />
 </svg>

 <svg id="club">
 <title>Club</title>
 <path fill="black"
 d="M9,15.5A5,5 0 1 1 5.5, 7.5
 A5,5 0 1 1 14.5, 7.5A5,5 0 1 1 11, 15.5
 Q11,20 13,20H7Q9,20 9,15.5Z" />
 </svg>

 <svg id="spade">
 <title>Spade</title>
 <path fill="black"
 d="M9,15C9,20 0,21 0,16S6,9 10,0C14,9 20,11 20,16
 S11,20 11,15Q11,20 13,20H7Q9,20 9,15Z" />
 </svg>

 <svg id="heart">
 <title>Heart</title>
 <path fill="red"
 d="M10,6 Q10,0 15,0T20,6Q20,10 15,14
 T10,20Q10,18 5,14T0,6Q0,0 5,0T10,6Z" />
 </svg>
</svg>

The viewBox on the parent SVG has been reset to the dimen‐
sions of a single icon.

326 | Chapter 9: A New Point of View

The style rule hides all the nested SVGs unless they are the tar‐
get of a URL fragment.

The id values have been moved to the nested <svg> elements.

The x and y attributes have been removed from the subsequent
<svg> elements, so all the icons appear in the same place.

Similarly, the height and width attributes have been removed
so that each nested SVG takes up the full (100%) space of the
parent SVG. In fact, you don’t even need to use nested SVGs
anymore, since you’re not creating nested coordinate systems—
the results would be the same with <g> elements.

The use of a :not() selector ensures that programs that don’t recog‐
nize the :target pseudoclass (such as graphics editors) will display
all the content. Figure 9-8 shows what the file looks like in Inkscape,
with all layers visible.

Figure 9-8. An SVG stack, as it appears in a graphics editor

Although SVG stacks perform better than SVG view sprites in this
example, the choice between them is not always straightforward.
Here are the main differences:

Flat Pack Stacks | 327

• SVG view sprites, with each icon arranged in a grid, are easy to
work with in a browser, since you can see all the icons at once;
stacks require a graphics program that can show and hide indi‐
vidual layers as you work.

• You can also use view sprites with CSS background images,
without target fragments, by using background-size and
background-position to display the correct portion of the file.
This has almost-universal browser support, although you need
width and height in your SVG file, and even then some older
WebKit (Android) browsers have bugs with background-

position and SVG.
In contrast, stacks do not display anything if target fragments
are not supported by the browser, and so cannot reliably be
used in CSS.

• In a sprite file, the individual icons can be different sizes or
aspect ratios, so long as you don’t need the browser to autosize
the element based on aspect ratio; stacks use a single viewBox
for all icons.

• For sprites, you need to externally clip the image to the chosen
icon; stacks use :target styles to hide the extra content.

Both stacks and sprites are ways to compile multiple icons in a sin‐
gle file, when that file will be used as an image (or embedded object)
in a web page. Because they rely on the URL target fragment, they
only work when you are embedding SVG by URL reference.

When you’re using inline SVG in HTML—or when using icons
within a larger SVG file—a different approach is required. Chap‐
ter 10 will explore how icons and other content can be reused within
a single document.

Summary: Cropping Embedded SVG Files
The SVG viewBox and preserveAspectRatio options we intro‐
duced in Chapter 8 let you control the cropping and alignment of
the SVG graphic. But often the exact crop and alignment you need
will change each time you use a file. SVG files allow you to dynami‐
cally adjust these parameters when you use the SVG, by altering the
target fragment of the URL you use to reference the SVG file.

328 | Chapter 9: A New Point of View

There are two approaches to views: predefined views, created with
<view> elements in the SVG file and referenced by ID, or SVG view
fragments, where all the view parameters are set in the URL. A
related technique is the SVG stack method, which uses URL target
fragments to hide or show content using the CSS :target pseudo‐
class.

There are a number of browser inconsistencies and support limita‐
tions to keep in mind when you’re using views. The most practical
use case is for slight adjustments where the graphic will still look
acceptable if the view isn’t applied: padding or cropping an image, or
changing the preserveAspectRatio alignment.

More complex subsetting of images, using views or :target styles,
are currently only recommended where support is good: within
 or <object> tags, for same-origin embeds on secure domains.

More Online
The <view> element is included in the “Document Structure Ele-
ments” section of the markup guide:

https://oreillymedia.github.io/Using_SVG/guide/
markup.html#structure

The HTML elements for embedding SVG (with or without views) are
summarized in the “Embedding SVG in HTML” guide:

https://oreillymedia.github.io/Using_SVG/guide/embedding.html

Summary: Cropping Embedded SVG Files | 329

https://oreillymedia.github.io/Using_SVG/guide/markup.html#structure
https://oreillymedia.github.io/Using_SVG/guide/markup.html#structure
https://oreillymedia.github.io/Using_SVG/guide/embedding.html

CHAPTER 10

Seeing Double
Reusing Content

An SVG file is a structured description of a graphic that can be
organized into logical parts and groups. An important consequence
of this structure is that you can reuse the same content in multiple
contexts without having to repeat all the information used to create
that graphic. Symbols, icons, and other repeated motifs can be
defined once, then used again and again.

This chapter examines the key structural SVG elements that allow
you to copy content defined elsewhere into your graphic.

When it comes to reusing content, there are two distinct strategies
used in SVG. On the one hand, you can reuse entire images, embed‐
ding the complete graphic in your SVG similar to how an ele‐
ment embeds an image in an HTML page. On the other hand, you
can reuse individual SVG shapes or groups, from another file or
another part of the same file.

With the SVG <image> element, you can embed not only SVG files
but also raster image formats. This allows an SVG to include photos
and other graphics that cannot effectively be represented with vector
drawing elements. Regardless of whether an embedded image was
originally SVG or not, when you embed it as an image, it is treated
as an indivisible element. It can be manipulated with graphical
effects, but its component parts are inaccessible to styles or scripts
from the main document.

331

In contrast, when you duplicate SVG content with a <use> element,
you duplicate the vector graphics instructions for that content. The
duplicated elements are rendered almost as if they were cloned into
the markup, inheriting new styles from the context where they are
used.

Reduce, Reuse, Recycle
We introduced the <use> element in Chapter 1, but did not explore
its full potential. In that chapter, <use> elements were used to dupli‐
cate, position, and style the circles in the stoplight graphic.

A quick recap of the basics:

• The <use> element allows you to duplicate SVG graphics
without repeating the complete markup.

• The original copy of the graphic is identified with an id value,
and the <use> element references it with an xlink:href

attribute, where xlink is the standard prefix for the namespace
http://www.w3.org/1999/xlink.

• To prevent the original copy from being drawn directly, you can
put it inside a <defs> element, indicating that it is a definition
for future reuse.

• You can position the duplicated graphics using x and y
attributes on the <use> element.

• The duplicated graphics inherit style properties from the <use>
element.

We’ve also hinted a few times that the element you’re reusing doesn’t
have to be in the same file. You can use a URL to reference another
file, and then a target fragment to reference the element ID, like
<use xlink:href="icons.svg#shape" />. But there are limita‐
tions, which we’ll get to in “File Management” on page 341.

There are a few more things to know about <use> elements, now
that we’ve discussed coordinate systems:

• The content duplicated by a <use> element does not have to be a
single shape. It can be a <text> element or a container such as a
group (<g> element) or an <svg>.

332 | Chapter 10: Seeing Double

http://www.w3.org/1999/xlink

• The x and y attributes on the <use> element reposition the
coordinate system origin for the graphics it duplicates—and
also for the <use> element itself, similar to a transform.

The <use> element can also take width and height attributes. They
allow you to create a scaled, nested coordinate system, but only in
specific cases:

• If the duplicated element is an <svg> with a viewBox attribute,
the copy will scale to fit these new dimensions (respecting any
preserveAspectRatio options on the original). The same is
true for duplicated <symbol> elements, which we’ll introduce in
“Symbolic Usage” on page 338.

• The width and height attributes have no effect on other con‐
tent. They do not create a new coordinate system width and
height on their own, meaning they do not affect percentage
lengths of duplicated shapes that aren’t contained inside an
<svg>.

• If a duplicated <svg> has width and height attributes, and the
<use> element does not, those dimensions will be used to size
the SVG (similar to what would happen if you drew the SVG in
an HTML <object>).

• Otherwise, the defaults for width and height are 100%, mean‐
ing a duplicated <svg> will scale to fill the current SVG coordi‐
nate system, offset by the <use> element’s x and y attributes.

• Any x and y positioning attributes on an <svg> will be applied
to the duplicate in addition to the x and y values for the <use>,
as will transforms.

That last point is also true for duplicated shapes and groups: posi‐
tioning attributes and transforms on the original elements apply in
addition to the attributes and transforms on the <use>. Only width
and height on <svg> and <symbol> have the special override
behavior.

Usually, it’s easiest if the original graphics are
positioned at—or centered around—the origin.
That way, the x and y attributes on the <use>
element have predictable results.

Reduce, Reuse, Recycle | 333

If you use percentage lengths on shapes inside your reused <svg> or
<symbol>, the percentages will be recalculated according to the
width or height of the coordinate system created by the <use>
element.

In all other cases (that is, if the <use> element directly references the
shape or a <g> group), percentage lengths are best avoided.

In current web browsers, percentage lengths are
not recalculated for reused shapes that aren’t
part of a nested coordinate system. The original
SVG specs were not clear about the correct
behavior in this case.

Putting it all together, Example 10-1 reuses the card-suit icons from
Chapter 6 to draw complete playing cards. The resulting cards are
displayed in Figure 10-1.

Figure 10-1. Playing card graphics created with reused SVG icons

Example 10-1. Reusing SVG icons to draw playing cards

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="400px" height="180px" viewBox="0 0 400 180" >
 <title>Playing Cards</title>
 <style type="text/css">
 svg:root {
 font-size: 24px;
 font-weight: bold;
 }

334 | Chapter 10: Seeing Double

 svg {
 overflow: visible;
 }
 .card {
 stroke: gray;
 fill: linen;
 }
 .diamond, .heart {
 fill: red;
 }
 .club, .spade {
 fill: black;
 }
 </style>
 <defs>
 <svg height="20" width="20" viewBox="0 0 20 20"
 id="diamond">
 <title>Diamond</title>
 <path d="M3,10L10,0 17,10 10,20Z
 M9,11L10,18V10H15L11,9 10,2V10H5Z" />
 </svg>

 <svg height="20" width="20" viewBox="0 0 20 20"
 id="club">
 <title>Club</title>
 <path d="M9,15.5A5,5 0 1 1 5.5, 7.5
 A5,5 0 1 1 14.5, 7.5A5,5 0 1 1 11, 15.5
 Q11,20 13,20H7Q9,20 9,15.5Z" />
 </svg>

 <svg height="20" width="20" viewBox="0 0 20 20"
 id="spade">
 <title>Spade</title>
 <path d="M9,15C9,20 0,21 0,16S6,9 10,0C14,9 20,11 20,16
 S11,20 11,15Q11,20 13,20H7Q9,20 9,15Z" />
 </svg>

 <svg height="20" width="20" viewBox="0 0 20 20"
 id="heart">
 <title>Heart</title>
 <path d="M10,6 Q10,0 15,0T20,6Q20,10 15,14
 T10,20Q10,18 5,14T0,6Q0,0 5,0T10,6Z" />
 </svg>

 <rect id="card-front" class="card"
 width="120" height="160" rx="20" />
 </defs>

 <svg width="140" height="180"
 class="club" id="club5">
 <title>5 of clubs</title>

Reduce, Reuse, Recycle | 335

 <use xlink:href="#card-front" x="10" y="10" />
 <text x="15" y="35">5</text>
 <text x="105" y="160">5</text>
 <use xlink:href="#club" x="40" y="40" />
 <use xlink:href="#club" x="80" y="40" />
 <use xlink:href="#club" x="60" y="80" />
 <use xlink:href="#club" x="40" y="120" />
 <use xlink:href="#club" x="80" y="120" />
 </svg>

 <svg x="130" width="140" height="180"
 class="heart" id="heart3">
 <title>3 of hearts</title>
 <use xlink:href="#card-front" x="10" y="10" />
 <text x="15" y="35">3</text>
 <text x="105" y="160">3</text>
 <use xlink:href="#heart" x="60" y="40" />
 <use xlink:href="#heart" x="60" y="80" />
 <use xlink:href="#heart" x="60" y="120" />
 </svg>

 <svg x="260" width="140" height="180"
 class="spade" id="spadeA">
 <title>Ace of spades</title>
 <use xlink:href="#card-front" x="10" y="10" />
 <text x="15" y="35">A</text>
 <text x="105" y="160">A</text>
 <use xlink:href="#spade" x="30" y="50"
 width="80" height="80" />
 </svg>

 <!-- and many more, to draw the rest of the cards -->
</svg>

For this and most of the rest of the examples in the book, we’ll
be following our own advice and including both width and
height dimensions and a viewBox on our root <svg> elements;
the former define the default size when displaying the graphic
on its own, while the latter ensures it will scale correctly when
displayed at other sizes.

As this is a relatively complex graphic, we’ve expressed all the
presentation styles CSS using classes; this makes it easier to
change styles later.

The four icons are defined as individual <svg> elements within
a <defs> block. Each icon has both default size attributes (width
and height) and a viewBox.

336 | Chapter 10: Seeing Double

A rounded <rect> is also predefined; it will be used to draw the
basic card shapes.

Each card is also contained within a nested <svg> to create a
self-contained element coordinate system. However, these SVGs
are not inside the <defs>, and so will be drawn.

We construct each card by reusing the basic card shape, using
<text> elements to write the number or letter in the corners,
and then reusing the basic icon as many times as appropriate,
positioning it with x and y attributes.

For the number cards, the icons are used at their default
(20×20) size; for the ace, we create the large icon by setting
width and height attributes on the <use> element.

Reusing elements with <use> can be recursive. You can reuse a com‐
ponent that contains other reused components—so long as you
don’t create any circular reference loops!

This means, instead of creating a simple grid of playing cards, you
could predefine a complete set of cards, and then code up a card
game layout where each card is drawn with a single <use> element.
For example, an ace of spades would be <use xlink:href=

"#spadeA"/>. Of course, if you were going to do that, you’d want to
go back and remove the x and y attributes from each playing card
<svg>, so that the cards in your game would be positioned predicta‐
bly.

Future Focus
The <use> Element Shadow DOM

There are a couple minor changes for <use> elements in SVG 2, and one major
change, which should hopefully only have minor effects on most SVG designs.

The minor changes:

• The xlink namespace is optional; instead, a simple href attribute in the
default namespace can be used. This is already supported in most new
browsers. But for backward compatibility and support in Safari, you’ll
need to keep using xlink for a while longer.

Reduce, Reuse, Recycle | 337

• You will be able to reuse an entire SVG file, even if the root element does
not have an id attribute: just reference the file URL without a target frag-
ment (although see “File Management” on page 341 for issues with the
<use> element and external files).

A more fundamental change to the spec relates to how duplicated content is
implemented within the DOM. In HTML, a lot of work is ongoing to make it
easier to create modular components and interactive widgets that can be
inserted into web pages with simple markup, using what is known as a
Shadow DOM. These web components have a number of similarities with SVG
<use> elements, and Shadow DOM was in part inspired by how <use> ele-
ments worked.

However, there are also a lot of differences between <use> elements and
HTML Shadow DOM web components. Each instance of a web component is
an independent, modifiable DOM fragment. Once created, it is no longer
linked to the template on which it was based. In contrast, <use> elements are
live copies, always linked to the original.

The SVG 2 specification proposes a set of rules for recreating the <use> behav-
ior in the Shadow DOM model. But at the time of writing (mid-2017), browser
implementations are quite inconsistent under the hood. Blink and WebKit are
partially transitioned to Shadow DOM, IE and Edge still use the SVG 1.1 model
(with a couple compatibility tweaks in Edge), and Firefox has its own model
that doesn’t match any specs (although recent changes fix some of the most
problematic inconsistencies).

You’re most likely to notice the differences if you try to react to DOM events
(like clicks) that start in <use> elements, something we’ll discuss in Chapter 18.

Symbolic Usage
Creating scalable, reusable icons, as was done in Example 10-1 with
nested SVG elements, is a common requirement—so common that
SVG has a special element for this purpose: the <symbol>.

A <symbol> is a compound graphic defined specifically for the pur‐
pose of reuse. Similar to a nested <svg>, a <symbol> can be given
viewBox and preserveAspectRatio attributes so that it will scale to
fit the dimensions specified when it is used.

338 | Chapter 10: Seeing Double

The contents of the <symbol> are never drawn directly; they are only
drawn through <use> instances. In this way, a <symbol> is similar to
an <svg> inside a <defs> element.

You can place your symbol code inside a <defs>
definition block, to maintain a logical organiza‐
tion for your SVG file, but it isn’t required.

The <symbol> does not add any extra functionality that you can’t
achieve with an <svg> inside a <defs>. However, it adds clarity
about the purpose of your file. Many SVG icon systems and related
tools look specifically for <symbol> elements to identify independent
icons. For example, in the latest versions of Inkscape (0.91+), you
can import a file of <symbol> elements, and use them in other
drawings.

The key differences between <symbol> and <svg> are as follows:

• The <symbol> is never drawn directly.
• There are no x and y attributes on the <symbol>, because it is

never directly positioned in the graphic.
• There are no width and height attributes on the <symbol>; its

size is controlled entirely by the <use> element.

The last point can sometimes be a limitation; in Example 10-1,
switching to <symbol> for the suit icons would require a lot of extra
attributes on the <use> elements, most of which currently reproduce
the <svg> at its default size.

When you reuse a <symbol> with a <use> ele‐
ment that doesn’t have width and height speci‐
fied, the default <use> dimensions apply: 100%
of the parent SVG’s height and width.

Nonetheless, if we did want to convert the icons to symbols—and
future examples will use such symbols—they would look something
like this:

<symbol viewBox="0 0 20 20" id="diamond"
 style="overflow: visible">

Symbolic Usage | 339

 <title>Diamond</title>
 <path d="M3,10L10,0 17,10 10,20Z
 M9,11L10,18V10H15L11,9 10,2V10H5Z" />
</symbol>

Because this symbol is intended for reuse as a single-color icon, the
color has not been specified in the definition. You would color the
diamond using inherited styles defined on the <use> element, so
you could make it bright red, or crimson, or light purple pink if you
chose. Similarly, strokes or other styles could be set at the time of
use.

The one style that is included is the CSS overflow property. Like the
<svg> element—and all other elements that can take a viewBox
attribute—the <symbol> is by default set to hide any content that
overflows its available width and height. In the case of a <symbol>,
that’s the width and height defined by the <use> element (or by the
<use> element’s parent SVG, if it doesn’t have specific width and
height attributes).

With the card-suit icon symbols, which exactly touch the bound‐
aries of their viewBox, this would mean that any strokes on the
shape would be clipped to a square. Setting overflow: visible
ensures that the symbol can be used with any styles.

Firefox (up until version 56, which will be stable
in late 2017) has a number of bugs with respect
to CSS styles and reused content. Their style-
matching process did not distinguish between
the “real” DOM and the hidden, duplicated
DOM.
One consequence is that reused instances of
<symbol> elements instead match style rules for
<svg> elements. In order to correctly set over‐
flow on symbols, either set the style with
attributes or use the following style rule:

symbol, use > svg {
 overflow: visible;
}

The use > svg selector (which matches an
<svg> that is a direct child of a <use>) will not
match anything in browsers that conform to the
specifications.

340 | Chapter 10: Seeing Double

Future Focus
Pinpointing a Symbol

The SVG 2 specifications will add two new attributes to <symbol>: refX and
refY. These attributes are borrowed from the <marker> element, which we’ll
discuss in detail in Chapter 14. In brief, they allow you to specify which coordi-
nate in the symbol’s coordinate system should be aligned with the (x,y) point
specified by the <use> element. This will make it much easier to create sym-
bols that are visually centered on a given point, as is often required in data
charts and maps.

SVG 2 also proposes to allow width, height, x and y properties to be set
directly on a <symbol>, with the same effect as on a duplicated <svg>. This
simplifies the model now that these values are style properties, not XML
attributes. It also reflects the fact that, in some browser implementations, they
already have an effect when used as attributes, being blindly cloned from the
source <symbol> to the Shadow DOM, along with any other attribute.

Whether you’re creating a set of icon symbols or a full set of playing
cards, there are many cases where you want to reuse graphics not
only within a single SVG, but across multiple web pages. In these
cases, it can be much easier to use a separate asset file for the symbol
definitions, and then access the same definitions from any page that
requires them.

File Management
As we’ve mentioned a few times, you can <use> content from
another file. This allows you to create icon library files, with many
complex graphics that you can grab one at a time for use in another
web page, whether that is a complex SVG application or an HTML
file.

There are some important limitations. For starters, most browsers
don’t support cross-file use when you’re viewing SVGs from your
own filesystem (file: URLs); you’ll need to run a local web server
or view the examples online. We’ll get to why that is in a moment,
but first: an illustration of what it looks like when everything works.

File Management | 341

Example 10-2 adapts the web page from Example 9-4 in Chapter 9.
Instead of using elements to reference views of an external
SVG, we use inline SVG and <use> elements to copy the individual
icons.

Our icon sprite SVG still uses familiar card-suit icons, but now rede‐
fined as <symbol> elements. The final result is shown in Figure 10-2.

Figure 10-2. A web page using external SVG icons as inline code

342 | Chapter 10: Seeing Double

Example 10-2. Using SVG icons from an external file in a web page

SVG SYMBOL FILE: suits-symbols.svg
<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="400px" height="400px" viewBox="0 0 200 200" >
 <title>Card Suit Icons</title>

 <symbol viewBox="0 0 20 20" id="diamond"
 style="overflow: visible">
 <title>Diamond</title>
 <path d="M3,10L10,0 17,10 10,20Z
 M9,11L10,18V10H15L11,9 10,2V10H5Z" />
 </symbol>
 <use xlink:href="#diamond"
 x="0" y="0" width="100" height="100" />

 <symbol viewBox="0 0 20 20" id="club"
 style="overflow: visible">
 <title>Club</title>
 <path d="M9,15.5A5,5 0 1 1 5.5, 7.5
 A5,5 0 1 1 14.5, 7.5A5,5 0 1 1 11, 15.5
 Q11,20 13,20H7Q9,20 9,15.5Z" />
 </symbol>
 <use xlink:href="#club"
 x="100" y="0" width="100" height="100" />

 <symbol viewBox="0 0 20 20" id="spade"
 style="overflow: visible">
 <title>Spade</title>
 <path d="M9,15C9,20 0,21 0,16S6,9 10,0C14,9 20,11 20,16
 S11,20 11,15Q11,20 13,20H7Q9,20 9,15Z" />
 </symbol>
 <use xlink:href="#spade"
 x="0" y="100" width="100" height="100" />

 <symbol viewBox="0 0 20 20" id="heart"
 style="overflow: visible">
 <title>Heart</title>
 <path d="M10,6 Q10,0 15,0T20,6Q20,10 15,14
 T10,20Q10,18 5,14T0,6Q0,0 5,0T10,6Z" />
 </symbol>
 <use xlink:href="#heart"
 x="100" y="100" width="100" height="100" />
</svg>

Since the <symbol> elements do not draw anything themselves,
a <use> copy of each icon draws it to the screen. That way, you

File Management | 343

won’t see a completely blank file if you open your symbol sheet
directly.

HTML MARKUP:
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8" />
 <title>Using SVG Icons from an External File</title>
 <link rel="stylesheet"
 href="../ch09-views-files/sprites-suits.css" />
 <style>
 .icon { overflow: visible; }
 .icon.float { border-radius: 50%; }
 .black { fill: #222; }
 .red { fill: #b00; }
 .big.black { stroke: gray; }
 .big.red { stroke: #d33; }
 </style>
</head>
<body>
 <h2>Card suits</h2>
 <figure role="img" aria-label="The four card suits">
 <svg class="icon float big black">
 <use xlink:href="suits-symbols.svg#spade"
 x="10%" y="10%" width="80%" height="80%"/>
 </svg>
 <svg class="icon float big red">
 <use xlink:href="suits-symbols.svg#heart"
 x="10%" y="10%" width="80%" height="80%" />
 </svg>
 <svg class="icon float big black">
 <use xlink:href="suits-symbols.svg#club"
 x="10%" y="10%" width="80%" height="80%" />
 </svg>
 <svg class="icon float big red">
 <use xlink:href="suits-symbols.svg#diamond"
 x="10%" y="10%" width="80%" height="80%" />
 </svg>
 </figure>
 <p>In playing cards, a suit is one of several categories into
 which the cards of a deck are divided. Most often, each card
 bears one of several symbols showing to which suit it belongs;
 the suit may alternatively or in addition be indicated by the
 color printed on the card. Most card decks also have a rank for
 each card and may include special cards in the deck that belong
 to no suit, often called jokers.</p>
 <p>The four suits in the standard French deck—also used
 in most English-speaking countries—are
 spades or <i lang="fr">piques</i>

344 | Chapter 10: Seeing Double

 (<svg class="icon inline black" width="1em" height="1em"
 role="img" aria-label="a black spade">
 <use xlink:href="suits-symbols.svg#spade" /></svg>),
 hearts or <i lang="fr">couers</i>
 (<svg class="icon inline red" width="1em" height="1em"
 role="img" aria-label="a red heart">
 <use xlink:href="suits-symbols.svg#heart" /></svg>),
 clubs or <i lang="fr">trèfles</i>
 (<svg class="icon inline black" width="1em" height="1em"
 role="img" aria-label="a black club">
 <use xlink:href="suits-symbols.svg#club" /></svg>),
 and diamonds or <i lang="fr">carreaux</i>
 (<svg class="icon inline red" width="1em" height="1em"
 role="img" aria-label="a red diamond">
 <use xlink:href="suits-symbols.svg#diamond" /></svg>).
 </p>
 <small>Text adapted from
Wikipedia
 </small>
</body>
</html>

Let’s break that down. Each SVG icon is embedded within its own
inline <svg> element, replacing the elements from
Example 9-4. The markup here consists of only the <svg> and the
<use> element:

<svg class="icon inline black" width="1em" height="1em"
 role="img" aria-label="a black spade">
 <use xlink:href="suits-symbols.svg#spade" />
</svg>

The classes are mostly the same as for the version of the icons.
However, we’ve added some extra styles, to reflect the extra styling
flexibility that inline SVG gives us.

The aria-label attribute replaces the image’s alt, and role="img"
tells browsers that this is a noninteractive SVG that should be
treated like an image for accessibility purposes. You could also use a
<title> instead of aria-label; we discuss the difference in Chap‐
ter 17.

The larger icons are set as 4em square, minus padding, in the CSS,
the same as for the images in Example 9-4. However, the <use> ele‐
ments are scaled down inside each <svg> (with x, y, width, and
height attributes). This gives us room to round off the corners of
each <svg> with border-radius and add strokes to the icons. (We

File Management | 345

couldn’t do that with the icons without adding more <view>
elements to change the scaling.)

The small icons fill up the entire SVG, so the <use> elements don’t
need any attributes—a reused <symbol> automatically scales to
100% height and width, allowing you to control the size entirely
with styles on the <svg>. This is usually preferable when you are
reusing SVG icons in HTML.

In contrast, when we were reusing icons within
a larger SVG (Example 10-1), it was preferable
to reuse nested <svg> elements with default
height and width attributes, since we didn’t
want the icons to take up the entire SVG region.

Nonetheless, just like in Example 9-4, we add default width and
height attributes on the inline SVG icons, in case our external style‐
sheet doesn’t load. However, because these are now SVG presenta‐
tion attributes, the default size can use CSS em units.

Alternatively, we could have shifted the width and height CSS from
the external stylesheet to our <style> block. The main point is:
make sure your small inline SVG icons have a good width and
height defined in the same file, to avoid the “flash of unstyled SVG”
while waiting for your stylesheet to load.

The final change to the code (relative to Example 9-4) is the new red
and black classes that set the fill colors. These also interact with
the big class to add matching strokes when there is room.

There are no fill styles at all in the SVG symbol file. The reused
icons in Example 10-2 are styled entirely with inherited styles. This
allows us to tweak the styles to match our design: the icon colors
aren’t pure black and red, and the styles are different depending on
context.

This is the primary benefit of using icons as inline SVG, instead of
images: the web page can control the styling. You can even use CSS
pseudoclasses, such as :hover or :focus, to make those styles
dynamic.

However, to be able to style the icons by styling the <use> elements,
we need to draw the <path> elements in the symbols entirely with

346 | Chapter 10: Seeing Double

inherited values. If the <path> (or <symbol>) had a fill attribute, it
would be used instead of the inherited color. So you can’t set a
default fill in your icon file, and then override it from the main
web page styles.

Actually, you can set a default fill and override it,
too, in recent browsers. But you need CSS vari‐
ables to do so. We’ll have an example of how it
works in Chapter 12.

When you reuse content from the same file, any other styles set on
the symbols and path are also copied with the cloned graphic. For
external-file <use>, it’s complicated.

When you reuse content from an external SVG,
browsers currently only clone styles set with
presentation attributes or the style attribute.
They ignore styles that were defined in the
external file via <style> elements and do not
download additional stylesheets.

Some versions of Chrome have a bug where they
will not apply patterns and gradients to content
reused from external files, regardless of whether
the patterns and gradients (or the styles applying
them) are defined in the main file or the sprite
file.

Despite those bugs, styling <use> icons is still much more flexible
than styling image icons, where your only option is a :target style
rule in the icon file—or a filter effect applied on the HTML .

Using icons from external files means that your inline SVG code is
short and concise—almost as short and concise as an . Fur‐
thermore, it allows you to use those icons in many different web
pages, and have the user’s browser cache the icon file, instead of
downloading the data with each HTML page.

However, there are two ways in which this approach is limited in
practice.

File Management | 347

For starters, some browsers don’t support cross-file <use> references
at all.

Internet Explorer and older versions of other
browsers (including Safari up to version 6) do
not allow <use> elements to access content from
other files. MS Edge supports external file refer‐
ences starting in version 13.

Some versions of Chrome have a bug where they
do not support nested reuse of externally refer‐
enced content. That means that if you <use> the
content from the external file inside a group or
symbol in the current file, and then reference
that group or symbol in a second <use>, the
external content won’t show up in the copy.

However, even in browsers that support cross-file <use>, there is no
support for cross-origin <use> references. The two files (the one
with the <use> and the one with the icon) need to be on the same
origin:

• served over either HTTP or HTTPS web server, with both URLs
using the same protocol

• from the same URL domain, including ports and subdomains
(www.example.com and static.example.com are separate origins)

Cross-origin restrictions like these apply to any “active” content,
including files used by scripts. However, most other ways of access‐
ing files for websites now support a cross-origin permission system.
These cross-origin (CORS) permissions (provided in the form of
HTTP headers) allow one web origin to request access to files from
another origin.

348 | Chapter 10: Seeing Double

More Online
Why do cross-origin restrictions exist, how do you work around
them, and why doesn’t that work for SVG <use>?

Read more in “Understanding CORS and SVG”:

https://oreillymedia.github.io/Using_SVG/extras/ch10-cors.html

SVG <use> does not—yet—have a way to tell the browser it should
request cross-origin permissions. Even if the other web server pro‐
vides permissions automatically (with HTTP headers), the browser
will not use the file.

If you host your images and other asset files on a different web
domain than your main web pages, and you want to do the same
with your <use> assets, you need to work around the restrictions:

• Use JavaScript to download the file with cross-origin headers.
• Inject the markup into your current document, where the SVG

renderer can access it.

Conveniently, this is the same approach we use to work around
browsers that don’t support external file <use> references at all.

To get the full benefits of <use> elements in a reliable, cross-browser
manner, you need to directly define the content in the main HTML
or SVG document. However, adding the code for frequently used
icons to every file weighs down every web page download. It also
causes maintainability problems at the server end, since you need to
make sure that every page is updated correctly with the latest ver‐
sions of the icons.

By using JavaScript to download your icon file (using
XMLHttpRequest, or the newer Fetch API), you can access files on
other domains so long as the web server provides permission in the
CORS HTTP header. Just as importantly, it will work on every
browser that supports SVG.

By dynamically copying the DOM of the downloaded file into the
DOM of the current document, you make all your icon definitions

File Management | 349

https://oreillymedia.github.io/Using_SVG/extras/ch10-cors.html

available to <use> elements in the current document, in every
browser that supports SVG.

Dynamically injecting arbritrary markup into
the current document could inject scripts or
other active content. Only use this approach for
accessing SVG files that you trust and control.
To be extra sure, only use it for SVG files you
serve over HTTPS connections.

There are ready-made JavaScript libraries designed to take care of
this for you. SVG4Everybody by Jonathan Neal is probably the best
known. In addition to fetching external file <use> requests for
browsers that don’t support them, it can replace your inline SVG
markup with tags pointing to fallback PNG files, for browsers
that don’t support SVG at all.

Alternatively, SVGxUse looks specifically for broken cross-
references, regardless of browser, so it also catches <use> requests
that fail because of cross-origin references.

More Online
If an existing library does not meet your needs, you can always write
the code yourself.

XMLHttpRequest is fairly easy to use if you know exactly which file
URL you need. The harder part is automatically identifying the file
cross-references from your code, and updating those references
once you’ve imported the SVG markup into the current document.

Read more about XMLHttpRequest, and how to use it to import SVG
documents, in “Importing SVG Assets, with AJAX”:

https://oreillymedia.github.io/Using_SVG/extras/ch10-ajax.html

All this work to use external files may seem overly complicated,
compared to using images and image sprite files. The complications
come from the fact that graphics duplicated with <use> become live,
modifiable parts of your document—and therefore trigger the corre‐
sponding browser security precautions.

350 | Chapter 10: Seeing Double

https://github.com/jonathantneal/svg4everybody
https://github.com/Keyamoon/svgxuse
https://oreillymedia.github.io/Using_SVG/extras/ch10-ajax.html

Of course, if you don’t need the flexibility of <use> elements, you
can embed your external SVG file as an image. Not only can you
embed them within HTML with , but you can also embed
them within larger SVG documents, using the SVG <image>

element.

Future Focus
Enabling Cross-Origin SVG Assets

The original SVG specifications were written before the cross-origin HTTP
headers were developed. Now that other web technologies have a standard
way of sharing files between domains, it is often frustrating to web developers
that SVG cannot do the same.

SVG 2 introduces crossorigin attributes for the <image>, <feImage>, and
<script> elements, which work the same as the equivalent attributes in
HTML: they tell the browser to request the file with cross-origin permissions,
with or without using “credentials” (personally identifying data stored as
browser cookies). Image embeds normally work cross-origin, but the files they
fetch can’t be reused in other contexts.

There are also guidelines in SVG 2 and the new CSS/SVG effects specifications
for cross-origin file access for url() references in style properties (always
anonymous, without credentials).

But a similar crossorigin attribute for <use> elements was put on hold, as
the <use> element implementation model was redefined to work with
Shadow DOM. Before browsers can agree on exactly what security processes
and permissions are appropriate for cross-origin <use>, they will need to agree
on a <use> element implementation.

Picture Perfect: Raster Images in SVG
Loading external images in SVG works much the same way as
embedding an image file in HTML. The external file is drawn as a
completely independent document. The result is then painted onto a
rectangular region of the main graphic, defined by an SVG <image>
element.

Picture Perfect: Raster Images in SVG | 351

As far as the main graphic is concerned, the embedded image is a
single object. If it’s an SVG image, it has all the same restrictions as
SVG used in HTML images: no scripts, and no additional file assets.
The elements within it don’t respond to user events, and its style‐
sheets are completely independent from the parent document.

But the primary use of the SVG <image> element isn’t to embed
other SVG files: it’s to embed other image types altogether.

Up until now the focus in this book has been on the use of SVG as a
means to handle vector graphics. But SVG is also designed to handle
raster images. The SVG <image> tag can be used to embed PNG,
JPEG, or any other bitmap images supported by the browser. You
can use it combined with filters, patterns, and masks to do things
like creating drop shadows, watermarks, color modifications, and
other vector effects over photographs.

We’ve already shown one example of enhancing
a photograph with SVG, in Chapter 7, where we
used SVG <text> elements to add labels to a
product photo (in Example 7-3).

The external image file is specified with an xlink:href attribute on
the <image> element. The link can be a relative URL to a file on the
same web server, but it can also be an absolute URL to any file on
the web; there are no security restrictions on embedding images.
When you’re embedding SVG, the URL can include target frag‐
ments to select a view or trigger specific styles, using any of the
methods described in Chapter 9.

As with every other use of xlink:href in SVG,
most new browsers all support simple href, but
keep using xlink for support in Safari and older
browsers.

The region in which to draw the image is defined by x, y, width, and
height attributes. The x and y offsets default to 0; width and
height default to 0 in SVG 1.1, but to auto (similar to auto for an
HTML) in SVG 2. If either width or height is 0, the image
will not be drawn.

352 | Chapter 10: Seeing Double

Although some browsers (Chrome/Blink, at the
time of writing) now support auto sizing on
SVG <image>, most won’t draw an image unless
you specify both width and height.

Example 10-3 offers one way in which external images could be used
to decorate the face cards in our playing card set; we’ve only
included the new code, relative to Example 10-1. The portraits of
Elizabeth I of England and Marie Antoinette of France are photo‐
graphs of public domain paintings, downloaded from Wikimedia
Commons. Figure 10-3 shows the result.

Figure 10-3. Playing card queens using photographs embedded in the
SVG

Example 10-3. Using external images in SVG

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="400px" height="270px" viewBox="0 0 267 180" >
 <title>Playing Cards</title>

 <!-- Same styles and definitions as before -->

 <svg width="140" height="180"
 class="diamond" id="diamondQ">

Picture Perfect: Raster Images in SVG | 353

 <title>Queen of Diamonds</title>
 <use xlink:href="#card-front" x="10" y="10" />
 <text x="15" y="35">Q</text>
 <text x="105" y="160">Q</text>
 <use xlink:href="#diamond" x="105" y="20"/>
 <use xlink:href="#diamond" x="15" y="140"/>
 <image x="35" y="40" width="70" height="100"
 xlink:href="Elizabeth_I.jpg" />
 </svg>

 <svg x="130" width="140" height="180"
 class="spade" id="spadeQ">
 <title>Queen of Spades</title>
 <use xlink:href="#card-front" x="10" y="10" />
 <text x="15" y="35">Q</text>
 <text x="105" y="160">Q</text>
 <use xlink:href="#spade" x="105" y="20"/>
 <use xlink:href="#spade" x="15" y="140"/>
 <image x="35" y="40" width="70" height="100"
 xlink:href="Marie-Antoinette.jpg" />
 </svg>
</svg>

A new viewBox and dimensions allow us to reuse the same
code, while scaling the image to display two cards in a 400px
width, instead of three.

The styles and icon definitions are exactly the same as for
Example 10-1, which created the number and ace cards.

The suit is indicated by icons in the corners.

The image is stored in the same folder on the server as the SVG
code, so all we need is to indicate the filename in the
xlink:href attribute, along with the position and size
attributes.

There’s another use for <image>, although it’s unofficial: to provide a
fallback image file for inline SVG in HTML.

Most browsers recognize an <image> element in HTML as a syno‐
nym for (to support old, nonstandard web pages). A browser
that doesn’t support SVG will therefore treat the <image> element as
an HTML image, and look for a src attribute to find the file to
download. An SVG-aware browser will see <image> inside <svg>,
and look for an xlink:href attribute.

354 | Chapter 10: Seeing Double

If you include a valid src but an invalid (empty) xlink:href on an
SVG <image>, the src fallback image will display in pre-SVG brows‐
ers, but won’t interfere with your vector graphics in new ones.

Use an empty xlink:href, instead of omitting
the attribute, to avoid a bug where SVG-
supporting Internet Explorer versions download
the fallback even though they won’t use it.

Of course, you can also use this behavior to create a fallback for
SVG-enhanced photographs. In that case, src and xlink:href
would point to the same image file: modern browsers would show
the photograph plus all the SVG annotations, filters, or masking
effects. The old browsers would still get the plain photograph.

Smooth Scaling Photographs
Images in SVG might not have been originally designed to autosize,
but they were given one feature that HTML images didn’t have: the
ability to scale without distorting aspect ratios.

A preserveAspectRatio attribute on <image> describes what to do
if the dimensions of the <image> region don’t match the embedded
image’s intrinsic ratio. You can set it to none to get the stretch-and-
squish behavior of , but the default is xMidYMid meet, the
same as for <svg>. So your photo will scale to fit, centered inside the
width and height you specify.

As discussed in Chapter 8, the CSS object-fit
and object-position properties (in supporting
browsers) provide preserveAspectRatio-style
control for images and other objects in HTML.
Using an <image> inside inline SVG can be a
fallback approach for object-fit.

Smooth Scaling Photographs | 355

For the most part, preserveAspectRatio on an image works the
same way as for SVGs, as defined in “A Poor Fit (and How preser‐
veAspectRatio Fixes It)” on page 273. There is no viewBox attribute,
however: the intrinsic aspect ratio is calculated from the downloa‐
ded image data.

The preserveAspectRatio attribute is particularly useful when you
are designing an SVG to work with arbitrary image files, where you
don’t have control over the image dimensions. You can decide
whether you want the image to fill the full space, even if it gets crop‐
ped (slice) or if you want to scale it down to fit (meet).

If you do know the details of the image, however, you may want to
crop it more precisely than min/mid/max options.

If you’re embedding an SVG file, you can use #svgView() fragments
in the URL to define a custom crop. In the future, you would be able
to use #xywh= fragments on other image types to do similar crop‐
ping. But until that’s supported, you can draw the <image> inside a
nested <svg>, using the SVG’s hidden overflow to crop parts of the
image.

In that approach, the x, y, width, and height on the <svg> are the
final dimensions and position for the clipped image; the SVG’s
viewBox specifies the rectangle you want to display from the image.
The <image>’s own width and height should match its natural
aspect ratio, in the same units you used for the viewBox. So the fol‐
lowing creates a square crop from within a 4×3 photo, offset slightly
from the center:

<svg width="100" height="100" viewBox="0.8 0 3 3">
 <image width="4" height="3" xlink:href="photo_4x3.jpg" />
</svg>

Alternatively, you can use clipping paths (which we discuss in Chap‐
ter 15), or even the old clip property. But it’s a little harder to con‐
trol the final position that way.

Clipping paths are required if you want to create
rounded corners on the <image>; there is no
border-radius or rx/ry on SVG <image>.

356 | Chapter 10: Seeing Double

Example 10-4 creates an author profile page for this book. Each
author’s profile photo has a very different aspect ratio, but the width
and height on each photo’s <image> element is the same. The exam‐
ple also uses the nested-<svg> cropping technique to crop down an
image of the book’s cover to focus on the title and illustration.

Figure 10-4 shows the code as written (meet scaling, so each photo
fits within the <image> dimensions), and then again with
preserveAspectRatio changed to xMinYMin slice (so each photo
fills the <image> dimensions, with cropping). You’ll have to play
with the online example to see the distortions that result from
changing preserveAspectRatio to none.

Figure 10-4. Profile photos with different aspect ratios: (left) with meet
aspect ratio options, and (right) slice settings

Example 10-4. Demonstrating preserveAspectRatio options on
embedded images

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="400" height="600" viewBox="0 0 400 600">
 <title>The Authors of Using SVG with CSS3 and HTML5</title>
 <style>

Smooth Scaling Photographs | 357

 text {
 font: 20px Tahoma, sans-serif;
 text-anchor: middle;
 fill: darkRed;
 }
 .bird-colors rect { fill: #5f6cb9; }
 .bird-colors text { fill: #bbde60; }
 .theme-colors rect { fill: #00aaa9; }
 .theme-colors text { fill: white; }
 </style>
 <svg viewBox="50 5 500 750" width="50%" height="50%">
 <image height="900" width="600"
 aria-label="Using SVG cover image"
 xlink:href="using_svg_cover.png"/>
 </svg>
 <g class="bird-colors">
 <rect x="50%" height="50%" width="50%" />
 <text x="75%" y="45" dy="-0.5em">Amelia
 <tspan x="75%" dy="1em">Bellamy-Royds</tspan></text>
 <image x="50%" y="80" height="220" width="200"
 preserveAspectRatio="xMidYMax meet"
 aria-label="Amelia in the sunshine"
 xlink:href="Amelia.jpg"/>
 </g>
 <g class="bird-colors">
 <rect y="50%" height="50%" width="50%" />
 <text x="25%" y="345">Kurt Cagle</text>
 <image y="380" height="220" width="200"
 preserveAspectRatio="xMidYMax meet"
 aria-label="Kurt in a top hat"
 xlink:href="Kurt.jpg"/>
 </g>
 <g class="theme-colors">
 <rect x="50%" y="50%" height="50%" width="50%" />
 <text x="75%" y="345">Dudley Storey</text>
 <image x="50%" y="380" height="220" width="200"
 preserveAspectRatio="xMidYMax meet"
 aria-label="Dudley, re-imagined as a tiny warrior"
 xlink:href="Dudley.jpg"/>
 </g>
</svg>

The overall SVG layout has a 2×3 (400×600) aspect ratio, which
will be divided into quarters (two rows and two columns) with
the same aspect ratio.

The cover image is in the correct aspect ratio to fill one quarter
(600×900), but it includes the authors’ names, which would be
slightly redundant in this layout. The viewBox on the nested

358 | Chapter 10: Seeing Double

<svg> defines a custom crop to show only the part we want to
feature. Both the <image> and the <svg> have the correct aspect
ratios, so we don’t need to worry about “preserving” anything.

After we leave room for the names, the photos all have an
almost-square aspect ratio of 200×210.

The xMidYMax meet setting for preserveAspectRatio will posi‐
tion the photos horizontally centered and bottom-aligned in
each <image> rectangle.

There is no alt attribute on SVG <image>. You can either add a
child <title> element (which will also create a tooltip), or use
an aria-label attribute, like we did here.

More Online
To make testing the options a little easier, the “Dynamically Chang-
ing preserveAspectRatio” extra (from Chapter 8) provides the code
for swapping between preserveAspectRatio options with an
HTML form and JavaScript:

https://oreillymedia.github.io/Using_SVG/extras/ch08-
preserveAspectRatio-swap.html

When the <image> embeds another SVG file, there is an additional
option for preserveAspectRatio. The defer keyword tells the
browser to use the preserveAspectRatio value specified in the
external file, if it exists. It is specified in combination with a fallback
value, which applies if the external file does not specify a value—or
is not an SVG. The following code would use xMidYMid meet behav‐
ior unless different instructions are in the external file:

<image xlink:href="overlay.svg"
 preserveAspectRatio="defer xMidYMid meet"
 width="100%" height="100%" />

Based on limited use, the SVG 2 specs proposed
removing the defer keyword to make imple‐
mentations simpler. Test carefully before using.

Smooth Scaling Photographs | 359

https://oreillymedia.github.io/Using_SVG/extras/ch08-preserveAspectRatio-swap.html
https://oreillymedia.github.io/Using_SVG/extras/ch08-preserveAspectRatio-swap.html

Future Focus
Easier Embedded Content

As mentioned earlier, SVG 2 adds an auto value for height and width, consis-
tent with making these settings presentation attributes for the standard CSS
height and width properties.

Using auto would allow the dimensions to be calculated from the image itself,
or allow you to specify one dimension and have the other adjust to match. It
replaces the default 0 dimensions, which cause an image to be hidden if it
doesn’t have height and width attributes.

Another proposal in SVG 2 is to allow HTML <video>, <audio>, <iframe>, and
<canvas> elements within SVG: these would be the HTML namespace ele-
ments, but positioned in SVG via the x, y, width, and height CSS properties.
This would allow nonbrowser SVG tools to support these features without sup-
porting a full HTML and CSS <foreignObject> subtree.

Summary: Reusing Content
A key tenet of computer programming is that you should not have
the same information repeated in multiple parts of your code. If you
need a value multiple times, assign it to a variable. If you need to
perform a calculation multiple times, make it into a function. Keep
it DRY: Don’t Repeat Yourself.

The specifics are somewhat different with SVG, but the principle is
the same. If multiple elements have the same styles, either group
them together or use CSS classes so that those styles are only
declared once. If an entire shape is repeated, use a <use> element to
minimize the repeated markup. Both approaches keep file sizes
down, and make it easier to understand and update the code.

Keeping file sizes down also means recognizing when a different
image format is required, and the <image> element makes it easy to
integrate photographs and other images into the SVG.

The <use>, <symbol>, and <image> elements build upon SVG’s scal‐
ing mechanisms and the viewBox and preserveAspectRatio

attributes introduced in Chapter 8. They will themselves be a

360 | Chapter 10: Seeing Double

fundamental component of many examples throughout the rest of
the book.

Images are particularly interesting in the context of masking (Chap‐
ter 15) and filters (Chapter 16); many uses of SVG do not include
any vector graphic shapes at all, just images manipulated with these
graphical effects.

The <use> element will show up in many contexts, including the
next chapter—which examines how you can manipulate and distort
graphics by transforming the very coordinate system in which they
are drawn.

More Online
The new elements and attributes defined in this chapter are
included in the “Document Structure Elements” section of the
markup guide:

https://oreillymedia.github.io/Using_SVG/guide/
markup.html#structure

Summary: Reusing Content | 361

https://oreillymedia.github.io/Using_SVG/guide/markup.html#structure
https://oreillymedia.github.io/Using_SVG/guide/markup.html#structure

CHAPTER 11

Transformative Changes
Coordinate System Transformations

When you define a coordinate system, using the viewBox and
preserveAspectRatio attributes introduced in Chapter 8, you cre‐
ate an invisible grid that the browser fits into a rectangular space.
When you transform a coordinate system, you pick up that grid and
move, twist, or stretch it. Any shapes, text, or images drawn in the
transformed coordinate system are moved, twisted, or stretched to
match.

This chapter introduces the SVG transform attribute, and examines
the ways in which you can work with the SVG coordinate system to
make the most of transformations.

Like the nested coordinate systems created with <svg> and
<symbol>, transformations allow you to reposition your origin or
change the scale of your units. But transformations don’t stop there.

Transformations can change the definition of what “horizontal” or
“vertical” means. This means you can draw rectangles and ellipses
that don’t align with the browser window, without having to use
<path> notation and trigonometry.

Furthermore, while new coordinate systems must be defined with a
separate <svg> or <symbol> element, a transform can be applied
directly—as an attribute—on individual shapes or on groups. This
makes transformations incredibly flexible, and they are widely used
in SVG.

363

Since transformations control the geometry of your drawing,
transform was originally defined as a core XML attribute. However,
transformations are so useful that web designers wanted to use them
for non-SVG content. The CSS Transforms module defines how
transformations can be set using CSS style rules, for any content
controlled by CSS.

This wasn’t supposed to be a “CSS versus SVG” situation, however.
The new CSS module doesn’t compete with SVG, it extends and
replaces the original SVG specification. The module upgrades the
SVG transform attribute to a presentation attribute, so it can be
overridden by CSS. That means that SVG transforms will be con‐
trollable with CSS classes, pseudoclasses, and media queries.

But the upgrade process hasn’t been easy.

All of the major browsers now implement support for CSS transfor‐
mations on HTML elements; you can increase support in older
browsers by duplicating properties with the -webkit- prefix. But as
of early 2017, the same syntax applied to SVG elements is either not
supported at all (Microsoft Edge and IE 11) or implemented in
inconsistent ways between browsers (Chrome and WebKit versus
Firefox).

This book therefore considers CSS transformations in SVG to still
be a “future” feature; you can use them, but only as an enhancement,
with careful testing and consideration of fallback. Notes throughout
the chapter explain the important differences between the well-
supported SVG transform attribute and the new CSS transform
property.

A Simpler Scale
In Chapters 8 and 10 we discussed scaling your graphics from the
perspective of getting them to scale to fit an available drawing
region. This is an implicit scale: the browser calculates how much to
scale the drawing (up or down) using the difference between the
viewBox dimensions and the element’s width and height. The final
scale is also affected—sometimes extremely so—by the
preserveAspectRatio option.

What if you just want to enlarge one copy of an icon to be two or
three times the size of another copy? It’s possible to use nested coor‐
dinate systems to do so. Example 11-1 uses a <symbol> element to

364 | Chapter 11: Transformative Changes

define a coordinate system, and then reuses it at different sizes.
Figure 11-1 shows the result; note that the elements are listed from
largest to smallest in the code, so that the smaller versions are drawn
on top of the larger ones.

Figure 11-1. A heart icon at many scales

Example 11-1. Scaling an icon with <symbol> and <use>

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="400px" height="400px" viewBox="0 0 80 80" >
 <title>Scaling with viewBox</title>
 <style type="text/css">
 use { fill: darkRed; }
 use:nth-of-type(2n) { fill: lightSkyBlue; }
 </style>
 <symbol viewBox="0 0 20 20" id="heart" >
 <title>Heart</title>

A Simpler Scale | 365

 <path d="M10,6 Q10,0 15,0T20,6Q20,10 15,14
 T10,20Q10,18 5,14T0,6Q0,0 5,0T10,6Z" />
 </symbol>

 <use xlink:href="#heart" width="80" height="80"/>
 <use xlink:href="#heart" width="70" height="70"/>
 <use xlink:href="#heart" width="60" height="60"/>
 <use xlink:href="#heart" width="50" height="50"/>
 <use xlink:href="#heart" width="40" height="40"/>
 <use xlink:href="#heart" width="30" height="30"/>
 <use xlink:href="#heart" width="22" height="22"/>
 <use xlink:href="#heart" width="15" height="15"/>
 <use xlink:href="#heart" width="10" height="10"/>
</svg>

A viewBox on the <svg> defines the overall coordinate system.

The reused elements are styled with CSS; the :nth-of-type(2n)
pseudoclass selector applies to every second sibling element.
You could also use :nth-of-type(even), which has the same
effect, selecting even-numbered elements (as opposed to odd).

The <symbol> defines the graphic and its coordinate system, but
is not drawn directly.

Each use element defines the height and width of the space that
the symbol’s viewBox should stretch to fit. Because the height
and width are always equal, matching the square aspect ratio
defined in the viewBox, a consistent scale is achieved.

To scale the icons by a given factor (for example, two or three times
as large), you need to define the viewBox width and height for the
icon, and then define a drawing region width and height that is that
many times larger. You also need to make sure that the aspect ratio is
correct; otherwise, the scale will be adjusted to fit. That’s a lot of
arithmetic, and a lot of attributes to keep synchronized. Not very
DRY at all.

In contrast, with coordinate system transformations, if you want one
copy of an icon to be two or three times the size of the original, you
just say so.

The attribute transform="scale(2)" tells the browser to draw that
element twice as large as it normally would. It doesn’t matter how
much space is available, or what the aspect ratio is. It just makes

366 | Chapter 11: Transformative Changes

every unit in the coordinate system twice as large, and draws the
shape with those new units.

“Every unit twice as large” is an important distinction. Scaling does
not change the number of units in your drawing. Scaling changes the
size of the units. A scale factor of 2 means that each unit is now
twice as large within the new coordinate system as it was in the old
one, giving the appearance of zooming in. A scale factor of 0.5 (one-
half) does the opposite—each unit is half as large within the new
coordinate system, creating the effect of zooming out.

As with scaling using viewBox, all the other
units (cm, in, pt, em) scale to match the change
in size of the basic user units. With transforma‐
tions, the definitions of 100% width and 100%
height also scale.

Example 11-2 creates the exact same image from Figure 11-1, but
does it using scale transformations.

Example 11-2. Scaling an icon with transformations

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="400px" height="400px" viewBox="0 0 80 80" >
 <title>Scaling with transformations</title>
 <style type="text/css">
 use { fill: darkRed; }
 use:nth-of-type(2n) { fill: lightSkyBlue; }
 </style>
 <defs>
 <path id="heart"
 d="M10,6 Q10,0 15,0T20,6Q20,10 15,14
 T10,20Q10,18 5,14T0,6Q0,0 5,0T10,6Z" />
 </defs>

 <use xlink:href="#heart" transform="scale(4)"/>
 <use xlink:href="#heart" transform="scale(3.5)" />
 <use xlink:href="#heart" transform="scale(3)" />
 <use xlink:href="#heart" transform="scale(2.5)" />
 <use xlink:href="#heart" transform="scale(2)" />
 <use xlink:href="#heart" transform="scale(1.5)" />
 <use xlink:href="#heart" transform="scale(1.1)" />
 <use xlink:href="#heart" transform="scale(0.75)" />
 <use xlink:href="#heart" transform="scale(0.5)" />
</svg>

A Simpler Scale | 367

The base coordinate system, defined on the <svg>, is the same.

Rather than creating a nested coordinate system with a
<symbol>, we define a simple <path> for reuse inside a <defs>
block.

Each <use> element copies the path, in the main coordinate sys‐
tem, but then scales it by the factor specified in the transform
attribute.

Regardless of their size, all the heart icons in Example 11-2 are
aligned at the top and left edges. More specifically, they are all
aligned at the origin, the (0,0) point in the coordinate system, which
does not change when the shape is scaled.

Scaling transformations never change the posi‐
tion of the origin. Every other point is scaled
based on its distance to the origin.

Scaling is one of the reasons why it is often convenient to define a
centered coordinate system, as we discussed in “Framing the View,
with viewBox” on page 260 in Chapter 8.

Example 11-3 changes the layered hearts example to use a centered
coordinate system, redefining the heart <path> itself so it is centered
on the origin, as shown in Figure 11-2.

368 | Chapter 11: Transformative Changes

Figure 11-2. Scaling a heart icon within a centered coordinate system

Example 11-3. Centering an icon within the coordinate system to
control the scaling origin

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="400px" height="400px" viewBox="-40 -40 80 80" >
 <title>Centering the scale effect using coordinates</title>
 <style type="text/css">
 use { fill: darkRed; }
 use:nth-of-type(2n) { fill: lightSkyBlue; }
 </style>
 <defs>
 <path id="heart"
 d="M0,-4 Q0,-10 5,-10T10,-4Q10,0 5,4
 T0,10Q0,8 -5,4T-10,-4Q-10,-10 -5,-10T0,-4Z" />
 </defs>

A Simpler Scale | 369

 <use xlink:href="#heart" transform="scale(4)"/>
 <use xlink:href="#heart" transform="scale(3.5)" />
 <use xlink:href="#heart" transform="scale(3)" />
 <use xlink:href="#heart" transform="scale(2.5)" />
 <use xlink:href="#heart" transform="scale(2)" />
 <use xlink:href="#heart" transform="scale(1.5)" />
 <use xlink:href="#heart" transform="scale(1.1)" />
 <use xlink:href="#heart" transform="scale(0.75)" />
 <use xlink:href="#heart" transform="scale(0.5)" />
</svg>

The viewBox on the main SVG still defines an 80×80 coordinate
system, but it is now offset by 40 units in each direction, so that
the origin will be in the center of the drawing.

The original heart icon filled the space from (0,0) to (20,20),
meaning it was centered on (10,10). To create a heart icon cen‐
tered on (0,0), therefore, we subtract 10 from each coordinate. If
we’d used relative path coordinates originally, this would have
been much easier—only the initial coordinate would need to
change!

The <use> elements and transform attributes are the same, but
the result is very different.

We’ll return to this example once we start discussing other transfor‐
mation types, to show other ways in which you can change the cen‐
ter of your coordinate system.

First, there are a few more details about scaling transformations that
you should know.

Unbalanced Scales
The scale() transformation function has two forms. The simpler
version, used in Examples 11-2 and 11-3, applies the same scaling
factor to both x and y coordinates. This is known as uniform scaling.
The single scaling factor is given as a number in parentheses after
the name of the transformation:

transform="scale(s)"

Mathematically, we can describe the transformation of each point,
(x,y) in the graphic to its transformed position as:

370 | Chapter 11: Transformative Changes

x, y x′, y′ = s · x , s · y

The point (x′, y′) is the position of (x,y) after the transformation, as
measured in the original coordinate system.

If s is 2, the point (1,3) in the transformed coordinate system would
be at the same position as (2×1, 2×3) = (2,6) in the original coordi‐
nate system. This should hopefully be what you expect from scaling
by a factor of two—but the mathematical approach can be useful as
the transformations get more complicated.

A changed variable in algebra is denoted by an
apostrophe or prime symbol after the variable
name, like x′ (called x-prime). Transformations
are indicated by an arrow from the original to
the final state.

In the second form of scaling transformation, each coordinate axis
has its own scaling factor. We indicate this by specifying two num‐
bers within the parentheses; the first is the x-scale, the second the
y-scale:

transform="scale(sx, sy)"

x, y x′, y′ = sx · x , sy · y

A nonuniform scale such as this has the effect of squashing the
coordinate system in one direction relative to the other, distorting
the shapes of elements.

And distorting more than just the shape: scaling—whether uniform
or not—applies to all aspects of the graphic, including presentation
effects such as strokes. These get scaled and stretched along with the
basic geometry.

Example 11-4 draws a series of stroked circles, identical except for
their transform attribute. Figure 11-3 shows the resulting scaled
shapes, including the stretched effect of an unevenly scaled stroke.
Example 11-4 also demonstrates that you can use the transform
attribute directly on shape elements, not only on <use> elements.

Unbalanced Scales | 371

Figure 11-3. Stroked circles at various scales

Example 11-4. Scaling a stroked shape

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="400px" height="400px" viewBox="-40 -40 80 80" >
 <title>Scaling stroked shapes</title>
 <style type="text/css">
 circle {
 fill: darkSlateBlue;
 stroke: darkSeaGreen;
 }
 </style>

 <circle r="10" transform="scale(3)" />
 <circle r="10" transform="scale(3.5,1)" />
 <circle r="10" transform="scale(2,2)" />
 <circle r="10" transform="scale(1,3.5)" />

372 | Chapter 11: Transformative Changes

 <circle r="10" />
 <circle r="10" transform="scale(0.5)" />
</svg>

The centered coordinate system ensures that the circles will be
centered in the graphic by default.

Specifying a color for stroke applies the default stroke-width
of 1 user unit.

All the shapes in the graphic are (officially) circles with a radius
10; the first (bottom) layer is scaled up three times.

We stretch the next <circle> into an elliptical shape by giving it
a nonuniform scale.

By explicitly giving the same scale factor for both sx and sy, you
can create a uniform scale with the two-value syntax. In other
words, the third <circle> is still a circle, doubled in all
directions.

The second-smallest circle is the untransformed version, drawn
in the base coordinate system created by the <svg>.

And finally, the last <circle> is drawn half size, with a half-
pixel stroke—as measured by the viewBox coordinate system.

All the shapes in Figure 11-3 are <circle> elements. All the strokes
are 1 unit wide, in their transformed coordinate system. The scales
result in strokes that range from 0.5 units to 3.5 units in the SVG’s
coordinate system, including the unevenly scaled strokes on the
unevenly scaled shapes.

As we mentioned briefly in Chapter 8, and will
discuss more in Chapter 13, you can prevent
strokes from scaling with the shape (in most but
not all recent browsers) with the vector-effect
property:

vector-effect: non-scaling-stroke;

The smallest circle in Figure 11-3 was created by a scale factor of 0.5,
which shrunk it to half the original width and height. Scale factors

Unbalanced Scales | 373

greater than 1 enlarge the graphic, scale factors between 0 and 1
shrink it. When the scale factor is exactly 1, the coordinate system
stays the same as before.

A scale factor of 0 will cause your graphic to disappear, collapsing
into nothingness. But go a little bit further, and more possibilites
open up.

Reflecting on Transformations
Negative scaling factors aren’t an error. The same transformation
equations apply. If you multiply an (x,y) point by a negative scale
factor, positive coordinates end up at negative positions and nega‐
tive coordinates end up at positive positions. This causes your image
to appear flipped, as well as scaled.

When the scale factor in one direction or another is exactly –1, the
image stays the same size, but is reflected—it appears as if it were
reflected in a mirror placed along the other axis:

• scale(-1, 1) will reflect the image onto the other side of the
y-axis (the sign of each x coordinate is flipped).

• scale(1,-1) will reflect the image onto the other side of the
x-axis (each y effectively becomes –y).

• scale(-1,-1) will reflect around the origin: (x,y) gets shifted to
(–x,–y) for each point in the graphic.

Example 11-5 demonstrates all these reflections, using the text
“SVG” as our transformed graphic. The example therefore also dem‐
onstrates that <use> elements can be used to duplicate text for
graphical effect. Each copy is drawn in different colors, so you can
tell which transform creates which reflection. Figure 11-4 shows the
result.

374 | Chapter 11: Transformative Changes

Figure 11-4. Mirrored text created with negative scaling factors

Example 11-5. Using negative scaling factors to create reflections of
text

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="400px" height="200px" viewBox="-40 -20 80 40" >
 <title>Reflections using scale transformations</title>
 <style type="text/css">
 text {
 font: bold 18px "Times New Roman", serif;
 text-decoration: underline;
 stroke-width: 0.5px;
 }
 </style>
 <g fill="lightBlue" stroke="blueViolet">
 <text id="t" x="1.5" y="-5">SVG</text>
 </g>
 <g aria-hidden="true">
 <use xlink:href="#t" transform="scale(-1,1)"
 fill="springGreen" stroke="darkSlateGray" />
 <use xlink:href="#t" transform="scale(1,-1)"
 fill="blueViolet" stroke="lightBlue" />
 <use xlink:href="#t" transform="scale(-1,-1)"
 fill="darkSlateGray" stroke="springGreen" />
 </g>
</svg>

Once again, the viewBox creates a centered coordinate system,
with the origin offset by half the width and half the height.

Reflecting on Transformations | 375

A half-unit stroke width is sufficient to make a clear outline,
given the initial scaling effect created by the width, height, and
viewBox attributes.

The original, untransformed, text is positioned in the positive-x
and negative-y quadrant of the graphic, in the top right. It
inherits fill and stroke settings from the surrounding <g>, so
that its clones will use inherited styles, too.

To prevent screen readers from repeating “SVG” four times, the
reflections are contained in a group with the aria-

hidden="true" attribute, which indicates that this entire branch
of the DOM tree is decorative.

The three <use> elements duplicate the text—including the
underline—and apply the transformations; the first element
flips the x coordinates (the mirror reflection in the top left of
the graphic), the second flips the y coordinates (the upside-
down text in the bottom right), while the third flips both axes
(the upside-down and backward text in the bottom left). The
fill and stroke settings on each <use> inherit to the text.

Pay attention to the centered coordinate system in Figure 11-4. The
reflected content ends up on the opposite side of the coordinate sys‐
tem origin. If a default origin was used, in the top-left corner, then
reflected content would be hidden offscreen.

If you wanted to change the size of the content as well as reflect it,
just multiply the –1 reflection factor by the scaling factor. For exam‐
ple, scale(3,-2) is the same as scaling to scale(3,2) followed by a
reflection across the x-axis.

Alternatively, you can list both transformations separately. The
transform attribute can take a list of whitespace-separated transfor‐
mation functions, like the following:

transform="scale(3,2) scale(-1,1)"

The transformations are applied in the order they are listed: the size
is adjusted first, and then the content is reflected. In this particular
case, the end result would be the same if you used scale(-1,1) fol‐
lowed by scale(3,2). However, that isn’t true in general; when

376 | Chapter 11: Transformative Changes

you’re using a mix of transformation types, the order can be very
important.

Future Focus
Transforming the transform Attribute

The original SVG syntax for the transform attribute is (like much of SVG) very
flexible about whitespace and commas. You can use spaces instead of com-
mas to separate the numbers in a transformation function, and you can use
commas instead of spaces to separate functions in the list.

CSS, in contrast, has a stricter approach to whitespace and commas. With the
adoption of transformations into CSS, a more formal syntax has been devel-
oped. Browsers will still use the old rules for parsing the XML transform
attribute, but only the new syntax can be used in stylesheets. It’s therefore best
to get used to the new requirements:

• Each transformation is defined with functional notation of the form
name(values); there is no whitespace between the function name and
the opening parenthesis.

• Multiple transformations in a list may be separated by whitespace (but
not commas).

• The parameters (values) in a function may be surrounded by extra white-
space (inside the parentheses).

• If there are multiple parameters to a function, they must by separated by a
comma (and optionally whitespace before and after it).

The new Transforms module also introduces a number of new transformation
functions. For scaling, there is a scaleX(sx) function, equivalent to
scale(sx,1), and a scaleY(sy) function, equivalent to scale(1,sy).

The new functions should be supported in the attribute form of transform as
well as the CSS property, but if you’re using the attribute, stick with the two-
value format for compatibility.

And keep using the attribute, for compatibility.

At the time of writing, support for transforming SVG with CSS properties is
incomplete.

Internet Explorer and MS Edge do not apply any transformations defined in
CSS to SVG. The latest versions of Chrome/Blink, Safari/WebKit, and Firefox

Reflecting on Transformations | 377

browsers consistently apply simple transformations like these, but older ver-
sions of the same browsers disagree about where the default origin point
should be for SVG elements. Even in the latest versions (at the time of writing),
things are inconsistent once you start using percentage lengths.

For the most reliable results, use the transform attribute; for anything else, be
sure to test thoroughly.

New Origins
Scaling a coordinate system changes how far each point is from the
origin, without moving the origin. However, as we saw with
Example 11-3, the origin you used when initially defining your
shapes isn’t always where you want it to be when you redraw them.

In contrast, a translation of a coordinate system moves the origin
from one point to another on the drawing canvas, without changing
the relative positions of different points. In other words, a
translate operation does not change the size or shape of your
graphics, it just moves them around.

The translate function used in the transform attribute takes two
parameters, defining the horizontal and vertical offset in user units:

transform="translate(tx, ty)"

Mathematically, the transformation can be described as:

x, y x′, y′ = x + tx , y + ty

As with scaling, multiple transformations can be strung together in
a transform list. Because the offsets defined by a translation are
added together, it doesn’t matter which order you use for multiple
translations: (a + b) + c is the same as (a + c) + b. However,
once you start mixing translation and scale operations, the order
becomes relevant: (a + b) × s is not the same as (a × s) + b
(except for special cases such as a scale of 1 or an offset of 0).

378 | Chapter 11: Transformative Changes

The second parameter to translate() is
optional. If you only provide one number, it is
used as the tx value and ty is set to 0. This is in
contrast to scaling, where a single scaling factor
will apply to both directions equally.

Example 11-6 creates a pattern from the basic club icon, repeated at
different translation offsets. Figure 11-5 shows the result; note how
the overlapping icons are drawn in exactly the same order that they
are specified in the code: left to right, top to bottom.

Figure 11-5. A forest pattern created with translated club icons

Example 11-6. Using translations to position a repeated icon

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"

New Origins | 379

 width="400px" height="400px" viewBox="0 0 40 40" >
 <title>Translation transformations</title>
 <style type="text/css">
 use {
 fill: darkGreen;
 stroke: seaGreen;
 stroke-width: 0.2;
 }
 use:nth-of-type(2n) {
 fill: lightGreen;
 }
 </style>
 <defs>
 <path id="club"
 d="M9,15.5A5,5 0 1 1 5.5, 7.5
 A5,5 0 1 1 14.5, 7.5A5,5 0 1 1 11, 15.5
 Q11,20 13,20H7Q9,20 9,15.5Z" />
 </defs>

 <use xlink:href="#club" transform="translate(-10)"/>
 <use xlink:href="#club" transform="translate(0)"/>
 <use xlink:href="#club" transform="translate(10)" />
 <use xlink:href="#club" transform="translate(20)" />
 <use xlink:href="#club" transform="translate(30)" />
 <use xlink:href="#club" transform="translate(-10,10)"/>
 <use xlink:href="#club" transform="translate(0,10)"/>
 <use xlink:href="#club" transform="translate(10,10)" />
 <use xlink:href="#club" transform="translate(20,10)" />
 <use xlink:href="#club" transform="translate(30,10)" />
 <use xlink:href="#club" transform="translate(-10,20)"/>
 <use xlink:href="#club" transform="translate(0,20)"/>
 <use xlink:href="#club" transform="translate(10,20)" />
 <use xlink:href="#club" transform="translate(20,20)" />
 <use xlink:href="#club" transform="translate(30,20)" />
</svg>

The 40×40 initial coordinate system has its origin in the top-left
corner.

Fill and stroke styles are set on the <use> elements; only the fill
style is reset for the even-numbered elements, so the same
stroke styles will still apply.

The icon is the basic club shape from Chapter 6.

The first few elements use a translate with a single value; the
x-position is therefore translated, while the y-position stays the

380 | Chapter 11: Transformative Changes

same. These elements create the first row of icons, staggered
along the top of the graphic.

The remainder of the <use> elements use the two-value
translate function, to set both x and y offsets.

Using translations, it is possible to reposition the origin of your
graphics prior to adjusting their scale. In other words, you do not
have to carefully edit your complex <path> code in order to create a
centered path; you can just translate it until it is centered over the
origin.

Example 11-7 redraws Example 11-3, but now using translations to
center all the scaled icons, instead of redefining the <path> itself.
Figure 11-6 shows the result; it should be identical to Figure 11-2.

Figure 11-6. Scaling a heart icon after centering it with translations

New Origins | 381

Example 11-7. Using translations to center a coordinate system for
scaling

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="400px" height="400px" viewBox="0 0 80 80" >
 <title>Centering the scaled effect using translations</title>
 <style type="text/css">
 use { fill: darkRed; }
 use:nth-of-type(2n) { fill: lightSkyBlue; }
 </style>
 <defs>
 <path id="heart"
 d="M10,6 Q10,0 15,0T20,6Q20,10 15,14
 T10,20Q10,18 5,14T0,6Q0,0 5,0T10,6Z"
 transform="translate(-10, -10)"/>
 </defs>

 <g transform="translate(40, 40)">
 <use xlink:href="#heart" transform="scale(4)"/>
 <use xlink:href="#heart" transform="scale(3.5)" />
 <use xlink:href="#heart" transform="scale(3)" />
 <use xlink:href="#heart" transform="scale(2.5)" />
 <use xlink:href="#heart" transform="scale(2)" />
 <use xlink:href="#heart" transform="scale(1.5)" />
 <use xlink:href="#heart" transform="scale(1.1)" />
 <use xlink:href="#heart" transform="scale(0.75)" />
 <use xlink:href="#heart" transform="scale(0.5)" />
 </g>
</svg>

The viewBox on the main SVG defines an 80×80 coordinate sys‐
tem with a default top-left origin.

This is the original heart icon, extending from (0,0) to (20,20),
centered on (10,10). The translate(-10,-10) transformation
shifts it up and over to center it within its coordinate system.

A <g> grouping element is used to redefine the origin for all the
child <use> elements. The translate(40, 40) moves the origin
from the top-left corner to the center of the 80×80 drawing
region.

The <use> elements draw each copy of the heart within the new,
centered coordinate system. Since the <path> element itself is
centered over the origin because of its own transform attribute,

382 | Chapter 11: Transformative Changes

the hearts are all aligned at the center when the different scales
are applied.

In Chapters 1 and 8, we discussed another way to reposition content
duplicated with <use>: the x and y attributes. These attributes effec‐
tively create a supplemental translation, applied after any transfor‐
mations defined in the transform attribute. The following code:

<use xlink:href="#icon" x="50" y="80" transform="scale(2)"/>

is directly equivalent to:

<use xlink:href="#icon" transform="scale(2)translate(50,80)"/>

In other words, the x and y offsets are calculated in the transformed
coordinate system, after the units are scaled. This is true for geomet‐
ric attributes on shape elements, too.

All geometric attributes on an element (position
as well as size) are applied after that element’s
coordinate system is transformed.

There is one advantage to using the attributes instead of transla‐
tions, however: the values for x and y can be lengths with units or
percentages. The values for transformations—in SVG 1.1, anyway—
must be plain numbers. For translations, those numbers are inter‐
preted as user-unit lengths.

Future Focus
Transformations with Units

For the CSS transform property, the distance to translate the coordinate sys-
tem must be specified as a length with units or as a percentage. In the SVG
attribute only, a number without units would still be accepted, as a length in
user units.

As with scaling effects created by viewBox, all units are scaled along with the
coordinate system. In other words, the px unit is always equivalent to user
units, regardless of any transformations that have already been applied.

Percentages, however, have a special meaning in the CSS transform property.

New Origins | 383

For transformations on CSS layout boxes—including the top-level <svg> ele-
ment—percentages are calculated according to the width and height of the
layout box including padding and borders (aka the border-box).

Unfortunately, early drafts of the CSS Transforms module only discussed the
CSS box layout situation, not SVG. This resulted in inconsistent implementa-
tions:

• WebKit/Blink browsers adapted the CSS rules to SVG, so that percentages
were relative to the size of the element’s fill bounding box (a rectangle
based on the fill region).

• Firefox aimed for consistency with SVG; percentages are relative to the
coordinate system.

The CSS working group agreed with the Firefox team, but with many web
developers already building content specifically for the WebKit/Blink interpre-
tation, those browsers were hesitant to change.

The latest specifications introduced a compromise: the transform-box prop-
erty would allow authors to specify the reference box, for percentages and for
determining the origin.

For SVG elements, the default transform-box would be view-box (note the
CSS-style hyphenated, lowercase name), but it could be changed to fill-box.
That would use a tight rectangle fitting around the unstroked dimensions of
the shape. For non-SVG elements, there is currently no option to change the
transform-box to a value other than border-box.

Unfortunately, the current implementation in WebKit/Blink browsers doesn’t
directly match any of these options, as it uses the view-box for origin but the
fill-box for percentages.

The fill-box reference shape used in transform-box is
equivalent to the objectBoundingBox reference shape
used in many SVG graphical effects. We’ll talk more
about object bounding boxes starting in Chapter 12.

Support for transform-box ships in Firefox starting in version 55, and the
Blink and WebKit teams are working on it. Once those browser teams have
implemented a compatible model, expect the Microsoft team to finally add
support for CSS transforms for SVG.

384 | Chapter 11: Transformative Changes

Much less controversially, the new CSS Transforms module also introduces
translateX and translateY shorthand functions. These take a single length
value, and adjust the coordinate system in the specified direction.

Turning Things Around
Scaling changes the size of units, and translations change the posi‐
tion of the origin, but neither does anything that you can’t already
do with viewBox.

Rotations do something new: they change the directions of the axes.
They twist the entire coordinate system as a whole, without chang‐
ing the size of elements.

As with scaling, rotations are defined relative to the origin of the
coordinate system. Rotations use the rotate() transformation func‐
tion, which takes one parameter: the number of degrees to rotate the
coordinate system.

Positive rotations are clockwise (deosil, to use the Neo-Pagan termi‐
nology) and negative rotations are counterclockwise (or widder‐
shins, another delightful but underused word).

Of course, those directions only apply if you haven’t flipped the
coordinate system with a negative scale. If you’ve transformed the
coordinate system so much that you’re not sure which way is which,
remember that a rotation from the positive x-axis to the positive y-
axis is always +90 degrees.

Rotations are also, like translations, cumulative and commutive on
their own. All three of these transformations have the same final
result:

transform="rotate(120) rotate(60)"
transform="rotate(60) rotate(120)"
transform="rotate(180)"

A "rotate(90) rotate(-90)" transformation is the same as
transform="rotate(0)", which keeps the coordinate system the
same as it had been.

Turning Things Around | 385

There’s one exception to these equivalencies:
animations. When you animate a set of transfor‐
mation, each function is animated separately, if
possible. In that case, the order of operations
matters as much as the final result.

However, once you mix rotations and translations, the order of
operations matters: “turn left, then walk 10 steps” will take you to a
different point than “walk 10 steps, then turn left.”

Example 11-8 applies rotations to a series of spade icons;
Figure 11-7 shows the result. Because the spades are not centered on
the origin, the rotated icons sweep out a large wreath shape, circling
around the coordinate system origin.

Figure 11-7. A wreath of icons created with rotations

386 | Chapter 11: Transformative Changes

Example 11-8. Rotating a graphic around the origin

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="400px" height="400px" viewBox="-27 -27 54 54" >
 <title>Rotations around the origin</title>
 <style type="text/css">
 use { fill: slateBlue; }
 use:nth-of-type(2n) { fill: lightGreen; }
 use:last-of-type { stroke: darkSlateGray; }
 </style>
 <defs>
 <path id="spade"
 d="M9,15C9,20 0,21 0,16S6,9 10,0C14,9 20,11 20,16
 S11,20 11,15Q11,20 13,20H7Q9,20 9,15Z" />
 </defs>

 <use xlink:href="#spade" transform="rotate(30)"/>
 <use xlink:href="#spade" transform="rotate(60)"/>
 <use xlink:href="#spade" transform="rotate(90)"/>
 <use xlink:href="#spade" transform="rotate(120)"/>
 <use xlink:href="#spade" transform="rotate(150)"/>
 <use xlink:href="#spade" transform="rotate(180)"/>
 <use xlink:href="#spade" transform="rotate(210)"/>
 <use xlink:href="#spade" transform="rotate(240)"/>
 <use xlink:href="#spade" transform="rotate(270)"/>
 <use xlink:href="#spade" transform="rotate(300)"/>
 <use xlink:href="#spade" transform="rotate(330)"/>
 <use xlink:href="#spade" />
</svg>

The coordinate system defined by the viewBox has a centered
origin. The exact number of units was adjusted to fit the graphic
neatly.

The spade icon is not centered; it will by default (without trans‐
formations) be drawn below and to the left of the origin.

Each subsequent icon is drawn rotated 30 degrees clockwise rel‐
ative to the previous one, with the icons overlapping each other
in the order in which they are specified.

After rotating through a complete circle, the last element (which
would have had a rotate(360) transformation) is equivalent to
having no transformation at all. This final, untransformed ele‐
mented is highlighted with a dark stroke via the :last-of-type
selector.

Turning Things Around | 387

Mathematically, the transformation rotate(a) can be defined as
follows:

x, y x′, y′ = cos a · x − sin a · y ,
cos a · y + sin a · x

…which is just the kind of math that makes you glad the browser
does it for you!

If you do have to use JavaScript to calculate
complex geometry, be aware that the JavaScript
trigonometric functions require angles to be
given in radians, not degrees. To convert
between the two, use the Math.PI JavaScript
constant in the following helper functions:

function rad2Deg(rad){
 return rad * 180 / Math.PI;
}
function deg2Rad(deg){
 return deg * Math.PI / 180;
}

If you want the rotations to be relative to a different point, you could
use translations to reposition the origin, as we did in Example 11-7.
However, SVG also defined an alternative version of the rotate
function that allows you to rotate around any point. It uses a three-
value rotation syntax:

transform="rotate(a, cx, cy)"

This has the same effect as a rotation combined with before-and-
after translations, as follows:

transform="translate(cx, cy) rotate(a) translate(-cx, -cy)"

The three-value rotate is not valid in the CSS
transformation property, which has its own way
of changing the center of rotation.

Example 11-9 uses three-value rotations to create a complex pattern
with the spade icon rotated around different points. Figure 11-8

388 | Chapter 11: Transformative Changes

shows the result, including two circles used to mark the rotational
centers.

Figure 11-8. A complex pattern created by rotating a single icon
around two centers

Turning Things Around | 389

Example 11-9. Rotations around arbitrary points

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="400px" height="575px" viewBox="-13 -20 46 66" >
 <title>Rotations around arbitrary points</title>
 <style type="text/css">
 use { fill: slateBlue; }
 use:nth-of-type(2n) { fill: lightGreen; }
 use:last-of-type { stroke: darkSlateGray; }
 circle { fill: tomato; }
 </style>
 <defs>
 <path id="spade"
 d="M9,15C9,20 0,21 0,16S6,9 10,0C14,9 20,11 20,16
 S11,20 11,15Q11,20 13,20H7Q9,20 9,15Z" />
 </defs>

 <use xlink:href="#spade" transform="rotate(60,10,0)"/>
 <use xlink:href="#spade" transform="rotate(120,10,0)"/>
 <use xlink:href="#spade" transform="rotate(180,10,0)"/>
 <use xlink:href="#spade" transform="rotate(240,10,0)"/>
 <use xlink:href="#spade" transform="rotate(300,10,0)"/>
 <use xlink:href="#spade" transform="rotate(360,10,0)"/>
 <use xlink:href="#spade" transform="rotate(90,10,23)"/>
 <use xlink:href="#spade" transform="rotate(180,10,23)"/>
 <use xlink:href="#spade" transform="rotate(-90,10,23)"/>
 <use xlink:href="#spade" />
 <circle cx="10" cy="0" r="1" />
 <circle cx="10" cy="23" r="1" />
</svg>

The coordinate system is not centered. At first glance, it looks
kind of arbitrary. Consider it a reminder that centered origin or
top-left origin are not the only options. In this case, it’s the
result of drawing the graphic first, and then adjusting the
viewBox to neatly fit the shapes.

The first six icons are rotated around the point (10,0). This con‐
veniently happens to be the coordinate of the tip of the spade in
the original untransformed icon.

The remaining icons are rotated around the point (10,23),
which is slightly below the base of the untransformed icon.

A rotation of –90° is equivalent to a rotation of +270°.

390 | Chapter 11: Transformative Changes

Again, the final <use> element is untransformed, and will be
marked by a dark stroke.

The two tomato-orange circles mark the points of rotation, at
(10,0) and (10,23).

Once you have rotated a coordinate system, the x- and y-axes point
in new directions. Any subsequent translations are applied in the
new directions. So are x and y attributes on shape elements. Text will
also be drawn along the rotated x-axis, allowing you to create angled
labels on diagrams—but be aware that text in small font sizes on
computer-monitor resolutions tends to look pixelated and uneven
when written at an angle.

Future Focus
Rotation Units and Adaptable Origins

Rotations in the new CSS transformation syntax must include an angle unit:

• deg for degrees

• rad for radians

• grad for grades or gradians (a sort of metric degree, with 100 grad in a
right angle)

• turn for a number of full rotations (a right angle is a quarter-turn, or
0.25turn)

The new CSS Transforms module does not include the three-value rotate
function. Instead, you can control the origin for both rotation and scaling
using the transform-origin property.

The transform-origin property takes a “position” CSS value, similar to that
used in the CSS background-position property. The value is the horizontal
position followed by the vertical position, as a length or percentage, or as key-
words: left, center, or right for horizontal, and top, center, or bottom for
vertical.

For content that uses a CSS layout model (such as HTML content, or top-level
SVG elements), the default origin is 50% 50%; in other words, scaling and rota-
tions are calculated relative to the center of the reference layout box.

Turning Things Around | 391

The default origin for SVG content would remain the coordinate system origin.
The browsers would apply a default CSS rule of transform-origin: 0 0 to
all SVG elements. However, you should be able to set transform-origin
yourself to reposition it. This would then affect the origin for rotations and scal-
ing transformations (as well as skews, which we’ll get to in the next section).

Setting a transform-origin on an element is equivalent to adding supple-
mental translations before and after the main transformation list: first translate
the element by an amount equivalent to the transform origin, then apply the
other transformations, then reverse the translation. So the following styles
would be equivalent:

.transformed {
 transform-origin: 20px 40px;
 transform: rotate(90deg) scale(2);
}

.transformed {
 transform-origin: 0 0;
 transform: translate(20px, 40px)
 rotate(90deg) scale(2)
 translate(-20px, -40px);
}

As mentioned previously, implementations of transform-origin applied to
SVG have been inconsistent. Under the latest specifications, transform-
origin should be calculated relative to the transform-box.

At the time of writing (mid-2017), you get consistent results so long as you
don’t use percentages—in the latest versions of Firefox, Chrome/Blink, and
WebKit Safari, that is. Older versions may be erratic, and IE/MS Edge (at least up
to EdgeHTML version 15) have no support at all for CSS transforms on SVG ele-
ments.

If possible, ensure compatibility by using the transform attribute. You can still
create a transform-origin effect with before-and-after translations.

392 | Chapter 11: Transformative Changes

Skewed Perspective
Moving up the chain of complexity are skew transformations.

Like a rotation, a skew is specified as an angle. While a rotation
changes the orientation of both axes relative to the screen, a skew
changes the orientation of one axis but not the other. That means
that it changes the angle between the axes. A skew, therefore, distorts
the shape of graphics.

A good way to understand a skew is to envision a box used to pack
drinking glasses, with dividers that partition the box into individual
cells. If you flatten the box, the entire grid flattens with it. Sections
that are normally at right angles get squished at narrower and nar‐
rower angles until they are flat against each other. Well, it is never
perfectly flat, because the thickness of the cardboard prevents it, but
you can get pretty close!

A skew is similar, in that it collapses the angles between the x- and y-
axis. However, there is an important difference. In the packing box
grid, the length of the cardboard sections remains constant as you
flatten the box. As the angles compress, and the ends shift farther
out, the opposite sides are drawn together.

Skew works differently, as shown in Figure 11-9. The position of
points never changes relative to the axis that isn’t being skewed.
Lines get stretched, shapes get distorted, but the grid doesn’t flatten.
Instead, the image gets stretched out. There is still a limit to a skew,
though: eventually the angle between the axes will be zero, and the
stretching will be infinite.

The particular skew transform used in Figure 11-9 is skewX(50).
The naming of skew transformations is not intuitive: a skewX trans‐
formation results in slanted vertical lines. However, if you consider
the figure again, you’ll notice that it’s the x coordinates that get shif‐
ted sideways, while the y coordinates are unchanged; this is why it is
skewX. Similarly, a skewY transform will distort the y positions of the
shapes, creating angled horizontal lines.

Skewed Perspective | 393

Figure 11-9. Understanding skew: flattening a cardboard grid versus
skewing an SVG grid

The value you give to a skewX or skewY function is an angle in
degrees; it is the amount by which the angled axis is shifted from its
original position. The angle can be positive or negative. However,
there isn’t an easy clockwise/counterclockwise rule to use. Instead,
remember that positive skewing angles increase the position of
points with positive coordinates.

(That’s assuming you’re still using the default SVG (0,0) transform
origin. It gets more complicated with other transformation origins.)

A skew of 0 degrees doesn’t change anything; a skew of 90° or –90°
creates infinite coordinates, which is an error in SVG. Nothing gets
drawn in that case.

Mathematically, the transformation skewX(a) can be defined as fol‐
lows:

x, y x′, y′ = x + tan a · y , y

394 | Chapter 11: Transformative Changes

The transformation skewY(a) can be defined as follows:

x, y x′, y′ = x , tan a · x + y

In other words, when you skew the x-axis, the amount you change
the x-positions depends on the size of the y coordinate. When you
skew the y-axis, the amount you change the y-positions depends on
the size of the x coordinate. Skews have no effect when the other
coordinate is zero.

Interested in creating the “flattened cardboard”
effect from Figure 11-9? That image was created
with rotate and translate transformations,
neither of which will stretch or distort a shape.
The horizontal lines were offset with transfor‐
mations of the form:

transform="rotate(-50) translate(0,y)
 rotate(50)"

The formerly vertical lines were positioned and
angled with transformations like the following:

transform="translate(x,0) rotate(-50)"

All the lines start from the origin of their trans‐
formed coordinate system.

What use is skew, besides making your graphics strange and distor‐
ted? Its primary use is to simulate three-dimensional perspective.

In technical drawings, lines skewed at a consistent angle (usually 30°
or 45°) can be used to represent edges that extend at right angles in
front of or behind the rest of the drawing. Example 11-10 uses
skewed coordinates to draw a projection of an empty box in this
style. It uses 45° skews to keep the math simple: the amount of skew
offset on the y-axis will be exactly equal to the distance from the ori‐
gin on the x-axis. Figure 11-10 is the result.

Skewed Perspective | 395

Figure 11-10. A pseudo-3D drawing of a box built from skewed
rectangles

Example 11-10. Using skew transformations to simulate three
dimensions

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="400px" height="300px" viewBox="0 0 40 30" >
 <title>Using skew to create an orthographic projection</title>
 <style type="text/css">
 rect {
 stroke-width: 0.3;
 stroke-linejoin: round;
 }
 .inside {
 fill: burlywood;
 stroke: saddleBrown;
 }
 .outside {
 fill: lightGray;
 stroke: gray;
 }
 </style>
 <g transform="translate(5,10)">
 <rect class="inside" width="25" height="15"

396 | Chapter 11: Transformative Changes

 transform="translate(5,-5)"/>
 <rect class="inside" width="5" height="15"
 transform="skewY(-45)"/>
 <rect class="outside" width="25" height="15" />
 <rect class="outside" width="5" height="15"
 transform="translate(25,0) skewY(-45)"/>
 </g>

</svg>

The group contains the box as a whole, and a transformation
moves it into place. The individual panels are all <rect> ele‐
ments with their top-left corner at (0,0). The transformation on
the group shifts that position away from the very top left of the
SVG.

The first rectangle is the back of the box, translated up and to
the side.

The next rectangle is the left side; it starts at the same origin as
the front, but then is skewed to meet the offset back.

The untransformed rectangle draws the front panel.

The right side is positioned with a translation, then skewed to
match the other side.

An important thing to note with the skewed rectangles in
Example 11-10 is that the width attribute is the straight-line distance
between the two sides, not the distance along the slanted edge.

A technical diagram that uses angled lines to
simulate 3D, like this, is known as an ortho‐
graphic projection (ortho meaning right, as in
right-angled, and graphic meaning drawing).

For more decorative web-based graphics, skew transformations can
be useful in simulating shadows. If you have an upright object with a
light shining on it from above and to the side, a first approximation
of this shadow can be rendered as a skew. This technique is used in
Example 11-11, as illustrated in Figure 11-11.

Skewed Perspective | 397

Figure 11-11. Text with a projected shadow created with skew trans‐
formations

Example 11-11. Creating a projected shadow effect with skew
transformations

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="400px" height="140px" viewBox="0 0 400 140">
 <title>Skewed shadows</title>
 <style type="text/css">
 text {
 font: bold 144px Georgia, serif;
 }
 </style>
 <defs>
 <linearGradient id="fadeGray" y2="100%" x2="0%">
 <stop stop-color="gray" stop-opacity="0" offset="0"/>
 <stop stop-color="gray" stop-opacity="1" offset="1"/>
 </linearGradient>
 </defs>
 <g transform="translate(10,120)">
 <use xlink:href="#t" fill="url(#fadeGray)"
 transform="skewX(-45) scale(1,0.7)"
 aria-hidden="true" />
 <g fill="blue" stroke="navy">
 <text id="t">SVG</text>
 </g>
 </g>
</svg>

A few additional tricks increase the realism in Example 11-11. The
first is the introduction of a linear gradient that fades away from the
text itself. The second is scaling the skewed text so that it’s slightly
smaller than the original, so that the tops of shadow and original are
not perfectly aligned.

398 | Chapter 11: Transformative Changes

So the shadow can be styled differently from the original, the <text>
itself doesn’t have any styles. The fill and stroke are declared on a
surrounding <g>, and inherit to the text—but not to its clone, which
inherits the styles from the <use> instead.

Because the shadow needs to be behind the text (and because brows‐
ers don’t support z-index for SVG), it comes first in the DOM.
However, the shadow is the <use> and the real text is the <text> so
that the main text is accessible and selectable in all browsers. None‐
theless, some browsers (Chrome) do make <use> copies of text
accessible, so aria-hidden is used to mark it as redundant.

Older WebKit browsers will not correctly clone
an element that is defined later in the document
than the <use> element. In this case, that means
that you wouldn’t see the shadow, which is a rea‐
sonable fallback, considering it ensures accessi‐
ble text in other browsers.

Neither Example 11-10 nor Example 11-11 creates a true 3D draw‐
ing environment. The shadow is at best a rough approximation of
real shadows, but it’s a fairly convincing effect at far less cost.
Because skews can be directly calculated from the x and y coordi‐
nates and the constant parameter, the computer can rapidly calcu‐
late them by applying matrix mathematics to the vector shapes. The
same holds true for scaling, rotation, and translation. These are all
known technically as affine transformations.

Affine transformations convert between coordinate systems in a way
that points remain points, straight lines remain straight lines, and
parallel lines remain parallel. But true 3D perspective doesn’t work
like that. When you look at parallel lines on a road stretching out in
front of you to the horizon, they appear to angle together towards a
single point at infinity. Affine transformations cannot recreate this
effect without separate calculations to factor in three-dimensional
perspective.

Skewed Perspective | 399

More Online
The CSS Transforms level 2 module defines true 3D transformations.
The intermediate calculations are a 3D version of the affine transfor-
mations used in SVG: rotations, translations, scales, and skews, in x, y,
and z directions. The browser then applies a perspective effect to
draw the final shape.

Read more about 3D transformations—and about how to work
around the bugs in current browsers when it comes to using them
for SVG—in “The Next Dimension: 3D Transformations”:

https://oreillymedia.github.io/Using_SVG/extras/ch11-3d.html

Enter the Matrix
So far, we’ve described the mathematics behind transformations in
terms of functions that convert (x,y) to (x′,y′). In the case of transla‐
tions and scaling functions, the functions that convert x are inde‐
pendent of y, and vice versa. For rotations and skew functions, in
contrast, the values of x′ and y′ depend on both x and y. They also
use trigonometry.

These transformation functions may seem like very different types
of mathematics, but they can all be described with the same matrix
multiplication structure.

If the word matrix conjures up a science fiction movie where reality
is not what it seems, be assured that it is nothing that insidious.
Matrix multiplication is just a structured way of applying mathemat‐
ical equations to multiple variables (x and y) at the same time.

Warning! There’s a bit of math ahead.

The matrices used in 2D affine transformations have the following
structure:

a c e
b d f
0 0 1

400 | Chapter 11: Transformative Changes

https://oreillymedia.github.io/Using_SVG/extras/ch11-3d.html

The matrix is the basis of the final 2D transformation function:
matrix(a,b,c,d,e,f). The six variable values from the matrix are
specified in column order.

You can create all sorts of interesting transformations with the
matrix() function. Try a few numbers and see. For example,
Figure 11-12 shows the face drawing from Example 5-5 in Chap‐
ter 5, and then shows what it looks like if you group all the drawing
code with the following matrix transformation:

<g transform="matrix(1,2,3,-1,-2,-3)">

Figure 11-12. An SVG face, and the same drawing with a matrix
transformation applied

You may come across matrix transformation functions like this in
SVG created by other software (such as Inkscape) or JavaScript
libraries (such as Snap.svg). Well, it probably won’t be exactly like
this, but it will be a matrix() function with six numbers.

But how does this seemingly obscure set of numbers relate to the
changes you see onscreen?

The matrix expresses scale, rotation, skew, and translation transfor‐
mations, all at once. If you just throw numbers in the function,
you’ll get a mix of all of the above.

The universal mapping equation for all the transformations, using
matrix multiplication, looks like:

Enter the Matrix | 401

x′

y′

1
=

a c e
b d f
0 0 1

·
x
y
1

The preceding matrix equation is the equivalent to the following set
of algebraic equations:

(Equation 1) x′ = a · x + c · y + e · 1
(Equation 2) y′ = b · x + d · y + f · 1
(Equation 3) 1 = 0 · x + 0 · 1 + 1 · 1

Equation 3 should hold true no matter what you do—it works out as
1 = 1, so if that fails you might as well give up on mathematics alto‐
gether. Equations 1 and 2 describe the actual transformation. You
can describe all the 2D transformations in this structure, substitut‐
ing in constant values—often 0 or 1—for a, b, c, d, e, and f.

For example, in the transformation translate(5,8), the matrix
looks like:

1 0 5
0 1 8
0 0 1

The resulting equations therefore look like:

(Equation 1) x′ = 1 · x + 0 · y + 5 · 1 = x + 5
(Equation 2) y′ = 0 · x + 1 · y + 8 · 1 = y + 8
(Equation 3) 1 = 0 · x + 0 · 1 + 1 · 1 = 1

This is exactly what the equations for a translation should look like.

For the transformation skewX(45), the matrix looks like:

1 tan 45 0
0 1 0
0 0 1

=
1 1 0
0 1 0
0 0 1

Because tan(45°) equals 1, the equations work out as follows:

402 | Chapter 11: Transformative Changes

(Equation 1) x′ = 1 · x + tan 45 · y + 0 · 1 = x + y
(Equation 2) y′ = 0 · x + 1 · y + 0 · 1 = y
(Equation 3) 1 = 0 · x + 0 · 1 + 1 · 1 = 1

Again, this is what an x-skew looks like: the x coordinate is adjusted
by an amount proportional to the y coordinate, but the y coordinate
itself does not change.

Each of the transformation functions affects particular values in the
matrix:

• Scaling transformations set the a (x-scale) and d (y-scale)
parameters to the matrix.

• Translations use a scale of 1 for a and d, and then adjust the e
and f parameters. These are the constants in the equations; they
are not multiplied by either x or y.

• Skews also use 1 for a and d, but then set either b (skewY) or c
(skewX). These are the parameters that describe how x affects y
and how y affects x, respectively.

• Rotations set all of a, b, c, and d.

If a and b are both zero, the final coordinates are
not affected by the input x. Similarly, if b and c
are both zero, the final coordinates are not affec‐
ted by the input y. In either case, your 2D draw‐
ing collapses into a 1D mathematical concept,
and won’t be drawn. This is what happens with a
scale() where one of the factors is 0.

Why is all this relevant? Why use the matrices at all, when the sim‐
plified equations are easier to understand?

The benefit of using matrix mathematics comes when you’re apply‐
ing multiple transformations in sequence. The matrix equation for
the transformation translate(5,8) skewX(45) looks like:

x′

y′

1
=

1 0 5
0 1 8
0 0 1

·
1 1 0
0 1 0
0 0 1

·
x
y
1

Enter the Matrix | 403

The reason this is important is because the two separate transforma‐
tion matrices can be multiplied together. Multiplying creates a single
matrix that describes both transformations. It looks like the
following:

x′

y′

1
=

1 1 5
0 1 8
0 0 1

·
x
y
1

Using this consolidated matrix, the browser can apply both transfor‐
mations simultaneously to any point, in one set of calculations.

Although this example was simple, it doesn’t have to be: you can
have dozens of nested transformations on an SVG element, includ‐
ing the transformations specified on parent elements and the
implicit scaling and translating created by viewBox values. Each of
those transformations can be described as a matrix, and all those
matrices can be multiplied together. The resulting cumulative
transformation matrix can then be used to transform individual
points.

Even if you never use matrix transformations yourself, it’s good to
know that the obscure set of numbers is just a condensed list of
other transformation functions.

Summary: Coordinate System
Transformations
Coordinate system transformations are used throughout SVG to lay
out graphics and manipulate their appearance. Rotations and skews
allow you to break free of the strict horizontal and vertical coordi‐
nate system, while translations and scaling transformations offer a
simple way to adjust the coordinate system origin and scale.

In the future, the new 3D transformation options will open up even
more possibilities, as will the ability to assign transformations using
CSS style rules, including media queries and CSS animations. For
now, test carefully when applying CSS transforms to SVG, and use
the transform attribute of the same elements to provide an accepta‐
ble fallback layout.

404 | Chapter 11: Transformative Changes

With the information in this and the previous few chapters, you
have everything you need to create basic vector graphics: you can
define coordinate systems, draw shapes within them, transform
those coordinate systems, and reuse the shapes in the transformed
space. Part IV will explore the options for decorating those shapes,
with gradients, patterns, stroke effects, filters, masks, and more.

More Online
A quick reference to the transformation function syntax—including
reminders of the differences between the SVG 1 and CSS syntaxes
—is provided in the “Transform Functions” guide:

https://oreillymedia.github.io/Using_SVG/guide/transform-
functions.html

Summary: Coordinate System Transformations | 405

https://oreillymedia.github.io/Using_SVG/guide/transform-functions.html
https://oreillymedia.github.io/Using_SVG/guide/transform-functions.html

PART IV

Artistic Touches

A complete SVG graphic is more than coordinates, shape, and lay‐
out. That basic structure must be translated to its final appearance
on screen or paper—it must be rendered, in computer graphics ter‐
minology—through the application of colors, lines, and patterns to
the shapes. Other stylistic manipluations can soften the crisp edges
or shapes, or otherwise alter the formal mathematical geometry of
the SVG structure.

The next few chapters explore the artistic side of SVG: how color is
used, how the strokes that outline shape are created and manipu‐
lated, and how graphical effects like filters and masks are applied.
Many of these graphical effects are being adopted into CSS styling as
well, so we’ll continue to highlight the similarities and differences.

CHAPTER 12

Filling Up to Full
The fill Property, Gradients, and Patterns

Parts II and III focused on the geometry of vector graphics: laying
down the lines, curves, and shapes of the design. Such work is nec‐
essary; even the most skilled of painters usually work out their
rough concepts as drawings first, applying paint only after they’ve
finalized in their mind what they are painting. And as with paintings
created with a brush and pigments, an SVG graphic is not truly
“complete” until after color has been applied to transform the visual
outline into a completed work.

In this chapter, we examine more thoroughly the options you have
for filling your graphics with colors and patterns.

The fill style on shape or text determines how the region inside
that shape is colored. We’ve been using fill in examples throughout
the book, usually setting its value to a simple color. But SVG shapes
and text can also be filled with gradients or patterns. These more
complex painting instructions are defined with their own elements
and attributes, and then another element uses them with a cross-
reference from its fill value.

This chapter briefly reviews your options for declaring colors in
SVG—but assumes that you’re already familiar with the same
options in CSS. It then introduces SVG gradients and patterns.
These paint server elements are incredibly flexible, and this book

409

1 If you want more details, we have written an entire book on SVG paint servers, SVG
Colors, Patterns & Gradients (O’Reilly, 2015), that does explore all the options.

isn’t going to describe every possible combination.1 However, by the
end of this chapter, you should be able to create simple patterns or
gradients, and to understand and adapt the markup created for you
by graphics software.

When SVG was first introduced, the only option for patterns or gra‐
dients in CSS and HTML was to use repeating background images.
Since then, however, CSS has introduced gradient functions, and has
greatly increased the flexibility of background images. The syntax
differs considerably between CSS and SVG, although the net effect is
often similar. This chapter compares the two, to make it easier for
you to switch back and forth. It also introduces proposals to adapt
the CSS syntax for use in SVG.

Coloring Between the Lines
The fill property is one of the simplest to get started with, but one
of the most complex in all its possibilities. The next few sections
start with the simplest type of fill: colors.

Except it turns out that colors aren’t always simple.

The Rainbow Connection
As we’ve seen in nearly every example so far, the fill of a shape can
be a simple color. In most of those examples we define the color
using a keyword such as black, red, or saddleBrown. These key‐
words (147 in all) were originally distinguished by their two sources:

• the original HTML color keywords, used in outdated styling
attributes like BGCOLOR and VLINK, and integrated in CSS and
then SVG from the beginning

• the X11 color set (used in many open source software pro‐
grams), which were integrated in the original SVG specifica‐
tions, but only later adopted by CSS

Any SVG-supporting web browser also supports the X11 color key‐
words in CSS. There is no need to really distinguish between the two
color sets, unless you’re defining fallback colors for old browsers.

410 | Chapter 12: Filling Up to Full

However, the mixed origins leave their legacy in inconsistent nam‐
ing patterns (like gray from HTML being darker than darkGray
from X11).

Browsers also now support the X11 color key‐
words in HTML’s deprecated presentation
attributes, like bgcolor. But HTML’s color pars‐
ing rules also generate (somewhat arbitrary) col‐
ors from any other attribute text, too. So…
maybe just avoid specifying colors in HTML
attributes altogether, OK?

More recent additions to CSS colors (transparent and
rebeccaPurple) can also be used in SVG, but watch for support,
particularly in nonbrowser software.

Figure 12-1 shows spot colors for all the named keywords, divided
into dark and light, and then arranged with the most intense colors
at the edge of the color wheel and darker, lighter, and less saturated
colors closer to the middle. It’s a two-dimensional visualization of
three-dimensional data, but it’s enough to make it clear that the
named colors aren’t evenly distributed in the color space.

Figure 12-1. Named color keywords recognized in SVG and CSS

Coloring Between the Lines | 411

Use the keywords for convenience, but do not expect the color
names to be systematic or logical. Learn a few combinations of key‐
words that create nice palettes, and you can quickly whip up a dem‐
onstration page or graphic. But for complex design and custom
branding, you’ll probably want to pick custom colors: colors defined
by a triplet of numerical values.

There are multiple CSS custom color formats. For best support in
nonbrowser SVG software, stick with the CSS color formats that
existed at the time of the original SVG specifications:

• three and six-digit hex codes, like #F00 (red) or #fabdad (fabu‐
lous pink); each digit is a hexadecimal in the range 0–9 or a–f
(or A–F; capitalization doesn’t matter)

• integer RGB functions, like rgb(255, 0, 0) (red again) or
rgb(250, 189, 173) (that same Fab Dad pink); each value in
the function is an integer from 0 to 255

• percentage RGB functions, like rgb(100%, 0%, 0%) or
rgb(98%, 74.1%, 67.8%) (same colors); each value in the func‐
tion is a decimal percentage

Nonetheless, on the modern web, you can use any colors in SVG
that you use in CSS, including those from CSS3. HSL has good sup‐
port in browsers and newer graphics editors:

• HSL color functions, like hsl(0, 100%, 50%) for red, or
hsl(12, 89%, 83%) for #fabdad; the first number is an integer
for the hue in degrees, and the second and third are percentages

Most graphical SVG editors use hex codes for colors in the output
file. However, their color-picking dialogs usually offer multiple ways
of expressing the same value. Browser dev tools also can convert
from one format to another.

Just be careful: there are a lot of hue/saturation/something color sys‐
tems, where the final value isn’t the same as CSS “lightness”!

412 | Chapter 12: Filling Up to Full

Future Focus
Controlling Colors, Consistently

CSS Color Module Level 4 introduces a number of new ways of defining colors,
based on more scientific models of color perception. It also adds convenient
shorthands like gray(30%) for rgb(30%, 30%, 30%).

The new color module also introduces a set of color adjustment functions,
which take one or two color values as input and calculate a new color from
them—inverting, interpolating, or blending with different formulas.

It will be a while before support is good enough to reliably use them on the
web, but the proposals are worth keeping an eye on. More natural color func-
tions make it easier to represent light and shadow, or to create attractive color
palettes for data visualization.

CSS Color 4 also reintroduces a feature from the original SVG specifications:
color profiles. Color profiles are standard ways of defining the actual output
color—that is, not just a percentage of the device’s capabilities, but a color
that can be consistent from one device to another. They are widely used in
commercial printing and in high-quality digital graphics.

By default, colors use the sRGB (“standard” RGB) profile, which is based on the
average capabilities of 1990s-era CRT monitors. In reality, few monitors are well
calibrated, and colors may appear differently on different computers (or in dif-
ferent lighting conditions).

Modern operating systems (and browsers) already support common colorspa-
ces for displaying digital photographs. Allowing CSS colors (and therefore, SVG
colors) to be defined in the same colorspace ensures that you can properly
match the colors in the image, on any device.

Each color profile has its own way of defining colors, which may be numeric or
keyword-based. It’s up to the final output device (printer or monitor and soft-
ware) to implement a given color profile system. For this reason, both syntaxes
for defining profiled colors include a way to specify a fallback color in the stan-
dard CSS syntaxes.

The new CSS syntax for profiled colors is quite different from the old SVG syn-
tax. If you are working with printers, you’ll need to find out which version (if
any) they support. On the web, SVG 1 color profiles were never supported, but
the new syntax is expected to start showing up in browsers sometime in 2017.

Coloring Between the Lines | 413

At the time of writing, browsers are just starting to roll out support for level 4
color features. However, when they are supported, they should be available in
SVG properties at the same time as the rest of CSS.

Coordinating Colors
There is another way to define a color in SVG: the currentColor
keyword. This equates to the current value of the color property.

currentColor is one of the many SVG features that has been adop‐
ted by the rest of CSS. It can now be used in place of any CSS color
value, and is the default for many properties, including border-
color and text-decoration-color.

Since color isn’t otherwise used in SVG, that means it can be used
with currentColor as a variable to coordinate other color-related
properties:

<g color="mediumOrchid">
 <circle r="50" stroke="currentColor" />
 <text fill="currentColor">Matching Label</text>
</g>

Yes, you can use color as a presentation
attribute in SVG, even though it doesn’t have a
direct effect.

For inline SVG, the color property inherits into the SVG from the
surrounding text. It can therefore be used to coordinate inline SVG
icons with your HTML text color.

When you set an inherited style property to the currentColor value,
it is supposed to inherit as the keyword, not as the computed color
value (according to the original SVG specifications and the latest
CSS Color modules). That means that child elements use their color
value, not the color value from the element on which the style was
set.

In other words, these circles should have different fill colors (one
orchid-purple, the other pink):

414 | Chapter 12: Filling Up to Full

<g color="mediumOrchid" fill="currentColor">
 <circle cx="50" r="50" />
 <circle cx="150" r="50" color="deepPink" />
</g>

But…don’t rely on it:

At the time of writing, most browsers (Safari,
Firefox, and IE/Edge) convert currentColor to
a specific color value before the CSS property is
inherited (following the original wording in CSS
Color 3). So both of those circles are drawn as
mediumOrchid purple.
You need to explicitly set fill: currentColor
on the element that has the correct color

property.

Using currentColor as a variable is particularly useful with <use>
elements in SVG. You can’t directly set styles on elements within
each copy of a symbol, but you can control the inherited styles,
including the color value. That means you can coordinate fill and
stroke of different elements within the content.

Example 12-1 shows an example of using currentColor in an icon
sprite file to set the color of both fill and stroke. The icons look
like this:

In order to create the inset-outline effect, two copies of the triangle
are drawn on top of each other. The lower layer has a thick stroke in
the same color as the fill; the upper layer is just a thin white stroke
and no fill. By using currentColor for the fill and outer stroke, we
can do this and still have the background of the icon change to
match the text color.

Example 12-1 includes both the icon sprite file and a sample web
page, displayed in Figure 12-2.

Coloring Between the Lines | 415

Figure 12-2. A warning sign with a color-coordinated icon

Example 12-1. Using currentColor in reused SVG symbols

SVG ICON FILE: warning-icons.svg
<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink">
 <title>Warning Icons</title>
 <defs>
 <path id="triangle" d="M10,4 18,18 2,18 Z"
 stroke-linejoin="round" />
 <g id="triangle-sign">
 <use xlink:href="#triangle"
 fill="currentColor"
 stroke="currentColor" stroke-width="4" />
 <use xlink:href="#triangle"
 fill="none"
 stroke="white" stroke-width="1" />
 </g>
 </defs>

 <symbol id="important" viewBox="0 0 20 20" overflow="visible">
 <use xlink:href="#triangle-sign" />
 <text text-anchor="middle"
 fill="white" stroke="none"
 x="10" y="16" font-size="10">!</text>
 </symbol>
 <rect x="5" y="5" width="40" height="40" fill="lightBlue" />
 <use xlink:href="#important" color="indigo"
 x="5" y="5" width="40" height="40" />

 <symbol id="electricity" viewBox="0 0 20 20" overflow="visible">
 <use xlink:href="#triangle-sign" />
 <polygon points="10.5,7.5 8,11.5 10.5,13
 9.5,16.5 12,12.5 9.5,11"
 fill="white" stroke="none" />

416 | Chapter 12: Filling Up to Full

 </symbol>
 <rect x="55" y="5" width="40" height="40" fill="lightBlue" />
 <use xlink:href="#electricity" color="indigo"
 x="55" y="5" width="40" height="40" />

 <!-- and more, using similar coloring -->
</svg>

The triangle is predefined for use in multiple icons. It’s approxi‐
mately equilateral, with its base along the line y = 18. We’ll talk
more about the stroke-linejoin presentation attribute in
Chapter 13; it is used here to give any strokes on the triangle
rounded corners.

Two copies of the triangle are grouped together as triangle-
sign, and given fill and stroke styles. The thick 4-unit-wide
stroke on the lower layer means that the outer edge of the trian‐
gle (now with rounded corners) will be 20 units wide, sitting on
the line y=20.

Each symbol has a 20×20 viewBox (with visible overflow to pre‐
vent pixels getting clipped). That exactly fits the copy of the
triangle-sign group that is reused inside it.

The important icon has a <text> element drawing an exclama‐
tion mark inside it. The text will match the inherited font set‐
tings from the web page, except for the font-size, which is
adjusted to fit. The fill is set directly, and any inherited stroke is
explicitly cancelled out.

The <symbol> is never directly drawn, so to make the sprite file
easier to use, <use> copies of each icon are arranged so you can
see them if you view the warning-icons.svg file directly. A light
blue <rect> element makes the full dimensions of each symbol
visible, too.

The second icon uses the same triangular backdrop, but creates
a lightning bolt out of a <polygon> for the icon itself. Again, the
<symbol> created for reuse is also printed to the sprite sheet.

Coloring Between the Lines | 417

HTML AND CSS
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8" />
 <title>Warning Notice</title>
 <style>
 .icon {
 width: 1em;
 height: 1em;
 vertical-align: -0.1em;
 }
 .warning {
 max-width: 30em;
 margin: 0 auto;
 padding: 1em;
 border: double 6px;

 background-color: #eee;
 color: darkRed;
 }
 h1 {
 font: bold small-caps 200% sans-serif;
 margin: 0 0 0.5em;
 }
 code {
 font: 100% Consolas, monospace;
 }
 </style>
</head>
<body>
 <section class="warning">
 <h1>
 <svg class="icon" role="img">
 <title>Attention</title>
 <use xlink:href="warning-icons.svg#important" />
 </svg>
 Accessibility Warning
 </h1>
 <p>The markings on the warning icon are always white,
 so the inherited <code>color</code> value
 needs to be dark enough to ensure contrast.
 </p>
 </section>
</body>
</html>

The inline SVG elements will have an icon class. They are sized
to match the surrounding text with width and height of 1em.

418 | Chapter 12: Filling Up to Full

The vertical-align property shifts them slightly, relative to
the text baseline, so that they line up more neatly: for Latin let‐
ters, part of the 1em height of a line of text is always below the
baseline.

The warning class is for the entire warning alert. For this exam‐
ple, the most important part is color: darkRed. The unspeci‐
fied border color defaults to darkRed as well.

The inline <svg> is contained inside the <h1> heading, so it will
inherit the heading’s font-size and color. A <title> gives an
accessible description, while the role="img" ensures that the
entire SVG is treated as a single image—in particular, the excla‐
mation mark in the icon won’t be read out as text.

As we warned in Chapter 10, many older brows‐
ers do not support <use> references to separate
files. You may want to use a JavaScript polyfill to
increase support.
Even the browsers that support cross-file <use>
references don’t currently apply CSS rules from
<style> sections inside that file. They only sup‐
port inline styles or presentation attributes—so
that’s what we use here.

This is the most heavily nested <use> example we’ve seen so far. But
the styles inherit through all the nesting levels, just like they inherit
through nested <div> or <g> elements.

As we warned in Chapter 10, some versions of
Chrome (including the latest at the time of writ‐
ing) have bugs with nested <use> combined
with external file <use>. This particular demo
works fine, but always test carefully!

The color style applied to the HTML <section> inherits down to
the <use> element in the inline SVG, then to the clone of the
<symbol> and the elements inside it, including the <use> element
that clones the triangle-sign group; the cloned group inherits the

Coloring Between the Lines | 419

color and passes it, finally, to the two different clones of the triangle
<path> itself.

This example only uses color on the <use> element, ignoring the
inherited fill and stroke. However, you could of course use all
three, with some parts of the icon using inherited fill and stroke
styles and other elements using currentColor. To get more options
than that, however, you need CSS variables.

Variables for Every Property
Coordinating multiple styles is useful for more than just colors. And
it’s often useful to have more than one color that you can coordinate
to. In other words: currentColor is nice, but it’s not enough.

CSS custom properties, more commonly known as CSS variables,
fill in the gap. They allow you to declare your own CSS properties
with any value you want, just by giving it a name starting with --
(two hyphen/minus characters). You can then use those property
values in any other property, by referencing your custom property
name inside a var() function.

Many people find the --property syntax con‐
fusing, or ugly. The syntax needed to be compat‐
ible with existing CSS parsers, and it also needed
to avoid conflicts with popular CSS pre-
processors, which usually have their own vari‐
able syntax.
Think of the custom property syntax as an
extension of the CSS prefixed property syntax,
like -ms-grid-rows or -webkit-transform. But
because these are your properties, not the
browser’s, there is no browser prefix between the
two hyphens.

At the time of writing, CSS Custom Properties are now supported in
the latest versions of every major browser. So they aren’t really a
“future” feature—you can use them now! Just be careful about creat‐
ing reasonable fallbacks for older browsers and nonbrowser
software.

420 | Chapter 12: Filling Up to Full

MS Edge introduced support for CSS variables
as of EdgeHTML version 15 (released as stable
in April 2017). However, the variable values do
not inherit into the <use> element shadow trees.
This will hopefully be fixed for the next update.

We can extend our <use> warning icon sprite from Example 12-1
with custom properties. We’ll have two properties, to allow the
author to set the sign color directly, if desired, and to set the text
color to something other than white. In our sprite file, the code for
the triangle would look like the following:

<g id="triangle-sign">
 <use xlink:href="#triangle"
 fill="currentColor"
 stroke="currentColor" stroke-width="4"
 style="fill: var(--icon-sign-bg, currentColor);
 stroke: var(--icon-sign-bg, currentColor)"/>
 <use xlink:href="#triangle"
 fill="none"
 stroke="white" stroke-width="1"
 style="stroke: var(--icon-sign-text, white)" />
</g>

We’d then make similar changes to the rest of the icon code, setting
the fill of the <text> and <polygon> elements to var(--icon-
sign-text, white).

The presentation attributes are still there, for software that doesn’t
support CSS variables. For modern browsers, fill and stroke are
reset in a style attribute to use var() functions. Each var() has two
parameters: the name of a CSS custom property, and a fallback value
to use if the browser supports variables but that particular variable
hasn’t been set on the element. The fallbacks for that case are exactly
the same as the fallbacks in the presentation attributes.

In the final web page, we can choose to set either --icon-sign-bg
(the sign background), --icon-sign-text, or both. For example, if
our warning had yellow-gold text on a dark gray background, we
might want the sign background to still use currentColor but the
markings to be in black:

Coloring Between the Lines | 421

.warning {
 background-color: #222;
 color: gold;

 --icon-sign-text: black;
}

However, that leaves us with an issue in browsers that don’t support
CSS variables: we’ll get white markings on gold, which will be
almost indistinguishable. To prevent this, we can use a CSS
@supports test to adjust the color depending on whether or not
CSS custom properties and var() functions are recognized:

.warning .icon {
 color: darkGoldenrod;
 /* fallback, if CSS variables aren't supported */
}
@supports (--css: var(--iables)) {
 .warning .icon { color: inherit; }
}

The specific custom property names in the @supports test don’t
matter; it’s just testing the syntax. If the syntax is acceptable, the icon
will inherit the gold color value from the rest of the warning sign;
otherwise, it will be set to a darker gold to ensure enough contrast
against white.

Because MS Edge 15 recognizes CSS variables,
but doesn’t use them in SVG <use>, all the fall‐
back methods fail: the @supports test says vari‐
ables are supported, but the variable value isn’t
passed to the icon. The icons are barely readable
white on gold. Good thing the full meaning is
also conveyed by the heading text.

Figure 12-3 shows what the end result would look like in a browser
with CSS variable support.

422 | Chapter 12: Filling Up to Full

Figure 12-3. A warning sign with color coordination and contrast
control

There are limitations to variables as currently specified:

• Default values must be set in every var() function: there’s no
initial value.

• The CSS parser does not know what type of value should be
allowed in your property, so it can’t do any type checking or fall‐
backs for you.

• Similarly, the browser cannot interpolate between custom values
in an animation or transition. However, if you change a vari‐
able, it will trigger a transition on properties that use that vari‐
able.

Proposals for future versions of CSS custom properties address
these issues, but nothing has been finalized yet. The usefulness of
CSS variables for colors will also be considerably enhanced when
browsers support the new color-adjustment functions in CSS Color
Module Level 4.

Water Colors
If you’ve worked with color in modern CSS web design, you may
also be familiar with the semitransparent color functions. The rgba
and hsla color functions take a fourth value, alpha, that defines
how opaque the color should be. An alpha of 0 creates a perfectly
transparent color; an alpha of 1 creates a perfectly opaque (solid)
color. Some examples:

Coloring Between the Lines | 423

• rgba(0,0,0,0) is transparent black, equivalent to the
transparent keyword.

• hsla(0,0%,100%,0) is transparent white; in most situations, it
would look identical to transparent black, but it can have differ‐
ent effects in gradients or animations.

• rgba(100%,0%,0%,0.5) is half-transparent red.
• hsla(240,100%,50%,1) is fully opaque blue, equal to
hsl(240,100%,50%) or #00F.

These alpha color functions were introduced in the level 3 CSS
Color module. Although they are now supported in nearly all web
browsers that support SVG, they were not part of the original SVG
specifications.

Support for semitransparent colors may be limi‐
ted in nonbrowser SVG software.
There are also a few bugs in browsers related to
these colors in SVG: for example, semitranspar‐
ent colors don’t work in gradients in WebKit.

SVG 1 did support semitransparent colors, but in a different way.

SVG has a separate property, fill-opacity, to control the opacity
of the fill. There are similar opacity properties that pair with other
properties in SVG that define a color value: stroke-opacity, stop-
opacity (for gradient stops), and flood-opacity (for the <feFlood>
filter component). All of these properties can be set using either pre‐
sentation attributes or CSS.

The overall opacity property also adjusts trans‐
parency, but in a different way: it applies to the
final painted result of the element on which it is
applied, even if that element is a group of multi‐
ple shapes. opacity is discussed in Chapter 15.

424 | Chapter 12: Filling Up to Full

Similar to the alpha values in the color functions, the fill-opacity
property accepts a value from 0 (completely transparent) to 1 (com‐
pletely opaque). The other *-opacity properties work the same.

When using fill colors, setting fill-opacity has much the same
visual effect as using a color with the equivalent alpha value. A shape
with fill: red and fill-opacity: 0.5 would look the same as
one with fill: rgba(255,0,0,0.5).

If you use both fill-opacity and a semitrans‐
parent color for fill, the transparency effect is
compounded: the net opacity is the two values
multiplied together.

Example 12-2 shows all the possibilities, applied to copies of our
heart icon (the <symbol> version we created for Example 10-2 in
Chapter 10).

The icons in the right column (with x="10") have reduced fill-
opacity. The icons in the bottom row (with y="10") have reduced
alpha in the fill color. This means the icon in the bottom right has
both types of transparency, compounded.

To clearly show the effect of the transparency, the hearts are drawn
over the coordinate system grid created for the figures in Chapter 6.
Figure 12-4 shows the result.

Coloring Between the Lines | 425

Figure 12-4. Shapes with and without reduced fill-opacity (right versus
left column), and with and without reduced-alpha fill colors (bottom
versus top row)

Example 12-2. Creating semitransparent fill in different ways

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 height="400px" width="400px" viewBox="0 0 20 20">
 <title>fill-opacity versus (and with)
 Semi-Transparent Fill</title>
 <use xlink:href="../ch06-path-files/graphing.svg#grid" />
 <use xlink:href="../ch10-reuse-files/suits-symbols.svg#heart"
 width="10" height="10" />
 <use xlink:href="../ch10-reuse-files/suits-symbols.svg#heart"
 width="10" height="10" x="10" />
 <use xlink:href="../ch10-reuse-files/suits-symbols.svg#heart"
 width="10" height="10" y="10" />
 <use xlink:href="../ch10-reuse-files/suits-symbols.svg#heart"

426 | Chapter 12: Filling Up to Full

 width="10" height="10" x="10" y="10" />
 <style>
 [*|href$='#heart'] { fill: magenta; }
 [x='10'] { fill-opacity: 0.6; }
 [y='10'] { fill: rgba(100%, 0%, 100%, 0.6); }
 </style>
</svg>

The #grid in the other file is a <g>, not a <symbol>. When
reused, it is therefore drawn in this SVG’s coordinate system
using the exact coordinates with which it was originally defined.
It was defined to draw grid lines from –5 to +25 in both the x
and y directions; this SVG’s viewBox will only show the section
of the grid from 0 to +20. The stroke styles are also defined in
the other file, as presentation attributes.

The remaining <use> elements reference the heart icon
<symbol>. The width and height attributes constrain them to
each use only a 10×10 region of the 20×20 viewBox for this file.
The icon code in the sprite file does not define any styles; it will
inherit styles set on the <use> elements.

The four hearts are positioned in two rows and columns using
the x and y attributes on the <use> elements.

We could have set the fill and fill-opacity in presentation
attributes, but it’s good to remind you of all the options CSS
opens up. That’s the XML-namespace-wildcard version of a CSS
attribute selector, which we introduced back in Chapter 3. The
dollar sign before the equals ($=) means that it will select ele‐
ments whose href or xlink:href attribute ends with #heart.
All four heart icons match that selector, and so they are assigned
the fill color magenta.

The <use> elements with x="10" are selected with a (much-
simpler) CSS attribute selector, and given reduced fill-

opacity.

The final selector picks the <use> elements with y="10", and
overrides the earlier fill setting, to apply an rgba color. The
color is a semitransparent version of magenta; the magenta key‐
word is equal to rgb(100%, 0, 100%) in functional notation.

Coloring Between the Lines | 427

The effective transparency of the final (bottom right) icon is 0.6×0.6,
or 0.36.

It’s good to know that you can play around with
CSS selectors, like we did in Example 12-2. But
attribute selectors, especially with common
attributes like x and y, can easily cause uninten‐
ded consequences. It’s fine for a single small,
standalone SVG, but use classes in inline SVG or
more complex design systems.

If you’re used to working with transparent colors in CSS, it may be
tempting to stick with what you know. But there are important ben‐
efits of fill-opacity to consider:

• It is supported in nearly all SVG software.
• It can be modified independently from the fill color.
• It allows you to use named color keywords or hex colors—what‐

ever you’re already using.
• It also applies to fill paint.

What’s fill paint? That’s when the shape isn’t filled with a single color,
but instead by complex graphical instructions from a gradient or a
pattern.

Future Focus
Percentage Alpha

The SVG 1.1 and CSS Color level 3 specifications only allowed alpha values to
be set as a decimal number. However, many graphics programs use percen-
tages to describe alpha: 0% for transparent and 100% for opaque.

SVG 2 and CSS Color level 4 allow a percentage or a number whenever an
alpha value is specified. For now, use decimals to ensure browser support.

428 | Chapter 12: Filling Up to Full

Filling with More Than Solid Colors
The fill property, as we discovered in Chapter 1, can be set with a
url() reference to another element. That other element—the one
that describes how to fill in this shape—is known as a paint server.

There are three paint server elements in SVG 1.1, which can be used
to fill (or stroke) shapes or text:

<linearGradient>

A gradient defined by color transitions along a line. The colors
are then extended away from that line infinitely on either side.

<radialGradient>

A gradient defined by color transitions along rays extending
outward from a point, in all directions, to a circular boundary.

<pattern>

A tiled pattern of the same rectangle of SVG drawing elements,
repeated infinitely in rows and columns.

Figure 12-5 shows some of the effects you can create with these ele‐
ments. We’ll explain the code used to create them when we explore
the individual elements, later in this chapter.

When you apply a fill-opacity of less than 1 to a shape with a gra‐
dient or pattern fill, the entire gradient or pattern is made semi‐
transparent. If parts of it were already transparent, the effect is
compounded, in the same way that reducing fill-opacity makes
semitransparent colors even more transparent.

The next few sections will discuss some common conceptual fea‐
tures of SVG paint servers, before the rest of the chapter outlines the
specific elements and attributes.

Filling with More Than Solid Colors | 429

Figure 12-5. Linear gradients (top), radial gradients (middle), and pat‐
terns (bottom)

430 | Chapter 12: Filling Up to Full

Future Focus
Serving Up New Paint

SVG 2 will considerably extend your fill options. Unfortunately, at the time of
writing, none of the new options are supported in web browsers.

SVG 2 introduces three new paint server elements:

<solidcolor>

First proposed in SVG Tiny 1.2, <solidcolor> provides a paint-server
interface for a single color of paint. That way, you would only need to
specify the color value once, and reference it many places. You would also
be able to animate the color and have all uses of it update in sync. It
remains to be seen whether it ever gets adopted in web browsers: CSS
variables provide the same functions, and many more, too.

<hatch>

A <hatch> defines a pattern as a repeated section of path data. The path
data would be repeated to create a continuous path for as long as
required to fill up the shape in one direction, and then copies of the path
would be repeated side-by-side to fill up the shape in the perpendicular
direction. The continuous paths would be better suited to engraving and
similar tools than <pattern> tiles, and would make common patterns
from data visualization and mapping (like repeated wavy or zig-zag lines)
much easier to define, for all uses of SVG.

<meshgradient>

A <meshgradient> is a pattern of continuous color transitions that is
defined by a two-dimensional arrangement of color stop points, connec-
ted to each other in (possibly curved) paths to create a mesh (a flexible
grid) of rows and columns.

All new elements defined in SVG 2 have all-lowercase
names, to make them more compatible with the HTML
parser. In SVG Tiny 1.2, in contrast, the <solidcolor>
element was actually <solidColor>, with a capital C.

The following examples of mesh gradients were created with the new SVG 2
mesh gradient tool in Inkscape. On the left is a gradient applied to a wide
stroke of a circle; on the right is a mesh gradient as fill of a polygon:

Filling with More Than Solid Colors | 431

The code for the two graphics combined is just over 16KB as uncompressed,
unoptimized SVG code—even with all the Inkscape custom attributes. Adobe
Illustrator also creates mesh gradients, but does not yet export to the SVG syn-
tax.

The gradient on the circle’s stroke is a mesh of 3×3 stop points, or 2×2 mesh
“patches”. The stop points are the corners and intersection points of the
patches: each patch is defined by four stops and the path edges that connect
them. In this case, the edges of the patches are all Bézier curves, with the cen-
ter point of the mesh pulled off to one side, to create the highlight effect.

The star has a simple radial gradient on the stroke, using the mesh gradient for
the fill. The mesh is actually a grid of 10×2 patches, rolled up so all the points
along one edge of the mesh are gathered together in the center of the star.
The mesh therefore becomes a complex conic gradient. Those stops alternate
white and blue-gray; the stops in the next row (the edges between the first
and second row of patches) are all the same peachy-gold color; the stops in
the final row are positioned on the outer edge of the star and alternate pinky-
red and deep blue. Inkscape generates these mesh structures automatically
when you apply a mesh to a polygon. SVG 2 also defines a <mesh> element
that would create a path that exactly matches the outside edges of the
patches of a <meshgradient>.

SVG 2 also introduces a syntax to allow you to use paint servers without giving
them id values: you could include the paint server element as a child of the
shape, and use the fill:child(n) to select it, like this:

<path d="M10,0 L 20,10 10,20 0,10 Z" fill="child(1)">
 <linearGradient>

432 | Chapter 12: Filling Up to Full

 <stop stop-color="green" offset="0"/>
 <stop stop-color="lightBlue" offset="1"/>
 </linearGradient>
</path>

This avoids the complication of having to create a unique id value for each
paint server element. This is important if you’re using scripts to generate a
large number of elements, especially in inline SVG where there may be other
parts of the page that aren’t controlled by your script.

Even more options for fill (and stroke) are defined in the newly proposed
CSS Fill and Stroke module. We’ll describe the changes at the end of the next
section.

Fallbacks for Fills
Whenever the fill property (or presentation attribute) is set with a
url() value, it can optionally be followed by a color, with white‐
space separating the two values:

fill: url(#gold) #f0b020;

The color is used as a fallback, in case there is a problem with the
URL reference. Some examples of potential problems:

• No element exists with an id that matches the URL reference.
• The element exists, but it’s not a paint server type recognized by

the browser.
• The element exists and is a paint server, but it is invalid for

some other reason (for example: zero-width pattern tiles that
will never fill a shape no matter how many times they are
repeated).

• The URL references an element in another file, and the browser
doesn’t support cross-file references (we saw an example of this
in Chapter 2).

• The browser supports cross-file references, but for network rea‐
sons or security reasons, it isn’t able to access the file.

• The paint server URL is in this file, but the painted shape is
reused from another file, and you’re using a version of a (Blink)
browser that has bugs with this.

Filling with More Than Solid Colors | 433

Fallback colors can be useful for debugging. They are essential if
you’re going to use paint servers in other files (as we did, in the
interest of code brevity, in Example 2-4 in Chapter 2), and would be
even if browser support for this wasn’t utterly horrible.

At the time of writing, references to paint
servers in other files are only supported fully in
Firefox (and other Gecko-based browsers) and
Presto-based browsers (old Opera and Opera
Mini). MS Edge supports it from .svg files only,
not from inline SVG.
Even where they are supported, there will be
cross-origin restrictions.

Without cross-browser support of cross-file references, your paint
server elements have to be copied into every page.

This also means that your CSS rules assigning the fill and stroke
values need to be on that page, so the local url(#id) references will
be calculated correctly. New rules for #id-only URLs in CSS files
have been proposed, but aren’t supported reliably yet.

If you’re using gradients or patterns as part of an inline SVG icon
system, you’ll either want to use server-side templating tools to add
the markup into every page, or use client-side JavaScript to down‐
load the markup and inject it. For the JavaScript approach, you’ll
want to have fallback colors in place, in case your script fails.

Future Focus
New Fill Effects

The CSS Fill and Stroke module extends the fill and stroke properties so
that they also apply to CSS-styled text outside of SVG. So you could set a fill
gradient and stroke outline on the text in an HTML heading, without having
to include the text in an inline SVG.

The module also proposes changes that will make fill and stroke paint
work more like CSS backgrounds:

• Both fill and stroke would take a list of multiple paint values that
would be layered together (just like layered background images).

434 | Chapter 12: Filling Up to Full

• Instead of an SVG paint server reference, you could use any CSS image
data type, including url() references to image files (e.g., a JPEG photo-
graph) and CSS gradient functions.

• The fill property (and also the stroke property) would become a
shorthand property, with longhands similar to those for background.
You’d be able to control the size, positions, and repeat patterns of the
images that are used for the paint layers, allowing you to create a basic
tiled image pattern without a <pattern> element.

For backward compatibility, a fill-color specified with a fill-image would
still be used only as a fallback. To get a solid color layer underneath your pat-
tern, you’d need to add an explicit second layer, with a none image value:

fill: url(#diamond-pattern) indigo;
 /* diamond pattern with solid indigo as fallback */

fill-color: indigo;
fill-image: url(#diamond-pattern), none;
 /* diamond pattern over top of solid indigo layer */

fill: url(#diamond-pattern), indigo;
 /* the same, using the shorthand: note the comma */

Specific details in the module are still being worked out, but there seems to be
good browser support for moving forward with it. Recent versions of most
browsers already support solid-color fill and stroke on non-SVG text, using the
nonstandard -webkit-text-fill-color and -webkit-text-stroke-color
properties; this includes non-WebKit browsers MS Edge and Firefox. The same
browsers also support something that looks like image or gradient-filled text,
with -webkit-background-clip: text. The new module would replace
these properties with standard CSS options, while also extending SVG paint
considerably.

Picturing Paint
“Paint” is the accepted name in SVG for gradients and patterns used
to fill (or stroke) a shape, and the elements that define them. But the
word is a little misleading.

When you paint something—furniture, a wall, or the shapes in a
paint-by-number coloring book—you adjust the paint to fit within

Filling with More Than Solid Colors | 435

the space available. Paint is liquid; it adapts to the space available.
You can run your paint brush around the edges, just so.

SVG paint doesn’t work that way. SVG paint is more like wallpaper
—or fabric. It has its own design that is independent of the shape
that you are filling. You need to clip the paper or fabric to fit it to a
specific shape, like in Figure 12-6.

Figure 12-6. “Painting” a shape in SVG, by cutting it out from a pat‐
terned sheet

When you define a gradient or pattern in SVG, you are defining a
(theoretically infinite) image of its own. The browser then uses that
image as a reference as it fills shape or text.

When the browser rasterizes vector shapes, converting it to pixels, it
scans across the image row-by-row to figure out which points are in
or outside of it. In Chapter 6, when we talked about the fill-rule
property, we explained how the direction of each edge is used to
determine whether the region on the other side of that edge is inside
or outside the fill.

436 | Chapter 12: Filling Up to Full

More Online
There’s more about the rasterization calculations in “Understanding
Vector Graphics”, an online extra from Chapter 1, and “The Winding
Order of the Fill Rule”, an extra from Chapter 6:

https://oreillymedia.github.io/Using_SVG/extras/ch01-vectors.html
https://oreillymedia.github.io/Using_SVG/extras/ch06-fill-rule.html

Paint servers are the next step in the process. For every point that is
inside the fill, the SVG rendering software looks up a matching
point in the paint server image, and uses that image to determine
what color the point should be.

This doesn’t mean that SVG paint is completely independent of the
shape being painted, however. The image created by a SVG paint
server is a scalable vector graphic in its own way: it’s defined by geo‐
metric instructions, and those instructions are executed in a scaled
coordinate system. The shape being painted helps set the scale.

Scaling Paint Servers
The coordinate system used to scale a pattern or a gradient, like all
coordinate systems in SVG, is defined by width, height, an origin
point, and a scale (i.e., the size of a px user unit). There are two
options for how that coordinate system is calculated, which are
expressed in uncomfortably long mixed-case keyword phrases that
you’re just going to have to memorize:

userSpaceOnUse

With userSpaceOnUse units, the reference coordinate system
for the graphical effect is the user space, the main coordinate
system used to draw the shape or text that has the paint (or
other effect) applied.

Filling with More Than Solid Colors | 437

https://oreillymedia.github.io/Using_SVG/extras/ch01-vectors.html
https://oreillymedia.github.io/Using_SVG/extras/ch06-fill-rule.html

Or at least, that’s how it’s supposed to work.
Unfortunately, most web browsers (WebKit,
Blink, and IE/Edge) treat userSpaceOnUse as
“user space on definition” when it comes to per‐
centages: they use the coordinate system of the
<svg> that contains the pattern or gradient ele‐
ment, instead of the coordinate system of the
shape being painted. They transform the basic
units to match the scale and transform in the
coordinate system on the shape, but they don’t
change how percentages translate to px.
To get consistent scaling cross-browser, you
need to define the paint server in the same
<svg> as the shape it is painting. This severely
limits the function of many userSpaceOnUse
graphical effects with inline SVG icon systems,
where you have many independent <svg> ele‐
ments and you want your effect to scale to 100%
for each SVG.

objectBoundingBox

The reference coordinate system is a square 1 unit wide and 1
unit tall—with its origin in the top-left corner—that is scaled to
fit the fill bounding box of the shape being painted—that is, a
rectangle defining the extent of the shape’s fill region.

The reference coordinate system is a 1×1 square, but the bound‐
ing box can be any rectangle. That means the scale may be non-
uniform, with height and width scaled to different degrees, and
a corresponding distortion to the paint-server image, stretching
or squishing the gradient or pattern.

The same two scaling options (bounding box and user space) are
used in other graphical effects in SVG, notably filters (Chapter 16),
clipping, and masking (Chapter 15). So if you take the time to fully
understand how objectBoundingBox and userSpaceOnUse work—
and to memorize those uncomfortably long keyword phrases—
you’ll be more comfortable working with any SVG graphical effect.

438 | Chapter 12: Filling Up to Full

The keyword phrases must be capitalized cor‐
rectly (first letter of subsequent words is upper‐
case). Because these are attribute values—not
attribute names—you can’t even rely on the
HTML parser to fix it for you.

We’ve already extensively discussed the user coordinates and the
SVG coordinate system (in Chapter 8 and subsequently). But
bounding boxes require a closer look.

The Boundaries of the Box
The bounding box of a shape is the rectangle that tightly fits around
it, in its own coordinate system. The fill bounding box is the rectan‐
gle that exactly fits the fill region, not counting strokes or other
effects. In SVG 1.1, it’s the only bounding box that is used.

Figure 12-7 shows a variety of SVG shapes (each with a different fill
color) and their bounding boxes (the dashed outlines). Regardless of
the shape of the element, the bounding box is always a rectangle;
however, if you transform the shape, the bounding box transforms
with it.

You can find the bounding box of any SVG element by selecting it in
JavaScript and running the getBBox() method. It returns an object
with x, y, width, and height properties.

In Firefox, the element has to be currently dis‐
played for the getBBox() method to work.

In general, if you look at every (x,y) point in the shape, the bound‐
ing box would stretch from the minimum to maximum x coordi‐
nates and from the minimum to maximum y coordinates.

Filling with More Than Solid Colors | 439

Figure 12-7. Assorted SVG shapes (filled), some transformed, and their
bounding boxes (outlines)

Or at least, that’s how it’s supposed to work.
Some browsers (WebKit and Blink up to version
62, and Firefox up to version 55 on Mac/
Android) use a “fast” calculation for bounding
boxes of Bézier curves, which creates a polygon
from the points and control points and uses the
bounding box of that.
For some shapes, this results in a bounding box
that is larger than it should be. And the box
that’s used for painting may not match the
getBBox() result.

The rules are slightly more complicated for <text> elements—and
slightly more inconsistent from one browser to another. The key
points that are consistent:

• The text bounding box includes the full layout rectangle for
each character, even if the drawn glyph only takes up part of
that space.

440 | Chapter 12: Filling Up to Full

• The bounding box for painting <tspan> and <textPath> ele‐
ments is based on the shared bounding box for the entire
<text>, so that gradients and patterns are continuous from one
<tspan> to the next.

Because text elements use different bounding boxes than paths do,
converting text to paths can cause gradients and patterns to change
shape or size. You can reduce the impact by merging the paths for
each letter into a single multipart path (depending on the software
you use, it might do this already), but it will never be exactly the
same.

More Online
For paint servers, one of the most important differences between
objectBoundingBox and userSpaceOnUse is whether the paint
looks continuous from one element to the next. But even user-
space paint can look discontinuous if you use transformations (or
<use> with x and y). And even bounding-box paints can be contin-
uous for text.

Read more—with examples of both effects—in “objectBounding-
Box versus userSpaceOnUse”:

https://oreillymedia.github.io/Using_SVG/extras/ch12-bounding-
boxes.html

Great Gradients
Gradients consist of smooth transitions from one color or opacity
state to another. We first introduced gradients in Chapter 1, but
without dissecting how they are put together. The next few sections
look at the elements and attributes that create those gradients, so
you can build your own.

Shared Structures
The gradient itself is created by a <linearGradient> element or a
<radialGradient> element. That’s the element that has the id that
you reference from your fill (or stroke) property. Inside the gradi‐
ent element are <stop> elements, which describe the colors.

Great Gradients | 441

https://oreillymedia.github.io/Using_SVG/extras/ch12-bounding-boxes.html
https://oreillymedia.github.io/Using_SVG/extras/ch12-bounding-boxes.html

Here’s the simplest structure, with two stops and no extra attributes:

<linearGradient id="horizontal" >
 <stop stop-color="gold" offset="0"/>
 <stop stop-color="deepPink" offset="1"/>
</linearGradient>

Technically, you can get simpler than this, and
only have one color <stop>. But then your gradi‐
ent isn’t a gradient, it’s just a solid color paint
server, similar to the proposed <solidcolor>
element.

The <stop> elements are distinguished by three features:

• offset is a number between 0 and 1, or a percentage between
0% and 100%. It defines how far into the gradient this color
should occur. It is a regular attribute—it cannot be set with CSS.
If you don’t specify offsets, they will all default to 0, and you
won’t get a gradient. The <stop> elements must be arranged in
order according to their offset values, from smallest to largest;
each offset will be adjusted to be no less than the offset of the
previous <stop>.

• stop-color sets the color at this offset point in the gradient. It is
a presentation attribute, so you can set it with a class or other
CSS rule. However, it doesn’t inherit (unless you force it by set‐
ting stop-color: inherit). A currentColor value would be
the color on the <stop> element, not on the element you’re
painting with the gradient.

• stop-opacity (not used in our “simplest” gradient) makes the
color stop partially transparent. It is also a presentation
attribute, not inherited, and defaults to 1 (opaque).

For consistent cross-browser results when you’re
creating partially transparent gradients, use
stop-opacity, not semitransparent colors.
WebKit completely ignores stop-color trans‐
parency. Other browsers disagree on the exact
algorithm to use when fading to a semitranspar‐
ent color.

442 | Chapter 12: Filling Up to Full

The <stop> elements in a <radialGradient> work the exact same
way. This gradient creates a ring of color, transparent in the middle
and the outside, transitioning to opaque in between. It has four
stops, each with an offset and a stop-opacity:

<radialGradient id="gradient-ring">
 <stop stop-opacity="0" offset="50%" />
 <stop stop-opacity="1" offset="70%" />
 <stop stop-opacity="1" offset="80%" />
 <stop stop-opacity="0" offset="100%" />
</radialGradient>

The stop-color isn’t specified on any stop, so will default to black.
But you could change it with CSS. For example, the following rules
would turn that ring to crimson red:

#gradient-ring stop { stop-color: crimson; }

The <linearGradient> and <radialGradient> elements themselves
share common attributes, which we’ll describe in the following
sections:

• gradientUnits defines whether the gradient is scaled using the
objectBoundingBox method (the default) or userSpaceOnUse.

• spreadMethod can be used to create repeating or reflecting gra‐
dients (but beware—they aren’t currently supported in WebKit/
Safari).

• gradientTransform lets you transform the gradient (scale,
rotate, skew, or translate) separately from the shape it is
painting.

• xlink:href allows you to reference a separate gradient, and
have it become a template for this one.

These attributes all have the same options for both types of
gradients.

The differences between linear gradients and radial gradients come
in how the stop list—which describes a one-dimensional color tran‐
sition in arbitrary “offset” units—is transformed into the two-
dimensional coordinate space of the paint server.

Great Gradients | 443

Aligning Linear Gradients
A <linearGradient> element creates a gradient defined by the
geometry of a line. That line is known as the gradient vector. The
stop offset values are positioned along that line, and then the col‐
ors are extended to infinity on either side.

It therefore might not surprise you that the geometry of a
<linearGradient> is defined by the same attributes as the geometry
of a <line> element: x1, y1, x2, and y2. Just like with a <line>, the
four attributes collectively describe the start and end points of the
line.

Unlike with a <line>, the default value for x2 in
a <linearGradient> is 100%. The defaults for
the other positioning attributes remain 0.

By default, therefore, the line of a <linearGradient> runs horizon‐
tally left to right across the coordinate space.

That coordinate space is the object bounding box by default. If you
set gradientUnits to userSpaceOnUse, it is the SVG’s coordinate
system, after any transformations in effect for the shape being
painted.

Example 12-3 shows a gradient that uses all four geometric
attributes to create a diagonal gradient, but one that doesn’t quite
reach the opposite corners of the bounding box. Figure 12-8 shows
the result, twice: once as defined, and the second time with the vec‐
tor line and the offsets marked out in crimson-red.

444 | Chapter 12: Filling Up to Full

Figure 12-8. A rounded square filled with a diagonal linear gradient,
and the same square with the gradient’s line vector and stop offsets
marked on it

Example 12-3. Drawing a simple linear gradient

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 width="200px" height="200px" viewBox="0 0 200 200">
 <title>Simple Linear Gradient</title>
 <linearGradient id="green-gradient"
 x1="20%" y1="20%" x2="80%" y2="80%">
 <stop stop-color="mediumSpringGreen" offset="0"/>
 <stop stop-color="forestGreen" offset="0.3"/>
 <stop stop-color="lightBlue" offset="1"/>
 </linearGradient>
 <rect width="100%" height="100%" ry="10%"
 fill="url(#green-gradient)" />
</svg>

The shapes in Figure 12-8 have a square bounding box, so the object
bounding-box units don’t do anything strange to the coordinate
system.

In contrast, Figure 12-9 shows how the same gradient is stretched to
fit a rectangle that is twice as wide as it is tall. Note how the uneven
scale changes the angles of the gradient: they still match the diago‐
nals of the box, even though those diagonals are no longer at right
angles to each other.

Great Gradients | 445

Figure 12-9. A rounded rectangle filled with a diagonal linear gradi‐
ent, with the line vector and stop offsets marked on it

The corners of the shapes in Figures 12-8 and 12-9, beyond the ends
of the gradient vector, are filled with solid colors matching the first
and last <stop>. There are actually two ways to achieve this effect:

• Make the gradient vector line shorter than the bounding box (as
in this example).

• Inset the offset values so they don’t extend all the way from 0
to 1.

To create a solid-colored region in the middle of
a gradient, you need to have two subsequent
<stop> elements with the same color and opac‐
ity. This is a case where it is helpful to set stop-
color and stop-opacity values with a class—
or even with CSS variables!

The difference between insetting the offsets and insetting the ends
of the vector is only revealed when you change the spreadMethod.
The spreadMethod attribute defines how the browser fills in the
space beyond the ends of the gradient vector. The default value is
pad, which pads the space with the nearest <stop> value. The other
options are repeat and reflect.

446 | Chapter 12: Filling Up to Full

WebKit (as of Safari 10.12) does not support
reflecting and repeating SVG gradients. Firefox
also lost support for a while when changing
graphics libraries—but they’ve been fine since
version 33, in 2015.

Example 12-4 uses a repeating user-space gradient to create gradient
stripes. The basic gradient extends from x1=-20 to x2=+20, relative
to the user-space coordinate system. In other words, it’s a horizontal
vector, 40px wide, centered on the origin. Since the SVG has a cen‐
tered coordinate system, that means the gradient is centered in the
graphic, too.

Figure 12-10 shows the result as defined, and with the vector and
stops marked on it. The bright cyan annotations in the center are
the positions defined by the attributes; the repeats are marked in
peachy-yellow.

Figure 12-10. A repeating linear gradient in a circle, and the same
shape with the gradient’s line vector and stop offsets marked on it

Example 12-4. Drawing a repeating linear gradient

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="200px" height="200px" viewBox="-100 -100 200 200">
 <title>Repeating Linear Gradient</title>
 <linearGradient id="purple-stripes"
 gradientUnits="userSpaceOnUse"
 x1="-20" x2="+20" spreadMethod="repeat">

Great Gradients | 447

 <stop stop-color="purple" offset="0.4"/>
 <stop stop-color="plum" offset="0.9"/>
 </linearGradient>
 <circle r="50%" fill="url(#purple-stripes)" />
</svg>

The offset values in Example 12-4 are 0.4 and 0.9, not 0 and 1. This
creates solid bands of color at the edge of each stripe, from the start
of the vector (the x1 position) to the first <stop>, and then from the
second, final <stop> to the end of the vector (x2 position). The
stripe repeat length is defined entirely by the x1 and x2 attributes,
and isn’t affected by the offsets.

Figure 12-11 shows the result if the code in Example 12-4 was modi‐
fied to change spreadMethod to reflect (instead of repeat). The
annotated version shows how we created the very different pattern
from the same basic stripe unit, by flipping it back to front in each
repetition.

Figure 12-11. A reflecting linear gradient in a circle, and the same
shape with the gradient’s line vector and stop offsets marked on it

448 | Chapter 12: Filling Up to Full

If you wanted to include both the repeating and the reflecting gradi‐
ents in the same graphic, there’s an easy way to reduce your code.
One gradient element can cross-reference another with an
xlink:href attribute.

As with all other xlink:href attributes, most
modern browsers support simple href, but keep
using xlink for Safari and older versions of
other browsers.
Gradient cross-references to other files are only
supported in Firefox and MS Edge.

When you use xlink:href on gradients, the referenced gradient
becomes a template. All gradient-related attributes from the refer‐
enced element are used as defaults for the new gradient. They will be
used unless the new gradient sets its own value for that attribute.

If the new gradient doesn’t have any <stop> elements, it uses the
template gradient’s stops.

You can even create a cross-reference from a
<linearGradient> to a <radialGradient>, and
vice versa: the shared attributes and the stops
will be copied, while other geometric attributes
will have their normal defaults.

Using cross-references, you could define the reflecting gradient as
follows:

<linearGradient id="purple-reflections"
 spreadMethod="reflect"
 xlink:href="#purple-stripes" />

The <stop> elements (including their colors and offsets) and the
geometric attributes (gradientUnits, x1, and x2) are all copied
from the original gradient with id purple-stripes. The new gradi‐
ent then changes the spreadMethod.

Great Gradients | 449

More Online
The lack of WebKit support for spreadMethod is a deal-breaker for
most web developers. So how do you create a repeating linear gra-
dient that works cross-browser? By using a <pattern>! Each stripe
of the repeating gradient (or paired stripes of reflecting gradients)
becomes a pattern tile, and the pattern draws the repeats.

Read more in “Faking Repeating Gradients” (although you’ll proba-
bly want to read “Patterns of Possibility” on page 461 first):

https://oreillymedia.github.io/Using_SVG/extras/ch12-fake-
repeats.html

Transforming Gradients
The x1, y1, x2, and y2 attributes aren’t your only options for switch‐
ing from simple horizontal gradients. There’s another way you can
reposition a gradient element: the gradientTransform attribute. It
transforms the entire canvas on which the gradient is drawn, after it
has been sized and scaled according to the gradientUnits, but
before it is actually used to paint the shape.

A gradientTransform was used in the shiny metallic gradient for
the frame of the stoplight from Chapter 1. The same gradient code
was reused for the scissors in Figure 12-6 in this chapter. Both are
shown as close-up detail views in Figure 12-12. The gradient
markup is as follows:

<linearGradient id="metal" spreadMethod="repeat"
 gradientTransform="scale(0.7) rotate(75)">
 <stop stop-color="#808080" offset="0"/>
 <stop stop-color="#404040" offset="0.25"/>
 <stop stop-color="#C0C0C0" offset="0.35"/>
 <stop stop-color="#808080" offset="0.5"/>
 <stop stop-color="#E0E0E0" offset="0.7"/>
 <stop stop-color="#606060" offset="0.75"/>
 <stop stop-color="#A0A0A0" offset="0.9"/>
 <stop stop-color="#808080" offset="1"/>
</linearGradient>

450 | Chapter 12: Filling Up to Full

https://oreillymedia.github.io/Using_SVG/extras/ch12-fake-repeats.html
https://oreillymedia.github.io/Using_SVG/extras/ch12-fake-repeats.html

Figure 12-12. Two different shapes, in two different drawings, using
the same linear gradient

For the gradient, the eight stops, in oscillating shades of gray, are
arranged along the default gradient line, from left to right across the
bounding box. The transform takes that pattern, shrinks it slightly,
than rotates it 75° clockwise to create a diagonal gradient. The rota‐
tion is applied in the distorted bounding-box units, so it’s not
actually 75°, and the gradient gets stretched out as it rotates, but you
still end up with a diagonal gradient that starts in the top-left corner
of the bounding box and changes color as you move down and to
the right.

The scissors icon was itself drawn with a 100° rotational transform.
That transformation applies to the fill gradient, too, rotating the
final gradient angle along with the shape (which actually is a <text>
✂</text>).

A gradientTransform on a <linearGradient> cannot create any
unique shapes: no matter how you transform the canvas, the end
result is still a linear gradient. However, for many authors, thinking
in transforms is easier than dealing with multiple attributes. And
you can combine them, of course, adding a transform to slightly
tweak an existing gradient.

According to the CSS Transforms module, you
should be able to use the CSS transform prop‐
erty to replace a gradientTransform attribute.
However, that is not supported in browsers yet.

Great Gradients | 451

According to the spec, 3D transforms on gradi‐
ents (and also patterns) should be ignored.

On a <radialGradient>, gradientTransform is even more power‐
ful: skew transformations and nonuniform scales create unique
appearances that you cannot create with the basic attributes. Simi‐
larly, the patternTransform attribute on the <pattern> element can
be used to great effect.

Radiating Radial Gradients
While <linearGradient> elements base their geometry on a
<line>, <radialGradient> elements use a <circle>. So a
<radialGradient> accepts r, cx, and cy attributes that define a siz‐
ing circle.

Unlike in a <circle> element, the defaults for r,
cx, and cy in a <radialGradient> are all 50%.

In object bounding-box units, that means the default circle fits
neatly in the box, touching all four sides. With user-space units, the
coordinate system might not be square, so the sizing can get compli‐
cated: the rules for percentages in r are the same as for <circle>.

The circle defined by the r, cx, and cy attributes defines the position
of the <stop> with offset of 1 or 100%. The zero offset is posi‐
tioned at the focal point of the gradient; by default, the focal point
matches the center of the circle. The stop offsets are positioned
along rays from the focal point to the sizing circle, in all directions.
This means that each <stop> becomes a circle.

As we mentioned in “Scaling Paint Servers” on
page 437, object bounding-box units can distort
the shape of gradients. That means that the cir‐
cles in an SVG radial gradient can get stretched
into ellipses. They can also be stretched or
skewed by a gradientTransform.

452 | Chapter 12: Filling Up to Full

Example 12-5 uses an r value of 0.2 (equal to 20%, in the scaled
object bounding-box units) to create a small radial pattern in the
center of the shape, and then uses spreadMethod="repeat" to
extend that pattern to fill the rest of the shape. Figure 12-13 shows
the result, once as defined and once with geometric annotations.
Again, the repeats are annotated in a different color.

Figure 12-13. A repeating radial gradient with sharp stops, and the
same shape with sample rays and the stop offsets marked on it

Example 12-5. Controlling the size of a radial gradient to generate
repeated rings

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="200px" height="200px" viewBox="-100 -100 200 200">
 <title>Bulls-eye Repeating Radial Gradient</title>
 <radialGradient id="bullseye"
 spreadMethod="repeat" r="0.2">
 <stop stop-color="tomato" offset="50%"/>
 <stop stop-color="#222" offset="50%"/>
 </radialGradient>
 <circle r="50%" fill="url(#bullseye)" />
</svg>

The code in Example 12-5 takes advantage of the fact that using two
consecutive <stop> elements with the same offset creates a sharp
color change. It also takes advantage of the fact that the first and last
<stop> are extended to fill up the entire offset distance, from 0 to 1,
and that a repeating spreadMethod can create sharp color changes of
its own.

Great Gradients | 453

Sharp gradient color transitions like these can
look pixelated in many browsers. Gradient ren‐
dering code was built for, well, gradients—not
stripes or rings. You can smooth the transitions
slightly by setting offsets that are a couple pixels
apart, or you can redesign your drawing to use
shapes instead of gradients, and let the browser
anti-alias the edges for you.

As we mentioned earlier, WebKit browsers don’t currently support
repeating SVG gradients. So they’d just show the center red bull’s eye
surrounded by black. To make the full concentric-circle pattern
available cross-browser, we need to define a gradient that fills the
full bounding box, with each ring specified as a separate pair of
<stop> elements, one for the inside edge of the ring and one for the
outside. The (much less elegant) code is given in Example 12-6.

Example 12-6. Repeating gradient stops to generate rings, without
using spreadMethod

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="200px" height="200px" viewBox="-100 -100 200 200">
 <title>WebKit-friendly Bulls-eye Gradient</title>
 <style>
 stop.A { stop-color: tomato; }
 stop.B { stop-color: #222; }
 </style>
 <radialGradient id="bullseye" r="0.6">
 <stop class="A" offset="0.1667"/>
 <stop class="B" />
 <stop class="B" offset="0.3333"/>
 <stop class="A" />
 <stop class="A" offset="0.5"/>
 <stop class="B" />
 <stop class="B" offset="0.6667"/>
 <stop class="A" />
 <stop class="A" offset="0.8333"/>
 <stop class="B" />
 </radialGradient>
 <circle r="50%" fill="url(#bullseye)" />
</svg>

The radius is now three times as large as before (0.6, or 60% of the
bounding box, so the total gradient width is 120% of the box width)
and the stop offsets are at multiples of ⅙.

454 | Chapter 12: Filling Up to Full

To make the code slightly easier to maintain, the <stop> elements
have classes to distinguish the two colors, so the color values them‐
selves only have to be defined once, in the CSS rules.

Furthermore, the offset values have been simplified to take advan‐
tage of the fact that a stop offset is never less than the previous off‐
set. When we omit the offset on the second <stop> at each color
change, it defaults to 0 and then will be automatically adjusted to
match the previous stop and create a sharp transition, without our
having to explicitly repeat the previous value.

Default offset values and stop-color set with
CSS3 selectors may not be supported in non‐
browser SVG software.
Example 12-6 doesn’t work in Inkscape (0.91),
for example. In browsers, it also fails in old
Android (e.g., version 4.0). You could improve
support by repeating the stop-color values on
every <stop> element.

The end result still looks identical to Figure 12-13, in the browsers
that rendered Figure 12-13 correctly.

Switching Focus
A <radialGradient> has two additional geometric attributes: fx
and fy. These define the focal point of the gradient. If either
attribute is unspecified, the value automatically matches cx or cy,
respectively.

Off-center focal points allow radial gradients to go beyond perfect
geometric symmetry and provide a sense of three-dimensionality.
Although we didn’t discuss it at the time, we used this technique to
make the stoplights appear three-dimensional in Example 1-7 in
Chapter 1. The markup for one of those stoplight gradients is
repeated here, including the off-center fx and fy values:

<radialGradient id="green-light-on" fx="0.45" fy="0.4">
 <stop stop-color="#88FF00" offset="0.1"/>
 <stop stop-color="forestGreen" offset="0.7"/>
 <stop stop-color="darkGreen" offset="1.0"/>
</radialGradient>

Great Gradients | 455

To remind you what that looked like, Figure 1-4 from Chapter 1 is
redrawn here as Figure 12-14.

Figure 12-14. Stoplight with gradient fills

Off-center focal points create particularly interesting effects in
repeated or reflected gradients. The repetitions as measured in each
direction are spaced at the same distance as the spacing between the
focal point and that circle in that direction. This means that the rep‐
etitions bunch together at one side and spread out in another.

Figure 12-15. A reflecting, off-center radial gradient, and the same
shape with the stop offsets and sample rays marked on it

456 | Chapter 12: Filling Up to Full

Example 12-7 gives the code for an off-center repeating gradient,
shown in Figure 12-15.

Example 12-7. Generating asymmetrical patterns with fx and fy in a
reflected radial gradient

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="200px" height="200px" viewBox="0 0 200 200">
 <title>Asymmetrical Reflected Radial Gradient</title>
 <radialGradient id="ripples" spreadMethod="reflect"
 cx="20%" cy="50%" r="10%"
 fx="15%" >
 <stop stop-color="lightBlue" offset="0.2"/>
 <stop stop-color="lightSlateGray" offset="0.6"/>
 <stop stop-color="darkSlateBlue" offset="1"/>
 </radialGradient>
 <rect width="100%" height="100%" rx="10%"
 fill="url(#ripples)" />
</svg>

Note that the offsets always cross each ray at the same proportion
(offset distance) along the repeat. However, the repeat distance is
different in each direction, matching the distance from the focal
point to the original circle in that direction.

Unfortunately, there is no easy way to recreate the asymmetrical-
repetition effect in browsers that don’t support spreadMethod.

CSS Versus SVG
CSS Gradients

The main difference between gradients in CSS and SVG is syntax. SVG gradi-
ents are made from markup. CSS gradients are defined as functions that you
include in the CSS value, anywhere you could include an image. The stop col-
ors and their offsets are given as parameters, after any geometric parameters:

background-image: linear-gradient(to left top,
 red 0%, lightBlue 80%);
list-style-image: radial-gradient(lavender 0,
 indigo 0.5em);

Great Gradients | 457

You currently cannot use CSS gradients in SVG fill
and stroke. However, as described earlier in the chap-
ter, this would be supported by the new CSS Fill and
Stroke module.

There are a number of more subtle differences between SVG and CSS gradi-
ents. For starters, the default direction of a CSS linear gradient is vertical, not
horizontal. Other differences mean that certain effects are easier to do in one
syntax or the other.

Major benefits of the CSS syntax:

• You can apply the same gradient to many elements with a class, but then
transition or animate specific instances with another class or pseudoclass.
In contrast, to animate SVG gradients, you need to animate the shared
markup elements.

• You can use CSS to animate or transition the gradient’s geometry, not just
its color and opacity.

• For linear gradients, you can set the geometry with keywords (like to
left top) or with exact angles (45deg), without any confusion from
object bounding-box units causing nonuniform scaling.

• For radial gradients, you can explicitly set circle or ellipse geometry,
and can size them using keywords (e.g., closest-side, farthest-
corner), percentages (of the image size), or absolute lengths.

• You can mix absolute and relative geometry in the same gradient: for
example, position the center of a radial gradient using percentages—
which are relative to the image size—but set the radius with absolute
units.

• You don’t have to specify stop offsets explicitly: if you leave them out, the
browser will automatically distribute the stops evenly in the space
available.

• Repeating gradients are supported in all recent major browsers (even
WebKit).

Benefits of the SVG syntax:

• Reflecting gradient patterns can be created with a single attribute. For
CSS gradients, you need to create a reflecting pattern yourself, and then
use the repeating gradient functions.

458 | Chapter 12: Filling Up to Full

• For radial gradients, you can set the focal point to be off-center. (This had
been proposed for CSS, but isn’t currently in the CSS Images level 4 spec.)

• With user-space gradients, you can position the gradient geometry rela-
tive to the viewBox container instead of relative to the size of this particu-
lar element, and therefore make gradients that continue from one
element to the next.

• The initial and final stop offsets don’t need to completely fill the geome-
try of the gradient that is used to calculate repeats.

• You can have a gradient with a single stop, to create a solid-color layer.

• You can control stop-color and stop-opacity separately.

• You can use classes to coordinate stop colors in multiple different gradi-
ents, or use xlink:href cross-references to copy an entire set of stops to
a gradient with different geometry. For CSS gradients, you need to use
CSS variables to create the same coordination, which means limited sup-
port in older browsers.

• You can use transforms to modify the gradient, independently from the
element it is used on.

• Support in most browsers goes back further than for CSS gradients, at
least for nonrepeating gradients.

Using CSS gradients, we can adapt the CSS stoplight from Example 3-3 (in
Chapter 3) to recreate the SVG gradient stoplight (Figure 12-14).

We could recreate the slanted metal gradient on the stoplight frame—which
we positioned and sized using gradientTransform when drawing it with
SVG in Example 1-7—by adjusting the offsets and angle of a CSS repeating-
linear-gradient function. The following additional style rule creates the
effect:

.stoplight-frame {
 background-color: silver;
 background: repeating-linear-gradient(-25deg,
 #808080 0, #404040 12%, #C0C0C0 17%,
 #808080 25%, #E0E0E0 35%, #606060 38%,
 #A0A0A0 45%, #808080 50%);
}

For the radial gradients, some faking is required.

The original SVG gradients used fx and fy to create off-center focal points,
which are not supported in CSS. To create a similar off-center effect, we can

Great Gradients | 459

layer two different CSS gradients on each light element, one for the main color
transition and one for the off-center highlight. For example, the following code
would create off and on versions of the red light:

.stoplight-light {
 background-size: 40% 40%, cover;
 background-repeat: no-repeat;
 background-position: 40% 30%, center;
}
.stoplight-light.red {
 top: 30px;
 background-color: #880000;
 background-image: radial-gradient(closest-side,
 maroon 10%, transparent),
 radial-gradient(closest-side,
 maroon, #220000 70%, black);
}
.stoplight-light.red.on {
 background-color: red;
 background-image: radial-gradient(closest-side,
 orange 10%, transparent),
 radial-gradient(closest-side,
 red 80%, brown);
}

Each light will always have two background layers: the highlight gradient,
which is smaller and off-center, and then the main gradient that completely
fills the shape. The highlight gradient is listed first, so it will be drawn on top of
the image stack. It transitions from the highlight color to transparent, letting
the other gradient show through at the edges. All the gradients are sized via
the closest-side keyword, so they just fit into the circle we created by
radiusing the corners of the layout box.

For better results on older browsers, the transparent
keyword used in the gradients could be replaced with
an rgba() function that matched the highlight color;
otherwise, colors may shift to black as they shift to
transparent.

For both the on and off states, a fallback background-color is set in case
gradients are not supported by the browser.

460 | Chapter 12: Filling Up to Full

The complete image looks as follows:

CSS Images Module Level 4 introduces a few new syntax options for CSS gradi-
ents, including a shorthand for repeated stops (solid-color sections), and a
“color hint” that allows you to shift the mid-point of a color transition to one
side or the other. Color hints are supported in all of the latest browsers—but
make sure you use fallbacks for older browsers.

Level 4 also adds conic-gradient() and repeating-conic-gradient()
functions. A conic gradient is one in which colors stay constant along a ray
extending from a central point, and the colors change as the angle of the ray
changes, wrapping around that central point. If you added sharp color
changes to a conic gradient, it would look like a pie chart.

Patterns of Possibility
The final paint server you can use to fill (or stroke) in SVG 1.1 is
the <pattern> element. In simplest terms, a <pattern> defines a
rectangle, or tile, of SVG content. The tile is then repeated in rows
and columns, as many times as necessary to paint the shape.

But a <pattern>, in practice, is far from simple.

A <pattern> can contain any SVG graphics: solid-colored shapes,
shapes filled with gradients, shapes filled with other patterns, text
(providing it is purely decorative), or embedded images. So the pos‐
sibilities are as open-ended as SVG itself.

Patterns of Possibility | 461

But <pattern> elements are also complex in less inspiring ways. The
options for scaling the pattern tiles are so open-ended that they are
often confusing. And there are a few unfortunate details in the spec‐
ifications—and bugs in the implementations—which introduce
obstacles for many designs.

The next few sections outline some of the most common structures
for SVG patterns.

All the Units to Use
A <pattern>, like a gradient, can be scaled to the object bounding
box or to the user-space coordinate system. However, it is more
complicated than that. You have two attributes to set the scale:
patternUnits and patternContentUnits.

The patternUnits attribute sets the scale you use for defining the
size and position of the initial pattern tile. In other words, it controls
the attributes on the <pattern> itself. It defaults to
objectBoundingBox units.

The pattern tile attributes affected by
patternUnits are x, y, width, and height. Set
these attributes to percentages or numbers from
0–1 for objectBoundingBox units, or use any
SVG lengths if you change patternUnits to
userSpaceOnUse.

The patternContentUnits attribute sets the scale of the drawing
content inside the <pattern> element. It defaults to userSpaceOnUse
units. You can change it to objectBoundingBox units, or you can use
a viewBox attribute to define your own scale for each pattern tile. If a
viewBox is provided, patternContentUnits has no effect.

Avoid percentages in the pattern contents when
using a viewBox or objectBoundingBox content
units—they are not relative to the tile size, the
viewBox, or the bounding box.
Instead, the definition of 100% from the user-
space coordinate system is scaled up propor‐
tional to the scaling effect on all other units—
which is not particularly useful.

462 | Chapter 12: Filling Up to Full

You almost never want the default mixed-unit combination of
patternUnits and patternContentUnits. You will usually do one
of the following:

• Set patternContentUnits="objectBoundingBox" to create a
fully scalable pattern that divides the box into an even number
of tiles, regardless of box size. Or doesn’t divide it: you can cre‐
ate single-tile pattern instead, which fills the shape with a non‐
repeating graphic.

• Set a viewBox to create a fully scalable pattern with aspect-ratio
control and/or easier reuse of content that has been drawn at a
scale other than 0–1.

• Set patternUnits="userSpaceOnUse" to create a wallpaper-
style fixed-size pattern, where the size of the pattern tiles is con‐
sistent regardless of the size of the shape being painted.

• Set patternUnits="userSpaceOnUse" and set a viewBox to cre‐
ate a fixed-size pattern (or one scaled to the SVG dimensions,
using percentages) with aspect-ratio control or rescaling.

Older versions of Firefox did not handle
viewBox in patterns correctly, especially in com‐
bination with a patternUnits value of
objectBoundingBox (which is the default). It’s
been fixed since version 40 (mid-2015).

Internet Explorer and MS Edge (up to at least
EdgeHTML 15) only apply the scaling aspect of
viewBox values, not the translation aspect.
To ensure support in Microsoft browsers, only
use viewBox values where the first two numbers
are zero. To shift the origin of the pattern con‐
tents, use a <g> inside the pattern with a
translate transformation.

If it weren’t for these bugs and the issue with percentages, viewBox
patterns would probably be the preferred approach in most cases. As
it is, you need to weigh the convenience of defining your own local
coordinate system against the bother of working around the bugs.

Patterns of Possibility | 463

One final warning about working with patterns: the <pattern> con‐
tents will always be clipped to the tile. Not only is the default value
of overflow set to hidden for patterns, but no web browser cur‐
rently supports visible overflow. The original SVG specs weren’t
clear about how visible overflow should work, and so far there hasn’t
been consensus support from browsers to implement it.

Dividing the Box
In Chapter 5, we drew a checkerboard using a script to generate
each individual square (Example 5-3). At the time, however, we
noted that a <pattern> could be used to generate the same effect if
you did not need each square to be an independent, interactive ele‐
ment.

Boards for chess and checkers come in many different sizes, but they
always have the same number of squares: eight alternating black and
white squares in each row and column. This therefore makes it a
perfect example of a pattern that scales to fit the object bounding
box. The repeating pattern is not a fixed size relative to the SVG
coordinate system, but relative to the size of the board.

To use objectBoundingBox units for the pattern contents, we need
to convert all the measurements to decimal fractions of the
bounding-box width and height. As mentioned in the last section,
percentages don’t work. Instead of 25%, use 0.25.

Example 12-8 creates the pattern, and then uses it to draw two
boards of different sizes, as shown in Figure 12-16.

464 | Chapter 12: Filling Up to Full

Figure 12-16. Checkerboards drawn with a scalable pattern

Example 12-8. Drawing a checkerboard with a pattern

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 height="9in" width="9in" viewBox="0 0 864 864">
 <title>Checkerboard from a Pattern</title>
 <style type="text/css">
 .board { fill: saddleBrown; }
 .white { fill: linen; }
 .black { fill: #222; }
 .squares { fill: url(#checks); }
 </style>
 <pattern id="checks" width="25%" height="25%"
 patternContentUnits="objectBoundingBox">
 <rect class="white" width="0.25" height="0.25" />
 <rect class="black" width="0.125" height="0.125" />
 <rect class="black" x="0.125" y="0.125"
 width="0.125" height="0.125" />

Patterns of Possibility | 465

 </pattern>

 <g>
 <rect class="board" width="9in" height="9in" rx="0.5in" />
 <rect class="squares"
 x="0.5in" y="0.5in" width="8in" height="8in" />
 </g>
 <g>
 <rect class="board" x="8cm" y="8cm"
 width="13cm" height="13cm" rx="0.5cm" />
 <rect class="squares"
 x="8.5cm" y="8.5cm" width="12cm" height="12cm" />
 </g>
</svg>

The styles are mostly the same as Example 5-3; an additional
class has been added to set the pattern fill on the shape that will
hold all the checks.

Although there are eight squares in each row and column, the
alternating colors means that the pattern only repeats four times
in each direction. In other words, the pattern tile is one-quarter
(25%) of the width and height of the bounding box.

Within each pattern tile, we draw a 2×2 set of alternating black
and white squares. To reduce the number of elements, the white
squares are drawn as a single background <rect> filling up the
entire pattern tile.

The two black squares are then drawn on top. They are each
12.5% of the board’s width and height, or 0.125 in the scaled
object bounding-box coordinates.

The full-size board is drawn with two elements: one for the bor‐
der and one for the checkerboard pattern.

The second board uses the same structure, but everything is
smaller—and measured in metric units.

When using object bounding-box units like this, keep in mind the
lessons from “Scaling Paint Servers” on page 437 about the distort‐
ing effect of the coordinate system. If the box is not square, the
coordinate system will be nonuniform with horizontal and vertical
units of different lengths. Circles, text, and images will all be
stretched, and rotational angles will be uneven. Also note that every‐

466 | Chapter 12: Filling Up to Full

thing is scaled according to the new units, including stroke widths
and font size.

In addition to creating scale-to-fit repeating patterns, object
bounding-box units are useful for creating a pattern that fills the
entire shape without repeating.

Picture Perfect
By creating a <pattern> tile that is too large to repeat, you can
remove the “pattern” appearance and create a custom-designed
paint server. Since the <pattern> can contain any SVG graphics,
you can turn any SVG image into paint for other shapes. With the
addition of the <image> element, you can use any other image type,
too.

To create a nonrepeating pattern tile, set the width and height on
the <pattern> element to 100%. If using userSpaceOnUse units, also
set x and y on the <pattern> to match the first two numbers of the
SVG’s viewBox, so that your tile perfectly fills the coordinate system.

The width and height attributes are still
required: they default to 0. A pattern tile with
zero width or height is invalid. If you specified a
fallback fill color, it will be used instead.

You can use a single-tile pattern to fill an SVG element with a photo‐
graph or other raster image file, by using an <image> element as the
content of the <pattern>.

As mentioned earlier in the chapter, the CSS Fill
and Stroke module will make filling an SVG ele‐
ment with a photograph much easier—you
could just use a url() reference to the image
file.
Until that’s supported in browsers, <pattern>
provides the workaround.

For image fills, you usually don’t want the image to be stretched or
squished to fit the shape. A viewBox pattern, with aspect-ratio con‐

Patterns of Possibility | 467

trol, is preferred. A slice scaling mode ensures that the image com‐
pletely covers the shape.

Example 12-9 uses a photograph (of clouds over the flat expanse of
Lake Ontario) to fill the club shape from our card-suit set.
Figure 12-17 shows the result.

Figure 12-17. An SVG shape filled with a photograph

Example 12-9. Using a <pattern> to create a photographic fill

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="200px" height="200px" viewBox="0 0 200 200">
 <title>Image Fill using a Pattern</title>
 <pattern id="image-fill" width="1" height="1"
 viewBox="0 0 800 600"
 preserveAspectRatio="xMidYMid slice">
 <image width="800" height="600"
 xlink:href="lake-ontario.jpg" />
 </pattern>
 <symbol viewBox="0 0 20 20" id="club"
 style="overflow: visible">
 <title>Club</title>
 <path d="M9,15.5A5,5 0 1 1 5.5, 7.5
 A5,5 0 1 1 14.5, 7.5A5,5 0 1 1 11, 15.5
 Q11,20 13,20H7Q9,20 9,15.5Z" />
 </symbol>
 <use xlink:href="#club" fill="url(#image-fill)" />
</svg>

468 | Chapter 12: Filling Up to Full

The pattern has width and height of 1, equivalent to 100% in
object bounding-box units. The viewBox is based on the actual
dimensions of the JPEG image file: 800×600. A slice option for
preserveAspectRatio ensures that the rectangular photograph
will completely cover the shape we’re painting.

The JPEG’s dimensions need to be repeated in the width and
height of the <image> element (since most browsers don’t yet
support the SVG 2 autosize option). Since the <image> size is set
explicitly, we don’t need to worry about preserving aspect ratio
at this step.

The <symbol> code is directly copied from the sprite file created
for Example 10-2 in Chapter 10. The visible overflow won’t have
an effect in this example, but it will when we use this pattern
again with stroked symbols, in Chapter 13.

Because it is a <symbol>, and there are no dimensions on the
<use> element, the copy will scale to fit the current SVG’s
dimensions. A fill presentation attribute assigns the image
pattern.

Because the SVG code in Example 12-9 loads an
external image file, it would not work if the SVG
itself were embedded as an image. Inline SVG or
embedded objects only.

To ensure cross-browser support, we copies the
<symbol> code directly into the file, instead of
referencing the sprite file from Chapter 10 in the
<use> element.
The lack of support includes some recent ver‐
sions of Chrome, which support external <use>
references but don’t apply paint servers to them.

Since there are no limits to how many <image> elements you can
include in your <pattern>, you can use this technique to mimic lay‐
ered fills. And the layers don’t have to be external images: they could
be <rect> elements filled with other patterns or gradients. A

Patterns of Possibility | 469

<pattern> is therefore also the workaround for layered fills, until
browsers support layers set directly in the fill property.

Patterned Prints
The <pattern> designs we’ve worked with so far aren’t exactly what
most people think of when they think of patterned fill: fixed-sized
patterns that are tiled as many times as necessary to fill up a shape.
In this sort of pattern, large shapes get more repeats than small
shapes, but the size of the pattern tile doesn’t change.

In other words: user-space patterns.

To create such a pattern, you need patternUnits to be
userSpaceOnUse, and you need to set the width and height in abso‐
lute values (not percentages).

Pattern contents could also be absolute—with the default
userSpaceOnUse value for patternContentUnits—or they can be
scaled to fit within the pattern tile, with a viewBox.

Example 12-10 uses the viewBox approach to turn our diamond icon
(from Chapter 6) into a wallpaper pattern (which we’ve already seen
in figures in this chapter). The pattern is then used to fill a copy of
our spade icon. To avoid Chrome bugs with external <use> refer‐
ences, the markup for both card-suit icons has been copied directly
into the new file.

A variation on the pattern emphasizes the tile boundaries, and is
created by an xlink:href reference to the first. As with gradients,
the cross-reference makes one pattern a template for the other. All
geometric attributes from the first pattern become defaults for the
second.

If the second pattern didn’t have any contents,
the contents from the template pattern would
have been duplicated as part of the template, the
same as for the stops of a gradient template.

Figure 12-18 shows the end result of both patterns.

470 | Chapter 12: Filling Up to Full

Figure 12-18. A pattern made from a card-suit symbol, used to fill a
different suit’s symbol

Example 12-10. Defining a classic, fixed-size <pattern> using
predefined symbols

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="400px" height="200px" viewBox="0 0 400 200">
 <title>userSpaceOnUse Patterns, with re-used symbols</title>
 <pattern id="wallpaper" patternUnits="userSpaceOnUse"
 width="2" height="2" viewBox="0 0 24 24">
 <rect fill="indigo"
 width="24" height="24" />
 <path id="pink-diamond"
 d="M3,10L10,0 17,10 10,20Z
 M9,11L10,18V10H15L11,9 10,2V10H5Z"
 fill="hotPink" transform="translate(2,2)"/>
 </pattern>
 <pattern id="wallpaper2" xlink:href="#wallpaper">
 <rect fill="indigo" stroke="gold" stroke-width="2"
 x="0" y="0" width="24" height="24" />
 <use xlink:href="#pink-diamond" />
 </pattern>
 <symbol viewBox="0 0 20 20" id="spade"
 style="overflow: visible">
 <title>Spade</title>
 <path d="M9,15C9,20 0,21 0,16S6,9 10,0C14,9 20,11 20,16
 S11,20 11,15Q11,20 13,20H7Q9,20 9,15Z" />
 </symbol>
 <use fill="url(#wallpaper)" xlink:href="#spade" width="200"/>
 <use fill="url(#wallpaper2)" xlink:href="#spade"

Patterns of Possibility | 471

 x="200" width="200" />
</svg>

The basic pattern defines 2×2 tiles in the user-space coordinate
system, and then defines a 24×24 viewBox scale for the contents
of each tile, slightly larger than the 20×20 we used when defin‐
ing our club-suit icons.

The contents consist of an indigo <rect> that fills the entire tile,
and then a <path> copy of the diamond icon, filled in pink. A
transform attribute on the <path> centers it within the tile.

The second <pattern> cross-references the first, and does not
change any of the geometric attributes.

The contents, however, are altered for the second pattern, to add
a gold stroke to the backdrop <rect>. The strokes will extend
outside the pattern tile and be clipped by the hidden overflow,
but the strokes on adjacent tiles will appear to be continuous.

Once we change some of the pattern contents, we have to
replace it all. We keep the code DRY by reusing the styled dia‐
mond from the previous pattern.

The spade is defined as a <symbol>, and then reused twice, filled
with each pattern. The width and x attributes scale and position
the <use> elements within the main SVG coordinate system.

There are a few complications of patterns and nested coordinate sys‐
tems hidden in the code in Example 12-10:

• The pattern is applied to the shape in the <symbol> element’s
coordinate system used for drawing the spade <path>, not in the
main SVG’s coordinate system used for scaling the <use> ele‐
ments. The card-suit symbols are defined as being 20px wide
and tall, so the 2×2 pattern tiles mean 10 columns of tiles across
the width of the spade, even though each spade is drawn 200px
wide in the final graphic.

• The width and height attributes on the <rect> inside the pat‐
tern contents are set in user units, not as 100%, even though we
want the rectangle to completely fill the tile’s viewBox. A 100%
width and height would be interpreted as 100% of the outer

472 | Chapter 12: Filling Up to Full

SVG’s width and height (400×200px), scaled up according to the
local definition of a px. That would make the rectangle many
times the size of the pattern tile. For the solid backdrop, the dif‐
ference would not be obvious—the overflow would still be clip‐
ped—but the stroked rectangle would lose half of its strokes.

The problem with percentages also applies to the
default 100% width and height of a reused sym‐
bol. For a <use> that copies a <symbol> inside a
<pattern>, always include width and height
attributes.

When you have a small, repeated pattern like this, it becomes very
obvious that the pattern tiles are always arranged in exact rows and
columns. If this is too square for your style, a little creativity can
help reduce this rectilinear rigidity.

The patternTransform attribute is the easiest way to mix things up.
Rotations and skews can create diamond or parallelogram tiles out
of the simple rectangles in your code.

Just like with gradientTransform, pattern

Transform is merged into the general transform
property by the CSS Transforms spec—but
browsers haven’t made the switch yet.

For example, if you add the following attribute to the wallpaper
pattern in Example 12-10, the end result is as shown in
Figure 12-19:

patternTransform="rotate(45)"

In the version without the extra outlines, the rotated pattern looks
almost like a checkerboard of alternating content in rows and col‐
umns, because the exactly repeated rows and columns are now
actually diagonals.

You only need to add patternTransform to the
first of the linked patterns; it will be copied to
the second pattern by the xlink:href reference.

Patterns of Possibility | 473

Figure 12-19. Square pattern tiles, rotated 45°

If you design your pattern tile with the transformation in mind,
even more possibilities open up. Figure 12-20 shows the final result
if you add the reverse transformation to the pink-diamond <path>
element:

transform="translate(2,2) rotate(-45, 10,10)"

The negative rotation on the <use> exactly cancels out the rotation
on the pattern tile, so that the diamond icons are drawn upright
again. The three-value rotate function is used to ensure that the
rotation is centered around the center of the icon.

When you apply transformations to patterns with solid backdrops—
like this one—the edges of the pattern tiles sometimes appear in
some browsers, because of rounding errors. If this problem shows
up in your pattern, one solution is to make your backdrop <rect>
slightly larger than the pattern tile.

In future, the solution would be to use a solid-color fill layer
underneath the pattern layer, instead of having to include the back‐
drop in the pattern itself.

474 | Chapter 12: Filling Up to Full

Figure 12-20. Square pattern tiles, rotated 45°, containing icons rota‐
ted in the opposite direction

Summary: The fill Property, Gradients, and
Patterns
It is easy to fall into an analytical, mathematical approach to SVG
when working with the markup, drawing using coordinates. But
SVG is about graphics as much as it is about vectors. Filling shapes
with complex content is the first step to going beyond simple solid-
color, flat icons. Of course, creating those effects, and controlling
them precisely from code, requires diving back in to vector
geometry.

The gradients and patterns introduced in this chapter use a structure
we’ll see again in other SVG graphical effects: dedicated markup ele‐
ments define an effect, without drawing anything themselves; the
effect is applied with a url() reference from a style property of
another element.

Simple gradients and patterns can be created with not much
markup, but the many attributes for scaling and adjusting the effects
create countless possible combinations. The options can seem over‐
whelming. Browser support limitations don’t make it any easier. But
if you start from something simple and work up, you can build
incredibly complex and creative results.

CSS gradients and repeating backgrounds achieve many of the same
effects as SVG gradients and patterns. Many SVG-focused web

Summary: The fill Property, Gradients, and Patterns | 475

developers (including us) look forward to the day when the CSS
syntax can be used in SVG fill and stroke. However, there are
numerous small details and differences that can trip up developers
switching from one to the other. Even when the CSS-focused
approaches are available in SVG, there will be some effects that
require the full markup to recreate.

More Online
A reference for the gradient and pattern elements (and their
attributes) is available in the “Paint Server Elements and Markers”
section of our markup guide:

https://oreillymedia.github.io/Using_SVG/guide/
markup.html#paint-marker

476 | Chapter 12: Filling Up to Full

https://oreillymedia.github.io/Using_SVG/guide/markup.html#paint-marker
https://oreillymedia.github.io/Using_SVG/guide/markup.html#paint-marker

CHAPTER 13

Drawing the Lines
Stroke Effects

Throughout the book, we have used the stroke property to draw
outlines around a shape (or text). In this chapter, we will explore the
full possibilities of strokes.

At first glance, it may not seem that there are a lot of possibilities for
a stroke. It’s just an outline, right?

It can be, but it doesn’t have to be. A stroke is really a secondary
shape, built upon the element that defines it. When that stroke is
only a single pixel wide, it is easy to figure out where those pixels
should go. But as strokes get thicker, they create multiple options for
how the stroke’s geometry should relate to the underlying shape’s
geometry, at corners and at line ends.

You can also change up the geometry of the stroke more directly, by
breaking it into a dash pattern. This can be used to create a number
of patterns and effects, beyond simple dashed lines.

Once you have a stroke shape (dashed or otherwise), you need to
decide how to color it in. Just like with the fill shape, you have a
choice of a solid color, semitransparent color, or a complex paint
server—gradients and patterns. The options are mostly the same as
fill, but with a few extra complications.

477

Different Strokes
In the simple case, a stroke is a continuous outline around the shape,
drawn in a single color.

Except…even that isn’t always simple. The wider a stroke gets, the
more you start to notice the details of how it is constructed.

A Simple Stroke to Start
There are three stroke-related properties that we have introduced so
far: stroke, stroke-width, and stroke-opacity. With these, we’ve
drawn solid-colored strokes of various sizes and degrees of transpar‐
ency. All three can be set as presentation attributes or style declara‐
tions, and all three inherit by default.

The stroke property controls whether the stroke is painted at all; by
default its value is none. All other stroke values create a stroke, by
specifying what it will be painted with.

The syntax is the same as for fill: a color value or a url() reference
to a paint server element. Paint server references can have an
optional fallback color:

stroke: none;
stroke: rgba(100%, 30%, 50%, 0.7);
stroke: url(#pink-polka-dots) hotPink;

The stroke-width property controls the thickness of the stroke,
expressed as a number of user units, a length with units, or a per‐
centage:

stroke-width: 10px;
stroke-width: 0.5em;
stroke-width: 5%;

The default stroke-width is 1px (scaled to the current user-unit
size). A value of 0 would look the same as stroke: none, but would
create some added complications when you’re using markers (Chap‐
ter 14) or pointer-events (Chapter 18).

Although unitless numbers are valid (stroke-
width: 3), MS Edge does not currently support
them in CSS animations and transitions. Use px
units instead.

478 | Chapter 13: Drawing the Lines

The stroke-opacity property is directly comparable to fill-
opacity. It makes the color or stroke paint content transparent. By
default, the value is 1, which creates an opaque stroke.

stroke-opacity: 1;
stroke-opacity: 0.5;

A stroke-opacity of 0 would again look like no stroke at all, but
would work differently for pointer-events.

We use all three of these properties in Example 13-1, to stroke a cir‐
cle (with a thick, semitransparent stroke) and a polygon (with a
thin, solid stroke). Figure 13-1 shows the result.

Figure 13-1. Thick and thin strokes on round and square shapes

Example 13-1. Stroking shapes with various styles

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 width="200" height="200" viewBox="-100 -100 200 200"
 style="background-color: lightGreen">
 <title>Stroking Shapes</title>
 <polygon points="-98,0 0,-98 98,0 0,98" fill="royalBlue"
 stroke="crimson" stroke-width="2" />
 <circle r="1.2cm" fill="white"
 stroke="lightGreen" stroke-width="1cm"
 stroke-opacity="0.5" />
</svg>

Percentage values for stroke-width are—like percentage values for
a circle’s radius—proportional to the diagonal of the coordinate
system, not either height or width. This is true even when the

Different Strokes | 479

strokes are being applied to a rectangle or other shape with clear
directionality.

More Online
Confused by stroke-width percentages? We’ve got an example of
them, in action, in “Perplexing Percentages”, the supplementary sec-
tion from Chapter 5:

https://oreillymedia.github.io/Using_SVG/extras/ch05-
percentages.html

As we’ve discussed a few times already, strokes are centered over the
edge of the shape, and the circle in Figure 13-1 demonstrates that
effectively. The inner half of the transparent stroke, which overlaps
the solid white circle fill, has a very different appearance from the
outer half, which overlaps the blue fill of the polygon.

A circle—by definition—does not have any corners or dead ends.
That makes it fairly straightforward to stroke, and the stroke shape
creates a single, smooth ring. However, there can still be complica‐
tions. If the inside half of the stroke width is wider than the radius, it
will overlap itself. Some browsers treat the overlapping inner circle
as a cutout donut hole.

Browsers that use the Skia or AppleCore graph‐
ics libraries (all versions of WebKit and Blink,
plus Firefox on Mac and Android), will some‐
times draw overlapping strokes as cut-outs.

Once you make the shape a little more complex, you start to notice
even more complications in the stroke shapes.

Example 13-2 applies the three basic stroke properties to the spade
icon from Chapter 6, and the letter A. We apply the properties using
a set of independent classes that trigger CSS rules. The results are
shown in Figure 13-2.

480 | Chapter 13: Drawing the Lines

https://oreillymedia.github.io/Using_SVG/extras/ch05-percentages.html
https://oreillymedia.github.io/Using_SVG/extras/ch05-percentages.html

Figure 13-2. The same shape and text, with varying stroke options

Example 13-2. Using stroke properties to modify the appearance of a
reused symbol and text

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="410" height="250" viewBox="0 0 410 250">
 <title>Stroking Shapes and Text</title>
 <style type="text/css">
 text {
 font-family: Times New Roman, Times, Georgia, serif;
 }
 .blue { stroke: royalBlue; }
 .pink { stroke: deepPink; }
 .see-through { stroke-opacity: 0.5; }
 .wide { stroke-width: 3px; }
 </style>
 <symbol id="spades-ace" viewBox="0 0 40 20"
 style="overflow: visible">
 <title>Ace Spade</title>
 <path d="M9,15C9,20 0,21 0,16S6,9 10,0C14,9 20,11 20,16
 S11,20 11,15Q11,20 13,20H7Q9,20 9,15Z" />
 <text x="30" y="18" font-size="20"
 text-anchor="middle">A</text>
 </symbol>
 <rect height="100%" width="100%" fill="lavender" />

 <g fill="midnightBlue">
 <use xlink:href="#spades-ace" class="blue"

Different Strokes | 481

 width="200" height="100" x="10" y="10" />
 <use xlink:href="#spades-ace" class="pink see-through"
 width="200" height="100" x="210" y="10" />
 <use xlink:href="#spades-ace" class="pink wide"
 width="200" height="100" x="10" y="135" />
 <use xlink:href="#spades-ace" class="blue wide see-through"
 width="200" height="100" x="210" y="135" />
 </g>
</svg>

An important thing to note is that the <symbol> element has an
overflow: visible style rule applied. As we mentioned when dis‐
cussing symbols, by default symbols have hidden overflow. Since
strokes extend beyond the official edges of a shape, they would be
clipped in this example. The viewBox tightly fits the fill region of the
spade shape on three sides. Figure 13-3 shows a wide-stroked ver‐
sion with hidden overflow, for comparison.

Figure 13-3. Strokes extending beyond the edge of a symbol with
(default) hidden overflow

Another important takeaway from Figure 13-2: wide strokes can
completely obscure fine details in shapes and letters. Even the
strokes in the top row—which have the default stroke-width of 1—
are thick relative to the thin lines of the serif letter A. And if those
strokes don’t look 1px wide to you, remember that the symbols
define their own coordinate system, within which the icon is 20
units wide and tall, and the text has a font-size of 18px.

The stroke-width is always calculated in the
current coordinate system, including all trans‐
formations. As a result, nonuniform scales or
skews can create uneven-width strokes, as we
saw in Example 11-4 in Chapter 11.

482 | Chapter 13: Drawing the Lines

On these more complex shapes, the distance from the edge of the
shape to the edge of the stroke can vary—and not just in the places
where multiple strokes overlap. At the point of the spade, the strokes
extend well beyond the point of the fill. At the sharp corners around
its base, however, the strokes get cut off tight against the points. The
next section will explore why this is so, and the ways in which you
can change the behavior.

Future Focus
Layered Lines

In Chapter 12, we mentioned how the CSS Fill and Stroke module introduces a
syntax to layer multiple fills. The same possibility will also be supported with
strokes, but with even greater potential. Because each stroke can have a differ-
ent width, even solid-colored strokes can be effectively layered.

There are still a number of open questions (at the time of writing) before the
syntax can be finalized, but it will be generally similar to the syntax for CSS
layered backgrounds.

In the meantime, to create multiple strokes you need to <use> your shape
multiple times, with different stroke settings on each copy. We did this in
Example 12-1 in Chapter 12, to create a thin inset outline over a thicker stroke
that matched the fill.

Making the Connection with Line Joins
The basic geometry of a stroke along a smooth path is straightfor‐
ward. Imagine a “brush” that is a line stroke-width units long. Cen‐
ter it over the edge of the shape, and trace out the path, keeping your
line perpendicular to the path at all times. All the points that were
touched by the “brush,” as you moved it along, are part of your
stroke region.

But what happens at sharp corners? If you only included the regions
that were directly perpendicular to the stroke segments, you’d get
something like Figure 13-4 (which uses a semitransparent stroke to
clearly show the underlying fill shape). Every corner has a chip in it.

Different Strokes | 483

Figure 13-4. Strokes without line joins

You can’t naturally draw an unjoined stroke, like
Figure 13-4, in SVG. It was created with a sec‐
ond <path> just for the stroke, with m0,0 com‐
mands inserted between each line segment in
the path data. This breaks it into disconnected
subpaths, which don’t join together. This is simi‐
lar to the disconnect in the final corner of a
<path> that doesn’t have a Z close-path com‐
mand.

Clearly, you need a way to fill in the gaps to create a continuous
shape outline. But how? What shape fills in each chip?

These choices are decided by the stroke-linejoin property. It
applies anytime a shape has a sharp corner. There are three possible
values:

round

Swivel your “brush” in place, so that the gap between the end of
one stroke segment and the start of the next is filled with a cir‐
cular arc.

bevel

Trim it off tightly, by connecting the corners of the “chip” with a
straight line, creating an angled corner piece.

484 | Chapter 13: Drawing the Lines

miter

Extend the outer edge of each stroke segment in a straight line,
until they meet in a point.

The value of stroke-linejoin may be set as a presentation attribute
or style property; like the other stroke properties, it inherits by
default.

Figure 13-5 shows how each of those of stroke-linejoin styles
look when applied to the shape from Figure 13-4.

Figure 13-5. Strokes with joined lines, in different stroke-linejoin styles

A miter corner is the default. However, it introduces a complication:
on really tight corners, you have to extend the strokes for quite a
distance, before the two edges meet. For that reason, there is a sec‐
ondary property: stroke-miterlimit. It defines how far you can
extend the point when creating a miter corner. The value is a num‐
ber, measured as a multiple of the current stroke-width. If the
miter corner would exceed the miter limit, it is replaced by a bevel‐
led corner.

By default, stroke-miterlimit is 4. The value
must always be at least 1.
A value of 60 would be enough to guarantee
miters for angles as tight as 2°. In general, the
miter length of a line join is (sin(θ/2))–1, where θ
is the angle of the corner.

Example 13-3 applies the three possible stroke-linejoin options to
the diamond icon from Chapter 6 and the digit 4; it also creates a

Different Strokes | 485

miter version with stroke-miterlimit set to 10. The results are
displayed in Figure 13-6.

Figure 13-6. Shapes and text with mitered corners, at the default set‐
tings, and with stroke-miterlimit of 10

Example 13-3. Using stroke-linejoin options

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="400" height="160" viewBox="0 0 400 160">
 <title>Stroke Miter Limit Effects</title>
 <symbol id="diamonds-4" viewBox="0 0 36 20"
 style="overflow: visible">
 <title>4 Diamond</title>
 <path d="M3,10 L10,0 17,10 10,20 Z
 M9,11 L10,18 V10 H15 L11,9 10,2 V10 H5 Z" />
 <text x="35" y="20" font-size="20"
 font-family="Times New Roman, Times, Georgia, serif"
 style="font-variant-numeric: lining-nums"
 text-anchor="end">4</text>
 </symbol>
 <rect height="100%" width="100%" fill="lavender" />
 <g fill="indigo" stroke="deepPink"
 stroke-width="2.5" stroke-opacity="0.5">
 <use xlink:href="#diamonds-4"
 width="180" height="100" x="0" y="15"
 stroke-linejoin="miter" />
 <use xlink:href="#diamonds-4"
 width="180" height="100" x="220" y="15"
 stroke-linejoin="miter" stroke-miterlimit="10"/>
 </g>
 <g fill="blueViolet"
 font-family="Consolas, monospace" font-size="16">
 <text x="5" text-anchor="start" y="155"
 >stroke-miterlimit: 4</text>

486 | Chapter 13: Drawing the Lines

 <text x="395" text-anchor="end" y="155"
 >stroke-miterlimit: 10</text>
 </g>
</svg>

There are numerous corners of different angles in the figure, in both
the inner and outer subpaths of the icon and the digit.

The sharpest angles, in both the diamond and the 4, are on the inner
cut-out subpaths. These create the “spikes” sticking out of the dia‐
mond with a stroke-miterlimit of 10. There aren’t matching
spikes at the top and bottom, because those miters would have
extended more than 10 times the stroke width, and so were cut back
completely to bevel corners. It’s more subtle, but there are similar
spikes at the left and top of the number 4, at both the default and
extended miter limits.

Future Focus
New Line-Join Options

SVG 2 and the CSS Fill and Stroke module propose two new stroke-
linejoin values: miter-clip and arcs.

The miter-clip value would create an effect similar to miter, except for when
the point exceeds the stroke-miterlimit ratio. With miter, there is a sharp
switch to the bevel mode, which is usually cropped much more tightly than
the limit. In animated sequences, this creates a sudden switch in otherwise
fluid motion. It can also create somewhat arbitrary-looking distinctions
between long pointed joins on some corners and cropped ones on others.
The miter-clip value would instead leave in place the part of the mitered
corner that is less than the limit, and only clip off the parts that extend too far.

Older versions of Firefox on some operating systems
used the miter-clip behavior for miter, but Firefox has
since updated to match the SVG 1.1 specs.

The arcs line-join style would create a miter effect when joining straight lines,
but would create a smoother shape when joining two curves, or a curve with a
straight line. It would create a curved point that is the intersection of two ellip-
tical arcs, each of which is a smooth continuation of the curves that make up

Different Strokes | 487

the strokes. It would not work in all cases: sometimes, smooth continuations of
the joined curves would curve away from each other instead of joining in a
point. In those cases, the result would be the same as miter-clip.

At the time of writing, the exact names for these options are still being deba-
ted. There have not yet been commitments from web browser teams to
implement them.

Capping It Off with Line Caps
The stroke-linejoin effect only applies when two segments of a
continuous shape meet. A separate property, stroke-linecap, con‐
trols appearance of open-ended strokes on <line>, <polyline>, or
unclosed <path> subpaths. The line cap also applies to dashed
strokes, which we’ll talk about starting in “A Dashing Design” on
page 499.

The stroke-linecap also has three options:

butt

The stroke ends exactly where the line does, in a straight per‐
pendicular line

round

The stroke ends in a semicircle that extends beyond the end of
the line

square

The stroke extends beyond the official end of the line by half the
stroke’s width, creating a square around the line ending point

The butt value is the default. Like the other stroke settings, it is
inheritable and can be set with an attribute or a style declaration.

Although the values do not directly correspond to stroke-linejoin
options, they can be used to create line endings that harmonize with
the joins for your particular shape.

Example 13-4 shows the three line cap options applied to an open
path that also includes some line joins. The upper row uses the
default miter line join, while the bottom row uses line joins that are
most complementary to each type of line cap on this zig-zagging
shape:

488 | Chapter 13: Drawing the Lines

• bevel caps with butt joins
• round caps with round joins
• square caps with miter joins

A narrower version of the stroke (with the default line joins and
caps) helps you see the exact dimensions of the path, as displayed in
Figure 13-7.

Figure 13-7. An open path with various stroke options: stroke-linecap
of butt (left), round (center), and square (right), with stroke-linejoin
modifications in the bottom row

Example 13-4. Using stroke-linecap to create line endings that match
line joins

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="390" height="260" viewBox="0 0 390 260">
 <title>Stroke Linecap Options</title>
 <symbol id="open-path" viewBox="0 0 30 30"
 style="overflow: visible">
 <path id="p" d="M25,5 H5 V15 H25 V25 H5"
 fill="none"/>
 <use xlink:href="#p" stroke="coral" stroke-width="0.5"
 stroke-linecap="initial" stroke-linejoin="initial" />
 </symbol>

Different Strokes | 489

 <rect height="100%" width="100%" fill="lightcoral" />

 <g stroke="indigo"
 stroke-width="5" stroke-opacity="0.75">
 <g stroke-linecap="butt" >
 <use xlink:href="#open-path"
 width="30%" height="50%" x="1%" />
 <use xlink:href="#open-path"
 width="30%" height="50%" x="1%" y="50%"
 stroke-linejoin="bevel" />
 </g>
 <g stroke-linecap="round" >
 <use xlink:href="#open-path"
 width="30%" height="50%" x="35%" />
 <use xlink:href="#open-path"
 width="30%" height="50%" x="35%" y="50%"
 stroke-linejoin="round" />
 </g>
 <g stroke-linecap="square" >
 <use xlink:href="#open-path"
 width="30%" height="50%" x="69%" />
 <use xlink:href="#open-path"
 width="30%" height="50%" x="69%" y="50%"
 stroke-linejoin="miter" />
 </g>
 </g>
</svg>

An important thing to note is that the stroke-linecap value only
applies if the subpath actually ends at that point. If you create a U-
turn in a single subpath, that will be drawn as a line join, not a line
cap. Figure 13-8 shows what happens if you take the code from
Example 13-4, but change it to use the following E-shaped path
instead of the S-shaped path in the original:

<path id="p" d="M25,5 H5 V15 H25 H5 V25 H25"
 fill="none"/>

The path consists of a single subpath that creates the appearance of
an extra line ending by reversing back on itself (H25 H5) after draw‐
ing the middle stroke of the E.

490 | Chapter 13: Drawing the Lines

Figure 13-8. An open path with a 180° line join in the middle, and the
same stroke-linecap and stroke-linejoin options as Figure 13-7

With a 180° U-turn such as this, a round line join is indistinguisha‐
ble from a round line cap. A bevel line join looks like a butt line
cap, cropped tight against the point. A miter line join in this case
will always be converted to a bevelled join, because the hypothetical
length of the miter is infinite: no matter how far you extend the
“corner,” the two edges will never meet in a point.

This may seem like an extreme edge case, drawing a line that back‐
tracks on itself exactly. However, 180° turns (creating a 0° or 360°
corner) are more common when you’re connecting curved lines. For
curves, the angle of the tangents at the line join can coincide even if
the curves don’t. Figure 13-9 identifies four such U-turns in the
spade icon.

Different Strokes | 491

Figure 13-9. The 180° turns (circled) between curves in an icon

For line joins like this, both bevel and miter values of stroke-
linejoin will crop the stroke exactly at the point of the fill. (A
round line join would add a semicircle cap.) Both of the proposed
SVG 2 joins, miter-clip and arcs, would extend the stroke beyond
the point in a straight line, to a distance set by stroke-miterlimit,
before clipping it perpendicular to the stroke direction.

Adjusting Stroke Appearance
You may have figured out by now that SVG strokes can sometimes
be frustrating. They don’t always line up just where you want. Many
options can’t yet be controlled by the available stroke styles.

However, there are a few extra style properties that you can use to
adjust the appearance of strokes. They even have fairly good browser
support.

Anti-Anti-Aliasing for Crisp Lines
We’ve been focusing on thick strokes so we can discuss the geometry
of line caps and line joins. But thin strokes have their own problems.

When drawn on a computer monitor—unless it’s very high resolu‐
tion—a thin stroke can look a little blurry. A 1px stroke line will
often be positioned so that it is spread across multiple screen pixels.
If the stroke is solid black, the actual pixels will be colored in trans‐
parent gray.

492 | Chapter 13: Drawing the Lines

Consider the following icon, which uses a 1px stroke, in the same
darkMagenta color, for both the X and the outline:

Figure 13-10 uses Firefox Dev Tool’s color-picker to look at the color
of individual pixels when that icon is drawn to the screen. On the
left is the standard view, with the 1px stroke blurred across multiple
pixels. On the right is the result when every pixel is forced to be
either fully colored or not colored at all.

Figure 13-10. Zooming in on a 1px-stroke icon, with anti-aliasing
(left) and without (right)

The process of breaking up the diagonal vector lines to exactly
match the pixel grid (the right side of Figure 13-10) is called aliasing
the graphic to the grid. In the early days of computer graphics, that
was the normal approach. The blurring effect is called anti-aliasing.
It smooths out the jagged pixel edges, and is now the standard for
vector graphics.

The shape-rendering property lets you tell the browser whether
anti-aliasing would be a good idea for this element. It has four possi‐
ble values:

• crispEdges turns off anti-aliasing, causing pixels on the edge of
a shape to either be fully colored or not at all

• geometricPrecision requests anti-aliasing

Adjusting Stroke Appearance | 493

• auto (the default) usually means anti-aliasing in modern
browsers

• optimizeSpeed will usually be the same as auto

The property is inherited, so you can set it once for your <svg> as a
whole.

shape-rendering is one of a series of “rendering
hint” properties in SVG. The others either don’t
have much effect in current browsers, or are
being redefined by CSS3 modules. See https://
oreillymedia.github.io/Using_SVG/guide/
style.html for their definitions.

Be sure to test your graphic carefully if you change shape-
rendering. Although “crisp edges” can improve some drawings,
they can make others look pixellated and uneven. The exact effect
will depend on the browser and the screen resolution.

Swapping Stroke and Fill
One of the basic rules of SVG stroking is that the stroke is painted
on top of the fill. As we’ve seen in a few figures so far, this can often
completely obscure details in the geometry of a shape or letter.

In SVG 1.1, you cannot change this ordering.

In SVG 2, you can. The new paint-order property allows you to
control which goes first, stroke or fill. It also controls the order of
line markers (which we’ll introduce in Chapter 14). It is an inherita‐
ble style property.

Although paint-order is now supported in the
latest versions of most browsers, it has not yet
been implemented in MS Edge, and is not sup‐
ported in older browsers.
If the effect is essential, duplicate the shape with
<use> elements to paint the stroke and fill sepa‐
rately, in the order you prefer.

494 | Chapter 13: Drawing the Lines

https://oreillymedia.github.io/Using_SVG/guide/style.html
https://oreillymedia.github.io/Using_SVG/guide/style.html
https://oreillymedia.github.io/Using_SVG/guide/style.html

The value of paint-order is a list of the stroke, fill, and markers
keywords, ordered the way you want them painted, from bottom to
top. You can indicate the default paint-order by using the normal
keyword instead.

If the list doesn’t include all possible values, the remaining layers will
be painted on top, in their usual order. This means that to paint
stroke under the fill, all you need is:

paint-order: stroke;

Figure 13-11 shows the result if you apply that style rule to the root
<svg> element in Example 13-2 from the beginning of the chapter.

Figure 13-11. Shapes and text with various stroke options, when
strokes are painted before fill

As you can see, with a solid fill color like this, all the details of the
shapes and letters are now clearly visible, over the top of the stroke.
However, the strokes now appear to be half as wide as they were,
because half of each stroke is obscured behind the fill.

There is not yet any proposal for integrating paint-order with lay‐
ered fills and strokes in such a way that you can position some
stroke layers under the fill and others on top.

Adjusting Stroke Appearance | 495

Future Focus
Controlling Stroke Position

Using paint-order and solid fill, you can make it appear that a stroke is
entirely on the outside of the shape. But sometimes it would be nice to do that
explicitly, even for semitransparent fill. And it would often be nice to have a
stroke that instead fits inside the exact dimensions of your shape, so it doesn’t
increase the shape’s size.

Inside and outside strokes are supported in most vector graphics tools, includ-
ing Adobe Illustrator, Sketch, and other software commonly used by web
designers. They have long been a requested feature for SVG. Proposals have
been bumped from one specification to another, without ever being finalized.
The latest is in the CSS Fill and Stroke module.

The stroke-align property would allow you to override the default position
of the stroke. Instead of centering the stroke over the edge of the shape, you
could push the stroke to the outside or inside. However, with custom shapes
(paths, polygons, and polylines), the distinction between “outside” and “inside”
is not always clear, and decisions have not yet been made about exactly how it
will work.

Scaling Shapes Without Scaling Strokes
Another new feature that now has fairly wide support is nonscaling
strokes. The idea of a nonscaling stroke is that the stroke width
would not be affected by any transforms or viewBox scaling on a
shape. So a 1px stroke would actually be 1px, regardless of any scal‐
ing used to change the size of the shape.

Nonscaling strokes are implemented as part of the vector-effect
property, which we mentioned in Chapter 8 when discussing the
related ability to prevent text or symbols from scaling with the over‐
all coordinate system. At the time of writing, non-scaling-stroke
is the only vector effect option that is implemented in web browsers.

496 | Chapter 13: Drawing the Lines

vector-effect: non-scaling-stroke is not
yet implemented in Microsoft browsers, and
isn’t supported in older versions of other brows‐
ers. Even where it is supported, there can be
quirks and inconsistencies in some cases.
If you need consistent rendering, you will need
to directly calculate the adjusted stroke-width
for the current scale. For viewBox scaling (but
not transforms), you can sometimes approxi‐
mate nonscaling strokes with percentages or
CSS viewport units.

The vector-effect property does not inherit by default, as this
wouldn’t make sense for some of the proposed vector effects. To be
able to apply non-scaling-stroke on a <g> or <use> element—and
actually have an impact on the component shapes—you will need to
set vector-effect: inherit on all the elements in between.

That’s the approach used in Example 13-5, which redraws a stroked
version of the club-suit icon at various scales, using both transforms
and viewBox scaling. It then reuses the complete layout, but applies
non-scaling-stroke. Forced inheritance ensures that the scaling
adjustment applies to the individual copies of the path. Figure 13-12
shows the result.

Figure 13-12. A 20×20 icon, drawn at various scales, with or without
vector-effect: non-scaling-stroke

Adjusting Stroke Appearance | 497

Example 13-5. Using non-scaling-stroke on icons reused at various
scales

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="400" height="200" viewBox="0 0 400 200">
 <title>Non-Scaling Stroke Vector Effect</title>
 <style>
 * { vector-effect: inherit; }
 </style>
 <symbol id="club-symbol" viewBox="0 0 20 20"
 style="overflow: visible">
 <path id="club-path"
 stroke="rebeccaPurple" fill="cadetBlue"
 stroke-width="2"
 stroke-linejoin="round"
 d="M 9,15.5 A 5,5 0 1 1 5.5,7.5
 A 5,5 0 1 1 14.5,7.5 A 5,5 0 1 1 11,15.5
 Q 11,20 13,20 H 7 Q 9,20 9,15.5 Z" />
 </symbol>
 <rect height="100%" width="100%" fill="lightCyan" />
 <g id="layout">
 <use xlink:href="#club-path" x="90" y="10"/>
 <use xlink:href="#club-symbol"
 width="80" height="80" x="10" y="10"/>
 <use xlink:href="#club-symbol"
 width="10" height="10" x="95" y="85"/>
 <use xlink:href="#club-path"
 transform="translate(110,10) scale(4)" />
 <use xlink:href="#club-path"
 transform="translate(10,110) scale(9,3)" />
 </g>
 <use xlink:href="#layout" x="200"
 style="vector-effect: non-scaling-stroke" />
 <g fill="rebeccaPurple"
 font-family="Consolas, monospace" font-size="18">
 <text x="10" text-anchor="start" y="195"
 >no vector-effect</text>
 <text x="390" text-anchor="end" y="195"
 >non-scaling-stroke</text>
 </g>
</svg>

A universal CSS selector forces the vector-effect to inherit on
all elements, unless changed by a more specific CSS declaration.

The club is drawn to just fit within a 20×20 <symbol> viewBox.
Both the <symbol> and the <path> it contains are given id

498 | Chapter 13: Drawing the Lines

values, so they can be reused separately. The path has stroke and
fill styles set on it directly, including a 2px stroke-width.

The first copy of the club redraws the <path> at its natural size.

The second copy scales the <symbol> to fit an 80×80 square.

Another copy of the <symbol> is scaled down, to fit in 10×10.

A copy of the <path> is scaled up and positioned with a
transform.

The final copy of the <path> is also transformed, but this time
with an uneven scale.

The entire set of five clubs is then redrawn on the right side of
the figure, with a non-scaling-stroke for vector-effect.

The copy of the club that is drawn at its “natural” size (20×20, in the
top center of each side of Figure 13-12) is identical with or without
the vector-effect. For all the scaled icons, the default (no vector-
effect) behavior maintains consistent proportions between fill and
stroke, even when the entire shape is distorted by an uneven scale.
The non-scaling-stroke option maintains consistent stroke
dimensions in the main SVG’s coordinate system.

A Dashing Design
An SVG stroke does not have to be a continuous line. You can intro‐
duce breaks in the stroke—without breaking your shape into sepa‐
rate subpaths—to create a dashed line, using the stroke-dasharray
property.

A Wide Array of Dashes (and Gaps Between Them)
The dash array is a list of lengths of alternating dashes (stroked line
sections) and gaps (unstroked spaces). The dashes are positioned by
measuring along the path, from start to end, turning on and off the
stroke as you go. The dash pattern is repeated as many times as nec‐
essary to finish stroking the shape.

A Dashing Design | 499

The value of stroke-dasharray is a space- or comma-separated list
of lengths, percentages, or numbers of user units. It can be specified
as a presentation attribute or in a CSS rule, and is inherited. The
default is none, meaning no dashing (solid stroke).

The comma-separated option is likely to be dep‐
recated by the CSS Fill and Stroke module, in
order to better support comma-separated lists of
different arrays for different stroke layers. For
future compatibility, use spaces as separators in
your dash array list.

The first value in the dash array list always describes a dash; after
that, gaps and dashes alternate. So this array defines long dashes and
short gaps:

stroke-dasharray: 10px 2px;

This looks like the following:

If there is an uneven number of lengths within the dash array, the
lengths of dashes and gaps will alternate during each repeat of the
pattern. In other words, the following two patterns are equivalent:

stroke-dasharray: 1em 10px 1em;
stroke-dasharray: 1em 10px 1em 1em 10px 1em;

Either version looks like this if the font-size is 16px:

Percentages within a dash array are measured in the same way as
percentages for stroke widths: relative to the diagonal of the coordi‐
nate system divided by the square root of two.

Percentage dashes are not related to the length of
the stroke.

500 | Chapter 13: Drawing the Lines

The dash and gap lengths must be positive; negative values are an
error. However, any value in the list may be 0 to create a zero-length
gap or dash. This can be useful when you’re trying to control the
dash and gap lengths precisely, instead of in a simple repeating pat‐
tern. A stroke-dasharray value of 0 0 (or any other number of
zeros) should be treated the same as stroke-dasharray of none,
meaning a solid line.

Because of unclear language in SVG 1.1, Firefox
up to version 40 treated a zero-length dash pat‐
tern as a stroke="none", meaning no line at all.

You would normally only use a zero-length dash pattern as the start
or end of an animation effect.

The visual effect of a given dash pattern can be quite different
depending on the width of the stroke it is applied to. Figure 13-13
repeats the two previous dashing samples, along with a dash array of
3 3 (meaning: 3px-long dashes separated by 3px-long gaps), each
on 3px-wide strokes. It then repeats the same three patterns, but on
15px-wide strokes.

Figure 13-13. Dashed lines with different dash patterns, and (bottom)
the same patterns on wider strokes

The 3px dashes on a 3px-wide stroke create a dotted line; on a 15px-
wide stroke, however, they create a finely spaced grate.

Unfortunately, there is no way to define a dash pattern that automat‐
ically scales with the stroke width. (Although you could hack it—for
nontext elements—by defining both properties in em units and then
scaling the font-size.)

A Dashing Design | 501

On straight lines like those in Figure 13-13, the shape of each dash
is, well, straightforward. On more complex shapes there are, well,
more complications. To demonstrate the impact, Example 13-6
applies a dash pattern to two of the card-suit icons, as shown in
Figure 13-14.

Figure 13-14. Dashed lines on shapes with smooth curves and sharp
corners

Example 13-6. Creating dashed lines on curved shapes

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="410px" height="205px" viewBox="-1 -1 44 22">
 <title>Dashing SVG Shapes</title>
 <style type="text/css">
 svg {
 fill: none;
 stroke-linejoin: round;
 stroke-dasharray: 2 0.5 1 0.5;
 }
 </style>

 <path id="heart" stroke="darkRed"
 d="M10,6 Q10,0 15,0T20,6Q20,10 15,14
 T10,20Q10,18 5,14T0,6Q0,0 5,0T10,6Z" />
 <path id="spade" stroke="#222" transform="translate(22,0)"
 d="M9,15C9,20 0,21 0,16S6,9 10,0C14,9 20,11 20,16
 S11,20 11,15Q11,20 13,20H7Q9,20 9,15Z" />
</svg>

502 | Chapter 13: Drawing the Lines

To leave room for the strokes, the viewBox offsets the origin of
the icons one unit away from the top-left corner of the SVG.
The width and height have been increased to include both this
padding and an equivalent amount on the opposite side and in
between the shapes.

All the shapes will have round line joins and a pattern of alter‐
nating long and short dashes with shorter gaps in between. This
dash pattern will be applied in the scaled coordinate system, so a
half-unit gap will still be clearly visible.

Both shapes were originally designed to just fit within a 20-unit
square. With the padding, they each take up 22 units in each
direction. The spade is translated horizontally into position.

There are a few things to pay attention to in Figure 13-14. The first
is that the dashes follow the curve of the strokes. The start and end
of the dash lines are always perpendicular to the path at that particu‐
lar point—which may not be parallel to the other end of the dash.

Another thing to notice is that the dash pattern continues from one
path segment to another, irrespective of any sharp corners. When
there is a dash at a corner, the stroke-linejoin shape is painted—
but if there’s a gap at the line join, the tip gets left off. The result can
be somewhat unbalanced, as the spade shape certainly demonstrates.

Future Focus
Better References for Dash Lengths

The lengths used in stroke-dasharray are always defined in absolute terms
or relative to the overall coordinate system, rather than being relative to the
shape itself. It would often be preferable to be able to specify dash and gap
lengths relative to the stroke width, the total path length, or the current path
segment length.

At the time of writing, there are open issues on the CSS Fill and Stroke module
to address these options, but no standard yet for a syntax.

A Dashing Design | 503

Turning Dashes into Dots
Although stroke-linejoin shapes do not coordinate well with
dashes, stroke-linecap can. But it may take a little adjustment to
your dash pattern.

The stroke’s line cap shape is added to the start
and end of every dash.

Example 13-6 used the default butt line cap, which does not add
anything to the measured end of each dash. However, for round and
square line caps, the cap extends beyond the end of the dash into
the gap. If you do not factor this in, it could throw off your gap spac‐
ing. In order to have a visible gap, the gap space must be larger than
your stroke width.

Line caps can be used to create circular or square dots that automati‐
cally adjust to the stroke width. The trick is to use a very small dash
length—ideally, less than 1 pixel on the display, after adjusting for
the scale of the SVG. Then use a gap length that includes the room
required for the dots, which will take up as much space as the stroke
is wide. The gaps, unfortunately, will not automatically scale to
match the stroke width.

Using a zero-length dash, in order to draw per‐
fect circles or squares with just the line caps, is
not recommended. Older Blink browsers did
not draw the dash line caps at all in this case. In
newer Blink, caps are drawn for the zero-length
dashes, but they do not rotate with the path
direction.

The following styles, when applied to the markup from
Example 13-6, create round and square dotted patterns on the heart
and spade icons, respectively, with the results shown in
Figure 13-15:

504 | Chapter 13: Drawing the Lines

svg {
 fill: none;
 stroke-dasharray: 0.001 1.999;
}
path[id="heart"] { stroke-linecap: round; }
path[id="spade"] { stroke-linecap: square; }

Figure 13-15. Dotted lines created with stroke-linecap

The difference created by the round line caps is obvious, but the
square line caps may at first glance appear to be equivalent to a dash
pattern of 1 1 with butt line caps. The difference shows up on the
strong curves: the dots created by the square line caps remain
square, instead of stretching with the path.

CSS Versus SVG
Dashed Borders Versus Dashed Strokes

Dashed stroke patterns in SVG are superficially quite similar to dotted and
dashed borders in CSS. The difference, as usual, is that SVG offers greater con-
trol at the cost of fewer automated adjustments.

The definitions of these border styles in CSS 2.1 were very open-ended:

dotted
The border is a series of dots.

dashed
The border is a series of short line segments.

A Dashing Design | 505

This resulted in some noticeable cross-browser differences. Firefox and Inter-
net Explorer draw dotted borders with circular dots; WebKit and Blink use
square dots. Browsers also differ in how long dashes should be, and how much
space is in between dots or dashes. The CSS Backgrounds and Borders level 3
module clarifies that dots should be round, while dashes should have square
ends. However, it does not prescribe the size or spacing that should be used.

The level 3 guidelines also encourage the use of spacing that creates symmet-
rical corners. Most browsers now do this to some degree, but the results can
be problematic when you mix borders of different widths and styles, or with
corners rounded by border-radius. Don’t expect consistent rendering from
one browser to the next.

The other important difference between CSS borders and SVG strokes is that
border styles, color, and width can be specified for individual sides of a box
(top, right, bottom, left) independent of the others. SVG strokes, in contrast,
apply to an entire shape.

More Pleasing Dash Patterns, Made with Math
On symmetrical shapes such as those in Figure 13-15, the lack of
symmetry in the dotting or dashing pattern may irritate many
designers. To create a symmetrical pattern, you need a dash
sequence that evenly matches the length of the stroke.

For a simple rectangle, it is relatively easy to figure out the total
length of the stroke around the shape (twice the width plus twice the
height) and create a dash pattern to match. For Bézier curves, how‐
ever, the math is a whole other level of complexity.

Luckily, the browser can do the math for you, using the
getTotalLength() method that we first introduced when working
with <textPath> in Chapter 7. It returns the length of the complete
path in user units. By opening up the SVG in a browser, you can use
the developer’s console to call the method on the chosen path.

In SVG 1.1, getTotalLength() was only avail‐
able on <path> elements, not on other shapes.
SVG 2 makes it available on all shapes, but at the
time of writing only Blink has implemented the
method on the other elements.

506 | Chapter 13: Drawing the Lines

The following snippet cycles through all the <path> elements in a
document:

var paths = document.getElementsByTagName("path");
for (var i=0, n=paths.length; i<n; i++){
 console.log(paths[i].getTotalLength(), paths[i].id);
}

The code prints out each path’s length, as well as its id value, so that
it is easy to tell which is which. If your paths don’t have id attributes,
you could print something else such as the first part of the path data.

Of course, instead of printing out values and using them in your
markup, you could use the results directly in your code, setting
styles from a script.

In one version of Firefox, the code printed out the following values
for the SVG in Example 13-6:

71.2459716796875 "heart"
82.3443603515625 "spade"

In other browsers, the calculated path lengths vary by as much as
±0.3 units.

The variation in path lengths is explicitly
allowed by the SVG specifications: the math for
calculating Bézier curve length is computation‐
ally intensive, and the browsers are allowed to
use approximations.

To account for discrepancies in the browser’s path length calcula‐
tions, SVG <path> elements contain a pathLength attribute that
allows you to specify the length you expect the path to be (in user
units). The browser must then adjust many of its calculations on
paths, scaling its calculated lengths to match your stated length.

Unfortunately, stroke dashing was not one of the
areas where the SVG 1.1 specifications explicitly
required browsers to adjust for the stated
pathLength. SVG 2 makes it clear that dashes
should be adjusted. Firefox and recent Chrome/
Blink (since 2016) make the adjustments; other
browsers don’t.

A Dashing Design | 507

Theoretically, it should be easy to create an even dot pattern for the
heart: just set the stated pathLength to twice an even multiple of the
dash-array length (2 units), and both halves of the heart will have an
even number of repeats, and therefore a matching pattern. Since the
measured length of the path was slightly more than 71 units, the
closest multiple of 4 units is 72.

However, for these subpixel “dashes,” rounding errors add up in
Chrome, and most other browsers ignore the pathLength com‐
pletely. So it only works in Firefox.

Figure 13-16 shows the result (in Firefox) of setting pathLength to
72 on the dotted heart from Figure 13-15. Both the dashes and the
gaps scale equally. However, the dash is so small relative to the size
of the line caps that the scaling is not visible.

Figure 13-16. Dotted lines after the dash pattern is adjusted with
pathLength

To achieve a result similar to Figure 13-16 in the other browsers,
you would need to adjust the total dash pattern length yourself, for
each shape separately. Instead of a total dash pattern of 2 units, you
would want each repeat to total 2 × 71.24 / 72, or 1.9789 units:

stroke-dasharray: 0.0089 1.97;

With that change (and with the pathLength attribute removed), the
heart looks like Figure 13-16 in all browsers. You would still get
some slight variation between browsers because of the differences in
path length approximations, but they are minor.

508 | Chapter 13: Drawing the Lines

On a more complex shape, like the spade, the same strategy is not
practical. There are too many corners for a simple repeat pattern to
look elegant around all of them. You would need to divide the shape
into multiple paths, and set separate dash patterns for each.

Future Focus
Greater Control of Dash Position

The CSS Fill and Stroke module introduces two properties that would provide
greater control over awkward dashing patterns: stroke-dash-corner and
stroke-dash-justify. Previous SVG draft specs had the same properties
under different names; some details may still change.

The stroke-dash-corner property would ensure there was always a dash at
every corner (line join) in a shape. Its value is the length of the dash that
should be centered over the line join—whether that’s a sharp corner or a
smooth connection between curve segments—and would also be equally
divided between the start and end of the path.

If a value other than none is used for stroke-dash-corner, the dash pattern
created by stroke-dasharray is used to fill the path segments in between
corner dashes independently.

The stroke-dash-justify property would be used to specify a strategy for
adjusting the dashing pattern so that it evenly fits the path, by either increas-
ing or decreasing the length of the pattern. You would be able to specify
whether the dashes or the gaps—or both—are adjusted.

Starting Mid-Stride
When trying to place dashes precisely, you can end up wishing you’d
defined the shape starting from a different point. For example, the
spade icon starts off-center, where the left lobe connects with the
stem, instead of at the point. For basic shapes, you don’t have any
control over the start of the path at all.

Although it wasn’t explicitly specified in SVG 1.1, all the major
browsers are consistent about where to start stroking a shape.
Specifically:

A Dashing Design | 509

• For rectangles, the “start” of a rectangle is the top-left corner,
and then the path continues clockwise. If the corners are roun‐
ded, it starts after the curve ends.

• For a circle or ellipse, the start is the 3 o’clock position (techni‐
cally: the point where the shape’s edge crosses the cy position, at
an x-value greater than the cx position). Again, the path is
clockwise.

• Polygons, polylines, and paths follow the values in the points
list or d instructions.

• A <line> starts with the (x1,y1) point.

The start point of the stroke in a text character will depend on the
font, and isn’t guaranteed to be consistent from one browser to the
next.

SVG 2 makes these behaviors standard, by
defining an “equivalent path” for each shape.
However, some SVG tools may use different
start points for basic shapes.

By default, the first dash in your dash array starts at this start point.

If that’s not what you want, don’t worry—you don’t have to rewrite
all your code just to get greater control over dashing. The stroke-
dashoffset property allows you to adjust the pattern position
directly.

The dash offset is the distance into the dashing pattern at which the
start of the path should be positioned. As usual, the length can be
specified with or without units, or as a percentage (proportional to
the coordinate system diagonal, same as the other stroke proper‐
ties). The stroke-dashoffset property is inheritable, and can be
specified with CSS or as a presentation attribute.

Positive offsets start the dash before the path
start. Negative offsets start the first dash after
the path start.

510 | Chapter 13: Drawing the Lines

The offset distance isn’t an extra gap: the extra space is filled in with
more dash array repeats, just at different positions than they would
otherwise be.

There are two main uses of stroke-dashoffset: precise position of
dashes for geometric effect, and animated dash movement.

Example 13-7 demonstrates the first use case. It uses dashes on a
rectangle and a polyline. In both cases, the stroke length can be
easily calculated, and the dash pattern is set to repeat an even num‐
ber of times around the shape. The dash offset is used to make sure
the gaps are positioned in the middle of lines instead of at the cor‐
ners, creating the patterns shown in Figure 13-17.

Figure 13-17. Geometric patterns created with offset dashes

Example 13-7. Using stroke-dashoffset to control which parts of a
shape are stroked

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="410px" height="210px" viewBox="-5 -5 410 210">
 <title>Stroke Dash Offsets</title>
 <style type="text/css">
 svg {
 stroke-width: 10px;
 }
 </style>
 <rect width="400" height="200"
 fill="none" stroke="indigo"
 stroke-dasharray="500 100" stroke-dashoffset="50" />
 <polyline points="0,75 50,125 100,75 150,125 200,75

A Dashing Design | 511

 250,125 300,75 350,125 400,75"
 fill="darkSeaGreen" stroke="seaGreen"
 stroke-dasharray="70.71 25 20.71 25"
 stroke-dashoffset="-35.355" />
</svg>

The viewBox creates a 400×200 drawing region with 5 units of
padding on each side, to make room for the outer half of the
thick 10px strokes.

The dash array pattern on the rectangle is 600 units long, so
there will be exactly two dashes and two gaps around the
400×200 rectangle. By default, the dash would start at the top-
left corner and continue until halfway down the right side; the
stroke-dashoffset value positions the starting corner 50 units
into the dash, so that it is evenly distributed left and right.

Each line segment in the zig-zagging polyline moves 50 units
right and 50 units up or down. Pythagoras’s theorem tells us that
the length of the line will be √(502 + 502), or 70.71 units. The
total dash pattern therefore exactly covers two line segments.
The offset positions the first long dash to start halfway down the
first line segment, so that it is evenly balanced around the
corner.

Figure 13-17 also re-emphasizes that a <polyline> creates the fill
region by connecting the end of the path back to the beginning in a
straight line, but that connecting line is not stroked. Dashes don’t
change that.

Again, for positioning dashes on more complex shapes, you can use
a <path> element’s getTotalLength() DOM method to calculate the
length of a curve. Unfortunately, there is no easy way to calculate the
length of part of a path; you would need to create a new <path> ele‐
ment that only includes the relevant path segments. As mentioned
previously, be aware that browsers differ slightly in their path length
calculations.

The second use of stroke-dashoffset, to create animated dashes, is
a little more forgiving of these geometric complexities.

In an animation, the specific positions of the dashes are usually less
important than the relative change. By shifting the dash offset by the
exact length of one full repeat of the dash pattern, and then repeat‐

512 | Chapter 13: Drawing the Lines

ing that animation, you can create smooth movement that appears
to cycle the dashes around the entire path.

MS Edge has the same problem with animations
and transitions of unitless numbers in stroke-
dashoffset as it does in stroke-width. Use
explicit px units if you will be using CSS to ani‐
mate. Use them anyway, to get in the habit.

Example 13-8 uses CSS animations to cycle a chain of dashes around
the heart and spade icons. Figure 13-18 shows the chain-link pat‐
tern, but you’ll need to run the SVG in a web browser to see the full
effect.

Figure 13-18. Chain-link strokes, which could be animated

Example 13-8. Animating dashes with stroke-dashoffset

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="410px" height="205px" viewBox="-1 -1 44 22">
 <title>Rotating Dash Links</title>
 <style type="text/css">
 svg {
 fill: none;
 stroke-linejoin: round;
 stroke-linecap: round;
 stroke-dasharray: 1px 1px;
 animation: cycle 0.5s 20 linear;
 }

A Dashing Design | 513

 @keyframes cycle {
 from { stroke-dashoffset: 0px; }
 to { stroke-dashoffset: 2px; }
 }
 </style>

 <path id="heart" stroke="darkRed"
 d="M10,6 Q10,0 15,0T20,6Q20,10 15,14
 T10,20Q10,18 5,14T0,6Q0,0 5,0T10,6Z" />
 <path id="spade" stroke="#222" transform="translate(22,0)"
 d="M9,15C9,20 0,21 0,16S6,9 10,0C14,9 20,11 20,16
 S11,20 11,15Q11,20 13,20H7Q9,20 9,15Z" />
</svg>

Round line caps and line joins create the oval links from each
dash.

When the line caps are added on to the 1-unit-long dashes, in a
1-unit-wide stroke, they will just touch across the 1-unit-long
gaps in the stroke-dasharray pattern.

The shorthand animation property instructs the browser to
apply the animation sequence named cycle over the course of
0.5s, to repeat it 20 times, and to transition the values in a linear
manner, without slowing down or speeding up.

The @keyframes rule defines which properties should be
changed by the cycle animation: from zero offset, to an offset
equal to the total dash array pattern length.

Internet Explorer does not support CSS anima‐
tions of SVG properties like stroke-dashoffset
(Microsoft Edge animates it so long as the
lengths have units). Firefox does not correctly
update the <use> copy of the shape if the anima‐
tion is applied directly to the <path> instead of
being inherited through the <use> itself.
You can increase support in older Webkit and
Blink browsers by duplicating all the animation-
related CSS rules (including @keyframes) with a
-webkit- prefix.

The same effect could have been created with a nonrepeating anima‐
tion that changed the stroke-dashoffset from 0 to 40 over 10

514 | Chapter 13: Drawing the Lines

seconds. By using the minimum repeat, we keep it DRY: to change
the total length of the animation, we would only have to update the
animation rule, and not the @keyframes.

More Online
One of the most popular SVG animations uses stroke dashing to
imitate the effect of a path being drawn from one end to the other.
There are a few variations, either animating stroke-dasharray or
stroke-dashoffset, but both require the getTotalLength()

method to calculate the dash length of the full drawing.

Read more about how it works (with an example of the animation
in action) in “Drawing with Dashes”:

https://oreillymedia.github.io/Using_SVG/extras/ch13-
drawing.html

Painting Lines
Strokes, as we’ve briefly mentioned, do not have to use solid colors.
The stroke property, like the fill property, can use a url() func‐
tion to reference a paint server—a gradient or pattern—by its id
value.

There are two main areas where designers tend to get frustrated
when using paint servers for strokes:

• The objectBoundingBox units used by paint servers do not
include the stroke region.

• All paint servers create a rectangle region of paint that is unaf‐
fected by the shape or direction of the stroke.

The second point is a conceptual issue, that you will just need to
wrap your head around. As much as you may logically think of a
“gradient on a stroke” as meaning that the gradient follows the path
direction, it doesn’t work that way in SVG. The stroke is treated as
another shape, not a line drawn with a pen or brush. That stroke
shape is clipped from the rectangle of wallpaper-like paint server
content.

Painting Lines | 515

https://oreillymedia.github.io/Using_SVG/extras/ch13-drawing.html
https://oreillymedia.github.io/Using_SVG/extras/ch13-drawing.html

For straight-line paths, you can create gradients
that follow the line by using userSpaceOnUse
units and matching up the x1, y1, x2, and y2
attributes between the <line> and the
<linearGradient>.
For curved paths, there’s no easy solution cur‐
rently. When <meshGradient> is supported in
browsers, you could match the path data to the
mesh paths.

The misalignment of objectBoundingBox units and stroke sizes is
more of a mathematical issue—and sometimes the numbers just
don’t add up.

Many gradients or patterns look fine on a stroke, without modifica‐
tions. Others, you can fix by tweaking the numbers—maybe a little,
maybe a lot. But in some cases, you’ll have to redesign your code sig‐
nificantly.

It often depends on the shape you’re stroking. Figure 13-19 takes the
bull’s-eye gradient from Example 12-5 (in Chapter 12) and applies it
to the following path:

<path stroke="url(#bullseye)" stroke-width="20"
 d="M-100,0 H100 M0,-100 V100
 M-71,-71 L71,71 M-71,71 L71,-71"/>

Figure 13-19. A repeating radial gradient applied to the stroke of a
path (left) and the fill of a circle (right)

516 | Chapter 13: Drawing the Lines

The path draws an 8-point asterisk. As a set of disconnected straight
lines, it doesn’t have a fill region, but the bounding box is still deter‐
mined by the maximum and minimum x- and y-values: from
(–100,100) to (100,100). In other words, the same fill region as the
circle of radius 100 from the original demo (which is redrawn in
Figure 13-19 for comparison). The bounding-box gradient is there‐
fore the same size. And because the strokes of the asterisk don’t go
outside of the bounding box, it looks almost as if it was clipped out
of the circle.

The asterisk is a bit of an exception. With most shapes, the stroke
extends outside the bounding box. The visual size of the stroked
shape doesn’t match the size used for bounding-box scaling.

Figure 13-20 applies the linear gradient from Example 12-3 as the
stroke on the following <rect> element:

<rect width="180" height="180" ry="18" x="10" y="10"
 fill="darkSlateGray"
 stroke="url(#green-gradient)" stroke-width="20" />

It is then compared with the same gradient on the fill of the rectan‐
gle from the original demo:

<rect width="200" height="200" ry="20"
 fill="url(#green-gradient)" />

Figure 13-20. A repeating radial gradient applied to the stroke of one
rectangle (left) and fill of another (right)

In order to have the total—outer—size of both rectangles be equal,
the width and height are slightly smaller on the stroked version. If

Painting Lines | 517

you look closely, you’ll see that the distance between color stops has
been scaled down to match. But with a smooth, padded gradient
such as this, it is hard to tell.

You only really start to notice the bounding-box difference when
you use a paint server that has been precisely sized to fit the bound‐
ing box. In Chapter 12, we did that to create a nonrepeating image
fill, in Example 12-9.

Figure 13-21 shows what happens when we apply that same
<pattern> to the following thick-stroked version of the club icon:

<use xlink:href="../ch10-reuse-files/suits-symbols.svg#club"
 fill="none" stroke="url(#image-fill)" stroke-width="5"
 x="20" y="20" width="160" height="160"/>

The 5px stroke-width may not seem that thick
compared to a 160×160 width and height. But
remember: that stroke will be painted in the
original <symbol> element’s 20×20 coordinate
system. With 20px scaled up to fill 160px, 5px in
the <symbol> will be equivalent to 40px in the
outer <svg>.

For comparison, Figure 13-21 includes a second 160×160 copy of
the <symbol>, but with the pattern used as a fill, not a stroke.

Figure 13-21. A photographic pattern tile that exactly fills the bound‐
ing box, applied to a stroked shape (left), versus the same size shape,
filled (right)

518 | Chapter 13: Drawing the Lines

The photographic pattern tile is the same size in both elements:
scaled to fit in the fill region of the shape. Since half the stroke
extends outside the fill, however, that isn’t enough. To fill the extra
sections of stroke on each side, our “nonrepeating” pattern tile gets
repeated on each side.

We’re going to need a bigger tile.

Specifically, we need to make the pattern tile large enough that it can
cover the entire stroke region without repeats. To do that, we need
to adjust the x, y, width, and height of the tile on a copy of the
<pattern>:

<pattern id="image-stroke" xlink:href="#image-fill"
 x="-12.5%" y="-12.5%" width="125%" height="125%" />

Figure 13-22 shows what that looks like, when applied to the stroked
icon.

Figure 13-22. A photographic pattern tile that is sized to cover an ele‐
ment including its stroke

This approach is not ideal. The amount by which the attributes on
the <pattern> need to be adjusted depends on the ratio of the
stroke-width (5px) to the bounding-box dimensions for the origi‐
nal <path> element (slightly less than 20×20). The stroke-width is
25% of the bounding-box width, and half of that will extend on each
side, so the tile needs to extend 12.5% outside the bounding box, on
all sides.

Painting Lines | 519

The adjusted <pattern> is therefore not very reusable. You may
need to create separately adjusted versions for elements with differ‐
ent dimensions or with different stroke widths.

This would be slightly easier if you could use
CSS calc() in SVG attributes:

<pattern id="image-stroke"
 xlink:href="#image-fill"
 x="-5px" y="-5px"
 width="calc(100% + 10px)"
 height="calc(100% + 10px)" />

It would be even better with calc() and CSS
variables.
SVG 2 says that both should be valid, but it’s not
supported in browsers yet (and completely
breaks the pattern in some of them).

But even this is not the worst problem from using fill-based bound‐
ing boxes to scale stroke paint servers.

The worst problem with objectBoundingBox units occurs when you
are stroking straight horizontal and vertical lines. In that case, the
fill bounding box has zero height or zero width. This means the
scale applied to the paint has a factor of 0 in it—and a scale of zero
makes graphics disappear.

Using an objectBoundingBox pattern or gradient to stroke a straight
horizontal or vertical line is therefore an error. If you specify a fall‐
back color in your stroke declaration, it will be used instead.

The only workaround, currently, is to recreate your bounding-box
pattern or gradient in userSpaceOnUse units, with attributes exactly
scaled to match the shape you are stroking.

Future Focus
Painting in a Stroke Bounding Box

One of the greatest limitations of using paint servers for strokes is that the
object bounding box does not contain the stroke. An often-requested feature
is the ability to specify a different bounding-box that includes the stroke
region.

520 | Chapter 13: Drawing the Lines

SVG 2 defines what a “stroke bounding box” looks like, and makes it available
to scripts via options sent to the getBBox() DOM method:

shape.getBBox({stroke:"true"})

At the time of writing, no browsers have implemented
the options for getBBox(). They just silently ignore the
passed-in parameter, returning the regular bounding
box dimensions.

Defining a stroke bounding box is the first step, and getting browsers to
implement it is the second, but using it to scale stroke paint is a separate fea-
ture. And unfortunately, it’s a feature that hasn’t been standardized yet.

Ideally, the reference box would be specified at the time the paint server is
used, rather than on the pattern or gradient element. This would allow the
same gradient or pattern to be used such that it exactly fit the fill bounding
box, the stroke bounding box, or any other reference box that makes sense for
the shape being painted.

The new longhand fill and stroke properties in the CSS Fill and Stroke
module include properties based on background-size, background-

position, and background-clip, which include box-related sizing choices.
At the time of writing (mid-2017), the exact details for how these values will
map to paint server reference boxes have not been finalized. But the end goal
is that you’ll have full control over which reference box is used by the paint
server element.

Summary: Stroke Effects
Stroking effects are one of the areas of SVG where styles and geome‐
try intersect. The stroke region itself is a type of derived shape, built
from the offical shape’s geometry according to the many stroke style
properties.

The full creative potential of stroking effects comes from the ways in
which the different style properties intersect, such as using line caps
to change the appearance of dashes. The examples in this chapter
have only hinted at all the possibilities.

Nonetheless, there are countless other effects that are currently diffi‐
cult to create, or require multiple shapes to be layered on top of each

Summary: Stroke Effects | 521

other. The new options proposed for SVG 2 and in the CSS Fill and
Strokes module will allow much greater control, and therefore much
greater creativity. Those changes, and updated implementations, will
hopefully one day remove some of the most irritating obstacles to
using strokes, especially with paint servers.

More Online
The “SVG Style Properties” guide includes references for all the strok-
ing properties:

https://oreillymedia.github.io/Using_SVG/guide/style.html

“Select SVG DOM Methods and Objects” reviews the DOM methods:

https://oreillymedia.github.io/Using_SVG/guide/DOM.html

522 | Chapter 13: Drawing the Lines

https://oreillymedia.github.io/Using_SVG/guide/style.html
https://oreillymedia.github.io/Using_SVG/guide/DOM.html

CHAPTER 14

Marking the Way
Line Markers

This chapter examines line markers, symbols that can be used to
accent the points of a custom shape.

Markers can be added to the start and end of every segment in a
path (or line, polyline, or polygon), or only to the very beginning or
end.

Markers have some similarity to line joins and line caps (which we
discussed in Chapter 13). Line joins and line caps can change the
appearance of the ends and corners of paths, but maybe not as much
as you want. They can’t draw line-cap shapes other than circles or
squares, and they can’t draw anything wider than the stroke itself.
That means they can’t draw an arrowhead.

Arrowheads are the quintessential use of the <marker> element, but
there are many other possibilities. Markers can be used to create
custom line-join shapes, or to draw symbols on all the points in a
line chart.

Markers offer a number of conveniences, compared to line joins, or
compared to drawing each marker symbol individually as a <use>
copy of a <symbol>. However, as defined in SVG 1.1, markers are
still rather limited. Many things that you might expect to be able to
do aren’t supported. There are also a number of bugs and inconsis‐
tencies that limit the use of markers to the simpler cases.

A few additional marker options are included in SVG 2, but many
other advanced features were deferred to a separate SVG Markers

523

module. At the time of writing, it’s not clear when further work
might happen on those proposals.

Emphasizing Points
A <marker> element is much like a <symbol> in that it defines a
small, self-contained icon. Like symbols, markers and their contents
are never drawn directly. Unlike symbols, markers are not posi‐
tioned one at a time, with a <use> element. Instead, they are applied
to a path, line, polygon, or polyline.

The browser positions copies of the marker automatically at the line
joins or line ends of the shape—any point where a path segment
starts and ends (regardless of whether or not there is a visible
corner).

As of SVG 1.1, <line>, <path>, <polygon>, and
<polyline> are the only shapes that support
markers.
SVG 2 makes markers available on the basic
shapes (<rect>, <circle>, and <ellipse>), but
no web browser supports this at the time of
writing.

You assign a marker to a shape using one of the marker-start,
marker-end, or marker-mid properties or presentation attributes, or
the marker CSS shorthand. The value of any of these properties is a
url() reference to the id of a <marker> element, or the keyword
none (which is the default). All the marker properties are inherited,
so you can set them on a group.

The marker-start property assigns a marker to the first point in the
path or shape; the marker-end property places the marker on the
final point. The marker-mid property adds markers to all the line
joins or subpath start or end points in between. Unlike stroke-
linecap versus stroke-linejoin, the marker properties only dis‐
tinguish between the start and end of the overall shape, and not by
whether the path has subpaths, or by whether the shape is opened or
closed.

524 | Chapter 14: Marking the Way

Closed shapes will have a start and end marker
at the same point.
Line caps for subpaths in the middle of the path
will be marked with the “mid” marker, not the
start or end version.

The marker shorthand property assigns the same marker to every
position. In other words, it resets all of marker-start, marker-end,
and marker-mid to the same value.

The shorthand property can only be used in CSS
declarations, not as a presentation attribute.

By default, the origin (0,0) point of the marker contents is posi‐
tioned at the exact vertex (corner or end point) of the shape. The
simplest <marker> markup to create a circle around the marked
point would look like this:

<marker id="m" overflow="visible">
 <circle r="2.5" />
</marker>

The visible overflow is required, or else the
parts of the circle on negative sides of the origin
will be clipped, leaving you with a quarter-circle
instead of a full one.
We’ll discuss other ways to achieve the same
effect in “Defining Dimensions” on page 540.

That marker would then be applied with the value url(#m) in one of
the marker properties on a markable shape element:

<path d="M5,5 Q5,35 35,35" marker-start="url(#m)" />

Put those together with some fill and stroke styles on the
<circle> and the <path>, and you get Figure 14-1.

Emphasizing Points | 525

Figure 14-1. A path with a marker on it

Which…is not very exciting. A single marker on a single path isn’t a
very good use of the <marker> element: you can just as easily draw
the circle directly.

Markers only really become useful when there are a lot of them, or
when the shapes they mark are dynamic. Then, the automatic posi‐
tioning becomes an advantage.

Example 14-1 uses two markers, a circle and a diamond polygon, to
highlight and differentiate the points for two different data lines in a
chart. The lines in the chart are <polyline> elements, whose points
are generated from a script. In a real-world example, that script
would grab data from a file or a server; here, the data points are ran‐
domly generated. Figure 14-2 shows one possible arrangement of
data.

526 | Chapter 14: Marking the Way

Figure 14-2. A line chart with markers at every data point

Example 14-1. Using markers to annotate a line chart

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 width="4in" height="2in" viewBox="-35 -10 240 120">
 <title>DataPoint Markers on a Data Line</title>
 <path stroke="lightSkyBlue"
 d="M0, 0H200 M0,20H200 M0,40H200
 M0,60H200 M0,80H200 M0,100H200"/>
 <g text-anchor="end" aria-label="y-axis"
 style="font: 8px sans-serif; fill: navy" >
 <desc>Y-axis tick labels</desc>
 <text x="-7" dy="0.7ex" y="100">0%</text>
 <text x="-7" dy="0.7ex" y="80">20%</text>
 <text x="-7" dy="0.7ex" y="60">40%</text>
 <text x="-7" dy="0.7ex" y="40">60%</text>
 <text x="-7" dy="0.7ex" y="20">80%</text>
 <text x="-7" dy="0.7ex" y="0">100%</text>
 </g>

 <style>
 .dataline {
 fill: none;
 stroke: currentColor;
 stroke-linejoin: bevel;
 }
 .data-marker {
 stroke: currentColor;
 stroke-width: 1.5px;
 fill: currentColor;
 fill-opacity: 0.5;
 }
 </style>

Emphasizing Points | 527

 <marker id="datapoint-1" overflow="visible">
 <circle class="data-marker" r="2.5" color="tomato" />
 </marker>
 <polyline id="dataline-1" class="dataline" color="darkRed"
 style="marker: url(#datapoint-1)" >
 <title>Team Red</title>
 </polyline>

 <marker id="datapoint-2" overflow="visible">
 <polygon class="data-marker" points="-3,0 0,3 3,0 0,-3"
 color="mediumSeaGreen" />
 </marker>
 <polyline id="dataline-2" class="dataline" color="#364"
 style="marker: url(#datapoint-2)" >
 <title>Team Green</title>
 </polyline>
 <script><![CDATA[
(function(){
 var datalines = ["dataline-1", "dataline-2"],
 nLines = datalines.length,
 nPoints = 14,
 dx = 15,
 maxY = 100;

 for (var l=0; l<nLines; l++) {
 var data = new Array(nPoints),
 points = new Array(nPoints);
 for (var i=0; i<nPoints; i++) {
 data[i] = [i, Math.random()];
 points[i] = [i*dx, maxY * (1 - data[i][1])];
 }

 document.getElementById(datalines[l])
 .setAttribute("points", points.toString());
 }
})()
]]> </script>
</svg>

The viewBox of the SVG is defined such that the main chart area
—where the data will be plotted—will be 200×100 units, with
the origin aligned with the y-axis. Extra space outside that
region leaves room for axis labels and for data points that are
close to the edges.

The initial <path> and <text> elements draw the y-axis grid
lines and labels.

528 | Chapter 14: Marking the Way

The first <marker> will be used for the first data line. It contains
a circle centered around the origin. CSS rules for the data-
marker class give it a solid stroke and semitransparent fill in the
currentColor, which we set in the markup using the color pre‐
sentation attribute.

We define and style the data lines in the markup, using a class
for the shared styles and attributes for the unique ones. We
assign the marker with an inline style attribute so we can use
the shorthand marker property instead of setting all three pre‐
sentation attributes to the same value. A child <title> element
gives a label for the data series (which browsers use for accessi‐
bility and as an automatic tooltip). Despite all the styling, the
lines won’t be drawn unless the script runs, because the
<polyline> elements do not have a points attribute.

The second data line follows the same structure as the first,
except that shape inside the marker is now a polygon, which
again is centered on the origin. The id, color, and <title> val‐
ues are also different.

The simplified data visualization script includes references to
the id values of the different data lines, as well as constants for
how many data points will fit in the plot (14), for how much
space to leave between each value on the x-axis (15 units), and
for the maximum y-position on the plot (assuming the mini‐
mum is 0).

The data for each line is generated as an array where each item
is another two-value array, containing an integer x-value and a
random y-value between 0 and 1. These data values are then
converted into (x,y) points in the drawing coordinate system
using our constants. In data coordinates, the y-values increase
from bottom to top, but in the drawing they increase from top
to bottom.

The points array is transformed into a points attribute for the
corresponding <polyline> with the JavaScript array’s
toString() method, which concatenates all the values in the
individual two-value arrays, separating each number with

Emphasizing Points | 529

commas. This conveniently happens to be a valid syntax for
SVG points.

To avoid style-matching bugs in Microsoft Edge
and Internet Explorer, the styles on the marker
contents are set directly on the <circle> and
<polygon> (with the class data-marker), rather
than being assigned with a class on the <marker>
itself.

By using two different marker shapes, we make it easier to distin‐
guish the two lines, even if the graphic is displayed in black and
white—or if the person looking at it is red-green colorblind. How‐
ever, this example isn’t fully accessible to other users: the data values
are not exposed to screen readers. You would need to provide the
data in another format, such as an HTML table.

When using markers in data visualizations, it is important to realize
that they are not independent elements for accessibility, user events,
and other interactions. Instead, they are decorations on the main
shape element, similar to the graphics inside a <pattern>.

Unlike independent elements, the markers cannot have <title> ele‐
ments to create unique tooltips (and accessible names) for each
value. (We talk more about <title>, accessibility, and tooltips in
Chapter 17.) Any mouse or tap events (click or hover) are passed
through to underlying shapes.

If you want the individual data markers to be independent and
interactive, you’ll need to draw them as independent <use> ele‐
ments.

Scaling to Strokes
There are a couple details in Example 14-1 that we’ve glossed over,
creating a simple example without warning you about the hidden
complexities. The next few sections explore those complications,
and the possibilities they create.

The first important detail that we didn’t mention is that the
<polyline> elements used the default stroke-width value of 1.
Why is this important? Well, Figure 14-3 shows what happens if you
decide to give the line a thicker stroke.

530 | Chapter 14: Marking the Way

Figure 14-3. A line chart with markers, where the lines are drawn
twice as thick

The only change between Figures 14-3 and 14-2 (besides a different
set of randomly generated data points) is one extra CSS declaration:

.dataline { stroke-width: 2; }

But as you can tell from the figures, the stroke on the data lines is
not the only thing that has doubled in size. The markers have also
been doubled, in their height, width, and stroke width, equivalent to
a scale(2) transform.

This is the default behavior for markers: they scale according to the
stroke-width of the shape they are marking. It is a useful default
when you’re drawing arrowheads, but is less useful in this particular
example.

You can control the marker scaling with the markerUnits attribute
on the <marker> element. markerUnits has some similarities to the
gradient and pattern *Units attributes we used in Chapter 12, but is
not directly equivalent. While gradients and patterns are scaled rela‐
tive to a reference box, markerUnits only applies a single, uniform
scaling factor.

The default markerUnits value is strokeWidth; to prevent scaling
with the stroke width, switch it to userSpaceOnUse:

<marker id="datapoint-2" overflow="visible"
 markerUnits="userSpaceOnUse" >

Scaling to Strokes | 531

A userSpaceOnUse value for markerUnits only
affects the scale of the marker, not the origin of
the coordinate system—which always gets repo‐
sitioned to the marked vertex point.

According to the specifications, percentage lengths within markers
should be treated the same as any other unit, using the value from
the main coordinate system, possibly scaled up for marker

Units="strokeWidth".

Both Internet Explorer and Microsoft Edge treat
a <marker> as if it creates its own coordinate sys‐
tem (like a <symbol> or <svg>), so that percen‐
tages are relative to the marker size.
In other words, just like for patterns, it is best to
avoid percentage lengths inside markers.

The markerUnits setting is an XML attribute, not a style property,
so it needs to be set separately on each <marker>. There is no
xlink:href attribute for markers, to use one marker as a template
for another.

Figure 14-4 shows another version of the chart. The dataline class
still has stroke-width of 2, but markerUnits has been set to
userSpaceOnUse for both <marker> elements.

Figure 14-4. A line chart with markers, where the lines are drawn
twice as thick, but the markers have a fixed size

532 | Chapter 14: Marking the Way

But maybe you want the data line to be even more visible, and find
the markers a bit distracting. By default, markers are painted on top
of the shape, after the fill and stroke, and in order from start to end
of the path.

You can change the layering of the stroke and the markers with the
paint-order property that we introduced in Chapter 13. The fol‐
lowing declaration would paint markers first, then stroke, then fill
(if there was any fill):

.dataline { paint-order: markers stroke; }

Adding that declaration to the dataline class in our modified code
from Example 14-1 creates a chart like Figure 14-5.

Figure 14-5. A line chart with markers drawn under the line

The two different lines are still drawn separately: markers and line
for “Team Green” are drawn on top of the markers and line for
“Team Red.” If you wanted both lines to be drawn on top of both
sets of markers, you would need to <use> separate copies of the
<polyline> elements, and apply the markers to the bottom layers
and the stroke styles to the top layer.

Multiple <use> layers are also the workaround to create paint-
order effects in browsers that don’t support the property.

Scaling to Strokes | 533

The paint-order property is not yet supported
in Microsoft Edge, and is not supported in many
older web browsers still in use. It should there‐
fore only be used for minor design tweaks such
as this.

Drawing markers without a stroke isn’t just for workarounds,
though. It can be used if you want to emphasize the points but not
the order in which they are connected. Figure 14-6 shows one run of
our example code if the dataline class is set to have stroke: none.
The line chart has become a scatterplot.

Figure 14-6. A scatterplot chart drawn as markers on unstroked
polylines

Using markers to draw an entire data series with a single element
can have an important performance boost for very large data sets.
But it comes at a cost: the data values are now completely transpar‐
ent to mouse and tap events, so you can’t add any :hover effects or
JavaScript event handling, and the <title> of the <polyline> ele‐
ments never shows up as a tooltip.

You can make the invisible stroke interactive
again by changing the pointer-events prop‐
erty, which we’ll discuss in Chapter 18. But there
is currently no way to make the markers them‐
selves react to pointer events.

534 | Chapter 14: Marking the Way

Another thing to note: with the default markerUnits value, the
markers will still scale according to stroke-width, even if the stroke
is not drawn.

Orienting Arrows
The markers in the data chart examples are all drawn in the same
orientation as the main coordinate system (although you can’t really
tell for the circles). This is the default, and is usually what you want
for labeling points, especially if the marker includes text or other
content that should stay horizontal regardless of the direction of the
line it decorates.

However, we’ve mentioned a few times that markers are also used
for arrowheads. And it would be a pretty strange-looking arrow if
the arrowheads always pointed in the same direction, regardless of
the angle of the line they are attached to.

The orient attribute on the <marker> element can be used to con‐
trol whether markers reorient themselves according to the direction
of the line. The default value is 0, which means that all markers are
drawn with a 0° rotation, or no rotation at all. Any other numeric
value will be treated as a rotation in degrees, relative to the shape’s
coordinate system.

The orient value you are most likely to use is auto, which will
rotate the shape to match the line, so that the marker’s x-axis lines
up with the angle of the line (or the line tangent to a curve).

<marker id="arrowhead" orient="auto">

On corners, autorotation rotates to match the average of the incom‐
ing and outgoing line angles.

Browsers are very inconsistent about calculating
the orientation angle of markers at the start or
end of disconnected subpaths, or markers that
are followed or preceded by a zero-length path
segment.

Example 14-2 uses the orient attribute to create start markers that
stay at a fixed angle, and mid and end markers (arrowheads) that

Orienting Arrows | 535

rotate to match the line. Figure 14-7 shows the result, applied to
paths pointing in various directions.

Figure 14-7. Arrows created with line markers on paths

Example 14-2. Drawing arrowheads that rotate with a line—and
starting markers that don’t—with the orient attribute

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="400px" height="300px" viewBox="0 0 400 300">
 <title>Arrow Markers with Automatic and Fixed Orientation</title>
 <style type="text/css">
 .arrow {
 fill: none;
 stroke: darkMagenta;
 stroke-width: 6;
 marker-start: url(#start);
 marker-end: url(#end);
 marker-mid: url(#mid);
 }
 marker {
 fill: darkMagenta;
 stroke: none;
 overflow: visible;
 }

536 | Chapter 14: Marking the Way

 </style>
 <marker id="start" orient="45">
 <rect x="-1" y="-1" width="2" height="2" />
 </marker>
 <marker id="end" orient="auto">
 <polygon points="0,-2 3,0 0,2" />
 </marker>
 <marker id="mid" orient="auto">
 <ellipse rx="1" ry="1.5" />
 </marker>

 <path class="arrow" d="M30,50 Q100,0 200,50 T370,50" />
 <path class="arrow" d="M370,250 Q300,200 200,250 T30,250" />
 <path class="arrow" d="M30,100 L80,150 30,200" />
 <path class="arrow" d="M370,200 L320,150 370,100" />
 <path class="arrow" d="M150,100 C150,150 200,250 280,180" />
 <path class="arrow" d="M250,100 C250,150 200,250 120,180" />
</svg>

The different markers are assigned to the arrows with the
marker-start, marker-end, and marker-mid properties in CSS.

The <marker> elements themselves are also styled, to use a fill
color that matches the arrows’ stroke.

The start-point marker uses a <rect> element to draw a square
centered on the origin, and then uses the orient attribute to
rotate that square by 45°.

The end-point marker uses a <polygon> to draw a triangle that
points toward the positive x-axis, with its base at the origin. It
uses the auto value for orient so that the marker’s x-axis—and
therefore the triangle’s point—will always point in the direction
of the line being marked.

The mid-point marker also uses auto orientation. The marker
content is an ellipse with a larger ry value than rx; after reorien‐
tation, this means that the long axis of the ellipse will be angled
across the average angle of the lines, and the short axis will go
along the average angle.

The arrows are drawn as <path> elements with various segment
types: smoothly connected quadratic Beziér curves, sharply bent
lines, and single-segment cubic curves.

Orienting Arrows | 537

Example 14-2 doesn’t use any arc path segments,
for a reason: Blink and WebKit browsers convert
arcs into a series of cubic Beziér curves, and
then draw extra mid markers at the points where
those curves connect. For consistent behavior
cross-browser, avoid mid-point markers on
paths with arcs in them.

The markers in Example 14-2 all use the default (strokeWidth)
value of markerUnits. Since the arrows use stroke-width: 6, the
markers are drawn six times their defined size. The <rect> in the
start marker is therefore not 2px square, but is instead two times the
stroke width, or 12px square.

An important thing to note about Example 14-2 is that we had to
explicitly style the markers to match the lines. If we had different-
colored arrows, we would need different <marker> elements for each
color.

Unlike symbols duplicated with <use>, markers do not inherit any
styles from the element they are used on. Even if they did, this
wouldn’t be what we needed, since it is the marker’s fill property
that needs to match the line’s stroke.

Or at least, that’s what the specifications say.
Internet Explorer incorrectly inherits style
attributes from the <path> to the <marker>. To
avoid overly large marker shapes, you need to
explicitly set stroke: none to override the
inherited value.
Microsoft Edge corrects the style inheritance (so
marker contents inherit from the <marker> ele‐
ment), but does not completely match the spec
for style matching. Avoid selectors like marker >
path, which depend on the relationships
between the marker and its contents.

Manually coordinating marker and stroke styles is a bother when
using solid colors, but it is impossible when using complex paint.
Figure 14-8 shows the end result if the solid darkMagenta is replaced
by a horizontal, purple-to-magenta linear gradient on both the
paths’ stroke and the markers’ fill.

538 | Chapter 14: Marking the Way

Figure 14-8. Line-marker arrows, where the line and the markers are
painted with the same gradient

Each marker shape gets its own copy of the gradient, scaled to fit
that shape, independent of the gradient on the path it is marking.
Even a userSpaceOnUse gradient won’t fix matters, since each
marker is painted in its own coordinate system, centered on the ori‐
gin and then rotated into the correct orientation.

Future Focus
Automatically Coordinating Markers with Their Shapes

A much-requested feature for SVG markers is the ability to automatically coor-
dinate markers with the fill and/or stroke of the shape they are marking.

SVG 2 extends the fill and stroke properties to support two new keyword
values: context-fill and context-stroke. For markers, these values would
reference the fill or stroke in effect for the shape being marked. So for the
markers in Example 14-2, we could use:

fill: context-stroke;

Orienting Arrows | 539

In addition, gradients and patterns referenced with a context keyword would
be scaled according to the bounding box and coordinate system of the
marked element (the “context element”), rather than by the individual shapes
within the marker.

The context keywords are also used in the SVG-in-OpenType specification, to
describe how shapes within the font glyphs use the fill and stroke from the
text element that is referencing the font. SVG-in-OpenType also defines a
generic context-value keyword that can be used in any property.

In SVG 2, the context keywords could also be used on shapes within symbols,
so that a gradient or pattern applied to a <use> copy of that symbol would be
applied to the entire symbol continuously, instead of being broken down
according to the individual shapes within the symbol.

At the time of writing, no web browser teams have committed to implement-
ing the context paint keywords, other than for fonts. With new work on fill
and stroke being moved to the CSS Fill and Stroke module, it is possible that
these features will get left behind, or redefined.

Defining Dimensions
All the marker examples so far have explicitly allowed overflow,
using either CSS or presentation attributes to set it to visible. From
that, you might have guessed that markers have fixed boundaries,
and content that extends outside those boundaries is normally
hidden.

So why have we been forcing our markers to overflow?

Because the default position of the marker boundaries isn’t particu‐
larly useful. But it’s only a default, and there are multiple attributes
that allow you to control it. Once you know how to control the size
and position of the marker boundaries, you can safely let overflow
be hidden, without hiding the marker itself.

A <marker> element has a default width and height of 3 units in
both directions. The origin (the marked point, by default) is at the
top-left corner of this 3×3 square.

540 | Chapter 14: Marking the Way

Those dimensions are in the scaled units, after
the markerUnits attribute is applied. That
means that, by default, the marker is a square
three times the stroke-width of the marked
shape.

If you do not reset overflow, any graphics outside of the marker
rectangle are clipped.

In other words, without visible overflow and using all the default
attributes, a marker is positioned so the unclipped parts of the
marker are off-center, to the left and below the marked point. That’s
the not-very-useful part.

You can change the size of the marker rectangle using markerWidth
and markerHeight attributes on the <marker> element. The value
can be a number of user units, length with units, or percentage—but
all will be affected by any scaling from markerUnits.

Why would you need to set a different markerWidth and
markerHeight value when you can simply make overflow visible?
Partly because it can make the browser implementation more effi‐
cient if it knows that a graphic will be clipped to a certain region.
But more usefully, you can use viewBox to create a scaled coordinate
system of your choice that fits within the marker region.

With a viewBox, you can turn any symbol or icon you have already
created into a marker, and then scale it to your desired markerWidth
and markerHeight. If need be, you can also use a preserve
AspectRatio attribute to control how the viewBox adjusts to the
available space.

We’ve mentioned a few times that (by default) the origin of the
marker’s coordinate system is positioned over the corner or end
point of the line that you are marking:

• If you have a viewBox, the marker’s origin is the origin of the
viewBox coordinate system.

• If you don’t have a viewBox, the origin will be in the top-left cor‐
ner of the marker rectangle.

So, one option to control the position of your marker is to use the
viewBox to adjust the marker’s origin.

Defining Dimensions | 541

The other option is to change which coordinate gets aligned, using
the refX and refY attributes.

refX and refY define a reference point, in the marker’s coordinate
system, that will be aligned with the exact vertex point of the shape
being marked. They are both 0 by default, which creates the default
reference point—the (0,0) origin.

The value of refX or refY is a length or a number of user units,
measured in the scaled marker coordinate system, after it has been
adjusted for viewBox.

You can even use refX and refY values that are
outside of the marker dimensions to create a
marker label that is offset from the line it is
marking.

Example 14-3 uses all of these attributes to modify the code from
Example 14-2 in such a way that the marker contents are drawn
within the marker boundaries, and overflow can remain hidden.
The result will still look identical to Figure 14-7.

Example 14-3. Positioning and scaling a marker, without needing
visible overflow

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="400px" height="300px" viewBox="0 0 400 300">
 <title>Arrow Markers using Size and Position Attributes</title>
 <style type="text/css">
 .arrow {
 fill: none;
 stroke: darkMagenta;
 stroke-width: 6;
 marker-start: url(#start);
 marker-end: url(#end);
 marker-mid: url(#mid);
 }
 marker {
 fill: darkMagenta;
 stroke: none;
 }
 </style>
 <marker id="start" markerWidth="2" markerHeight="2"
 refX="1" refY="1" orient="45">
 <rect width="2" height="2" />

542 | Chapter 14: Marking the Way

 </marker>
 <marker id="end" viewBox="0 -2 3 4" orient="auto"
 markerHeight="4">
 <polygon points="0,-2 3,0 0,2" />
 </marker>
 <marker id="mid" orient="auto" viewBox="-1 -1.5 2 3">
 <ellipse rx="1" ry="1.5" />
 </marker>

 <path class="arrow" d="M30,50 Q100,0 200,50 T370,50" />
 <path class="arrow" d="M370,250 Q300,200 200,250 T30,250" />
 <path class="arrow" d="M30,100 L80,150 30,200" />
 <path class="arrow" d="M370,200 L320,150 370,100" />
 <path class="arrow" d="M150,100 C150,150 200,250 280,180" />
 <path class="arrow" d="M250,100 C250,150 200,250 120,180" />
</svg>

The overflow: visible style is no longer required.

The start marker uses a default coordinate system in a 2×2
marker, but then uses refX and refY to change the position of
the marker relative to the marked point. The <rect> can there‐
fore be positioned at the origin (instead of offset with x and y
attributes) and still be centered over the end of the line. The
orient rotation is applied relative to the refX and refY point.

The end marker uses the default (0,0) reference point, but uses a
viewBox to position that origin point somewhere other than the
top-left corner (in this case, the center-left edge). A marker
Height attribute increases the size of the marker to 3×4; without
it, the arrowhead would be scaled down to fit the 3×3 default
marker size.

The mid-point marker also uses a viewBox with a centered ori‐
gin to fit around the <ellipse>. The viewBox dimensions are
2×3, but the marker height and width are left as the default 3×3.
The default preserveAspectRatio applies, centering the
viewBox within the available space.

For simple markers like these, you generally only need to use either a
viewBox or refX and refY, since the viewBox can be used to reposi‐
tion the origin within the marker clipping region. However, if you
are reusing graphics that have already been drawn for another pur‐
pose, they might not be conveniently centered over the origin. In

Defining Dimensions | 543

that case, the viewBox can control the scale while refX and refY
control the positioning.

More Online
Using viewBox, refX, and refY, you can easily convert a <symbol>
(for example, from an icon set) into a <marker>.

Read more in “Re-purposing Icons as Markers”, which also has a few
more warnings about why markers—particularly auto-oriented
markers—sometimes aren’t so easy, after all:

https://oreillymedia.github.io/Using_SVG/extras/ch14-icon-
marker.html

Future Focus
Expanded Marker Position Options

A wide variety of new features and abilities have been proposed for line mark-
ers—so many that the major changes have been separated out into their own
SVG Markers module.

A few minor additions are integrated in the SVG 2 specification:

• A new value for the orient attribute, auto-start-reverse would allow
the same marker to be used at the start and end of a line, but rotated
180° for the start. So a single arrowhead marker could be used for both
the start and end of a line.

This option is supported in recent versions of WebKit, Blink, and Gecko
(Firefox) browsers, but not yet in Microsoft browsers. Unfortunately, since
the orientation is set in the markup, not in the style properties, there’s no
easy way to offer a fallback.

• Fixed-angle orientations could use angle units instead of a number of
degrees.

• The refX and refY attributes will accept keyword values: left, right, or
center for refX, and top, bottom, or center for refY. These match the
equivalent new attributes on <symbol> elements.

544 | Chapter 14: Marking the Way

https://oreillymedia.github.io/Using_SVG/extras/ch14-icon-marker.html
https://oreillymedia.github.io/Using_SVG/extras/ch14-icon-marker.html

• Markers will be positionable on basic shapes (<rect>, <circle>, and
<ellipse>) using the standard path equivalents for each shape: circles
and ellipses would be constructed from four arcs, starting at the 3 o’clock
position and moving clockwise, while rectangles would be made from
straight line segments and arcs for rounded corners.

• It will be possible to associate a marker with a shape by making the
marker a child element and using the child keyword or a CSS selector in
the marker style properties, instead of using a url() reference to the
marker id. This will make it easier to build dynamic data visualizations
with JavaScript without having to be certain that the id value is unique
for the entire document.

Much greater changes to markers proposed in the SVG Markers module will
apply to how markers are positioned along a path. Currently, markers can only
be positioned at end points or joins between line segments; these are called
vertex markers under the new classification. The SVG Markers module introdu-
ces three new types of markers:

• Segment or edge markers would be positioned at the mid-point of each
line segment.

• Pattern markers would be spaced out along the lines using a repeating
pattern similar to the stroke-dasharray property.

• Positioned markers would be placed at specific, author-defined locations
along the path, using a new position attribute on the <marker> ele-
ment. These markers would have to be child elements to the shape they
are associated with. This would, for example, support maps with highway
numbers positioned along roadways in such a way that they are always
clear to read.

The graphics for positioned markers could be duplicated with an href
attribute (not xlink:href, since the xlink namespace is being phased out).
At the time of writing, the proposal is not as flexible as similar duplications of
pattern or gradient content—only the position could be changed each time it
is duplicated, not other attributes.

Another new concept, the exact details of which may still change, is the idea
of stroke “knock-out” regions around a marker. This would define a certain area
on either side of the marker that would not be stroked. Among many other
possible effects, this would allow you to create arrowheads with the point of

Defining Dimensions | 545

the arrow exactly matching the end of the line, instead of its base. Currently, if
you try to do this, the stroke will show through behind the point.

Summary: Line Markers
Markers have all the appearance of individual icons, but are posi‐
tioned within your graphic as decorations on another shape. Like
other SVG graphical effects, the marker structure is defined in your
SVG markup, and the other shape references the <marker> with a
url() reference in a style property.

Attributes on the <marker> element give you considerable flexibility
in sizing and positioning the markers relative to the points they
mark—which almost makes up for the fact that the default size and
position is off-center. However, you currently can only mark the
vertex points on a shape, and other than the start and end points, all
points are marked the same. This makes markers less useful for
annotating lines on a map or creating decorative effects.

Your options for styling the markers, and in particular, styling them
to match the shape they are marking, are also currently limited—
partly by the SVG 1.1 spec, and partly by browser bugs. Be sure to
fully define all styles on the marker contents directly, and to test
your graphics thoroughly.

More Online
A reference for the <marker> element is included in the “Paint
Server Elements and Markers” section of the markup guide:

https://oreillymedia.github.io/Using_SVG/guide/
markup.html#paint-marker

The marker style properties introduced in this chapter are included
in the reference list in the “SVG Style Properties” guide:

https://oreillymedia.github.io/Using_SVG/guide/style.html

546 | Chapter 14: Marking the Way

https://oreillymedia.github.io/Using_SVG/guide/markup.html#paint-marker
https://oreillymedia.github.io/Using_SVG/guide/markup.html#paint-marker
https://oreillymedia.github.io/Using_SVG/guide/style.html

CHAPTER 15

Less Is More
Clipping and Masking

The graphical effects we’ve covered in the past few chapters have
applied effects to individual shapes or text elements, changing the
way the vectors are painted into pixels. The effects we’ll cover in this
chapter (clipping and masking) and the next one (filters and blend
modes) are layer effects: they can apply to single shapes, but also to
composited groups, <image> elements in SVG, or—with browser
support limitations—to non-SVG elements styled with CSS.

This chapter looks at clipping and masking, two methods for
removing pieces from a graphic layer, making it partially transpar‐
ent.

Clipping and masking are often confused. Many visual effects can be
achieved by either a clip or a mask. But there are important differ‐
ences.

Clipping is a vector operation. It uses a clipping path that always
references a geometrical shape, and creates a cleanly cut result. Parts
of the graphic are either inside or outside the clipping path: there are
no halfway measures.

Masking is a pixel operation. The masks that it uses are variable-
strength image layers (typically grayscale) that define the amount of
transparency at each point. The variation means that a mask can
smooth or “feather” the edges of the transparency effect, creating
semitransparent sections and blurred edges.

547

Both options have well-supported SVG definitions (using the
<clipPath> and <mask> elements), as well as newer CSS shorthand
approaches. The CSS-only versions were designed as extensions of
the SVG methods, not as competitors. Both versions are intended to
apply to both SVG elements and CSS-styled HTML elements. How‐
ever, browser implementations have been erratic, updating the SVG
and CSS rendering code separately.

Unfortunately, automatic CSS fallback and @supports tests are not
reliable for either property: the CSS parser may recognize a declara‐
tion as valid, but that doesn’t mean the browser rendering engine
will use that style when drawing a particular element.

The best browser support comes from the SVG-defined effects
applied to elements within an SVG graphic. For anything other than
the all-SVG methods, carefully consider the appearance of your
website if the effect is not applied.

Fading Away with the opacity Property
Before we get into clipping and masking, let’s take a moment to
review the simplest way to make a layer of your graphic partially
transparent: the opacity property. Opacity changes can be thought
of as a uniform mask, making every pixel in that graphic layer trans‐
parent by an equal amount.

The opacity property was one of the first SVG
features to cross over into general CSS use. Any
web browser that supports SVG will also sup‐
port opacity applied to HTML elements.

Just like the fill-opacity and stroke-opacity properties, the
value of opacity is a number between 0 (completely transparent)
and 1 (completely opaque).

Unlike the fill and stroke versions, the core opacity property is a
layer effect. If you change the opacity of an <svg>, <g>, or <use>
element, the effect does not inherit down to the individual shapes.
Instead, all the graphics in that container are painted together, and
then the final result is made more transparent.

548 | Chapter 15: Less Is More

Figure 15-1 shows the difference. It uses three copies of the cartoon
face we created in Example 5-5 in Chapter 5, arranged as inline SVG
in a web page. The first face is directly copied from the original
example, except that the <svg> element has been given the
id="face". The second and third copies are <use> duplicates, with
slight style tweaks:

<svg><use xlink:href="#face"
 fill-opacity="0.7" stroke-opacity="0.7"/></svg>
<svg><use xlink:href="#face" opacity="0.7"/></svg>

Each <svg> element has also been given a repeating CSS gradient
background, so that the transparency changes are obvious.

Figure 15-1. An SVG face, and versions of it made transparent with
fill-opacity and stroke-opacity (center) or with opacity (right)

With semitransparent fill and stroke, the layered construction of the
graphic becomes visible. Each overlapping layer obscures a bit more
of the background.

With reduced opacity, however, the entire <use> element is treated
as a single image. Every point becomes equally transparent. The
individual shapes don’t matter, only the final colors at each point.

If parts of the original graphic had been partially
transparent, the opacity change on the parent
element would have compounded the transpar‐
ency. An opacity value of 0.7 makes every
point 70% as opaque as it otherwise would have
been.

Fading Away with the opacity Property | 549

There are consequences of the layer-effect behavior of opacity.
Because it applies to the final, composited (painted) result of that
element’s child content, it flattens effects such as 3D transformations
and z-index stacking layers. The same is true for clipping, masking,
filters, and blend modes, all of which apply an effect to a flattened
layer of a graphic.

The Clean-Cut Clip
We’ve used the term “clipping” informally throughout the book to
discuss the overflow property: when overflow is hidden on an
<svg> or other element with defined boundaries, any graphics out‐
side of the boundary rectangle are not drawn. They are clipped off.

Clipping paths work similarly, except that the boundary doesn’t have
to be a rectangle: it can be any vector shape. When you clip a
graphic to a clipping path, only the parts of the graphic that are
inside the path will be drawn. Because a clipping path is a binary,
on-or-off operation, it operates very fast in terms of rendering and
processing overhead.

Figure 15-2 illustrates the process at a conceptual level. We’ll look at
the different ways to create it with code in the following sections.

The clipping path (triangle) is scaled and aligned to fit over the
graphic (photograph). Then all parts of the photograph that don’t
overlap the triangle are removed.

The photograph in Figure 15-2 is of an F/A-18
fighter jet passing through the sound barrier,
creating a shockwave of condensation behind it.
It was taken by Ensign John Gay of the USS
Constellation, US Navy. You can read more
about the photo and science from NASA.

Clipping paths can be somewhat frustrating to debug. If the clipping
path does not intersect the clipped graphic, the graphic will com‐
pletely disappear—clipped away to nothing. For the clipped graphic
to actually be visible, the clipping path and the graphic must overlap.

550 | Chapter 15: Less Is More

https://apod.nasa.gov/apod/ap010221.html
https://apod.nasa.gov/apod/ap010221.html

Figure 15-2. A clipped graphic is constructed from a graphic (here, a
photograph) and a vector clipping path (here, a triangular polygon)

If you’re fighting with a completely clipped
graphic, try making your clipping-path shape
larger and larger, until at least some of it inter‐
sects the graphic. Then you can figure out where
both shapes are, and—hopefully—why they
weren’t where you thought they should be.

The Clean-Cut Clip | 551

The examples in this chapter mostly use the well-supported all-SVG
approach to clipping paths, but we’ve also included examples of the
newer options created by the CSS Masking module.

Future Focus
Clipping Paths Everywhere

SVG clipping paths, as defined in SVG 1.1, work like most other SVG graphical
effects: you define the effect with SVG markup elements, and then apply it
with a url() cross-reference in another element’s style property.

The CSS Masking module adds a syntax for clipping paths defined entirely in
CSS, and extends clipping paths (with either syntax) to apply to CSS-styled
HTML and XML elements.

The future is almost here. You can use these options now, so long as the effect
is nonessential, and everything still looks acceptable without the clip.

At the time of writing, Microsoft browsers have not
implemented the new clipping options. WebKit/Safari
require the -webkit- prefix.

In Firefox, the new options are supported, without
restrictions, as of version 54 (stable release mid-2017).
Support for SVG clipping paths applied to non-SVG
elements has been in Firefox for a couple years.

In Chrome, the basic syntax is supported, but not all
the options in the spec.

But test carefully: in addition to the browsers that don’t support clipping at all,
there are many details and edge cases that are still buggy, or simply aren’t well
defined in the specs.

Creating a Custom Clipping Path
Clipping paths are applied to a graphic layer with the clip-path
CSS property or presentation attribute. Since clipping is a layer
effect, the clip-path property is not normally inherited.

552 | Chapter 15: Less Is More

In SVG 1.1, the value of clip-path is either none (the default, no
clipping) or a url() reference to an SVG <clipPath> element.

Note the spelling: the CSS property is clip-path
(with a hyphen); the XML element is
<clipPath> (capital P, no hyphen).

The <clipPath> element can theoretically be in another file, but—as
with most SVG graphical effects—browser support is best if the ref‐
erenced element is in the same document. If it is in another file,
cross-origin restrictions apply.

The only required attribute on the <clipPath> element is an id, so
you can reference it in the clip-path property of the other graphic.

A <clipPath> element has one unique attribute: clipPathUnits. If
you’ve read Chapter 12, it will look familiar. The options are the
same as the *Units attributes for patterns and gradients:
objectBoundingBox or userSpaceOnUse.

The default value of clipPathUnits is
userSpaceOnUse.

The actual clipping path is defined by shapes included as children of
the <clipPath> element. Specifically, a <clipPath> may contain:

• shape elements, normally <rect>, <circle>, <ellipse>,
<polygon>, or <path>

• <text> elements (although beware: this text is completely inac‐
cessible!)

• <use> elements that directly copy individual shape or text ele‐
ments

The triangular clipping path used in Figure 15-2 was defined by a
simple three-point <polygon> inside a bounding-box <clipPath>:

The Clean-Cut Clip | 553

<clipPath id="clip" clipPathUnits="objectBoundingBox">
 <polygon id="p" points="0.1,0 1,0.5 0.1,1" />
</clipPath>

We then apply that clipping path by referencing the <clipPath> ele‐
ment’s id in the clip-path presentation attribute of the second copy
of the image:

<use xlink:href="#image"
 x="20" y="200" width="400" height="320"
 clip-path="url(#clip)" />

We could also have applied the clipping directly to an <image> ele‐
ment (instead of a <use> copy), or with a CSS rule instead of a pre‐
sentation attribute.

The actual clipping path is defined solely by the fill-region geometry
of the elements inside the <clipPath>. Strokes, fill, opacity, and
most other styles have no effect. For this reason, a <polyline> will
behave exactly like a <polygon>, and a straight <line> will have no
effect.

The only styles that are relevant inside a <clipPath> are the proper‐
ties that affect the core geometry of the vector shapes:

• the SVG 2 geometric properties (which correspond to SVG 1.1
geometric attributes)

• the transform property (which also was only available as an
attribute in SVG 1.1)

• clip-path clipping
• text layout and font-selection properties
• display and visibility

If any of the <clipPath> child elements has
display set to none, or visibility set to
hidden, then that element does not contribute to
the clipping path. This could be useful if you are
animating the clipping path, to show or hide dif‐
ferent parts of your graphic.

The fill-rule property affects geometry of a shape, but it doesn’t
affect shapes inside a <clipPath>. Instead, there is a dedicated

554 | Chapter 15: Less Is More

clip-rule property that has the exact same options (evenodd ver‐
sus nonzero) and default (nonzero). It only applies on each shape
individually, not the combination of multiple shapes in the clipping
path.

Intersecting Shapes
Since the result of a clipping operation is the overlap of two vector
graphics, clipping can be used to draw complex shapes that are the
intersection of simpler shapes. To demonstrate, we’ll use a common
example of two basic shapes intersecting: a Venn diagram of two
overlapping circles.

In a Venn diagram, you use two or three circles to represent two or
three different categories, and then overlap the circles to represent
items that fit in multiple categories. We’ll draw it by predefining a
circle in the middle of a centered coordinate system, and then
<use>-ing it with different horizontal offsets:

<defs>
 <circle id="circle" r="12" />
</defs>
<use xlink:href="#circle" x="-6" fill="royalBlue" />
<use xlink:href="#circle" x="+6" fill="lightGreen" />

On their own, these circles look like Figure 15-3.

To turn these overlapping circles into a proper Venn diagram, the
area shared between the circles needs to be visibly distinguished.
There are many possible ways to achieve this: we could make the
circles partially transparent, or use blending modes, so that you
could see one circle through the other. But in order to have full con‐
trol over the appearence of the overlap, we need to draw the “inter‐
section section” of the diagram as its own element.

We could do that with a <path> element, figuring out the coordi‐
nates for arc segments. But we won’t. Instead, we’re going to draw
the overlap exactly as we defined it: as the region where one circle
intersects another. One circle will be our graphic, and the other cir‐
cle will be our clipping path.

The Clean-Cut Clip | 555

Figure 15-3. An incomplete Venn diagram, without the intersection
section

For this example, we are going to draw the circle on the right, and
then clip it to fit within the circle on the left. So in order to keep our‐
selves straight, we call the clipping path clip-left:

<clipPath id="clip-left">
</clipPath>

We want our clipping path to be defined in terms of the main coor‐
dinate system, so we will be able to align the circle in the clipping
path with the existing circle in our diagram. This means that the
default userSpaceOnUse value of clipPathUnits is just what we
need.

As it’s currently defined, if we applied clip-path: url(#clip-

left) to a graphic, that graphic would disappear. This is an empty
<clipPath> element: it does not include any shapes to define the
actual clipping path. There is nothing for the clipped graphic to
intersect with, so the graphic would get clipped away to nothing.

556 | Chapter 15: Less Is More

To create a clipping path that clips a graphic to only include the
parts that overlap the left circle, we <use> a copy of our predefined
circle as a child of the <clipPath> element:

<clipPath id="clip-left">
 <use xlink:href="#circle" x="-6" />
</clipPath>

The x offset is the same as that for the left circle in the actual
drawing.

You cannot reuse the <use> element that already
has the x offset applied. The SVG specs only
allow <use> elements in a <clipPath> if they
directly reference a shape or <text> element.
Microsoft browsers allow indirect references to
other <use> elements, but other browsers don’t:
they treat it as an empty clipping path, meaning
that the graphic gets clipped away to nothing.
SVG 2 suggests that browsers should ignore the
clipping path altogether if it has invalid content,
but none have implemented it this way yet.

The final step is to draw a circle that overlaps the right circle in our
Venn diagram, and apply our clip-left clipping path to it.

You might think you could do that with code like this:

<use xlink:href="#circle" x="+6" fill="mediumTurquoise"
 clip-path="url(#clip-left)" />

But if you did that, you’d get Figure 15-4—which isn’t quite what a
Venn diagram should look like.

The problem? The x and y attributes on <use> elements are treated
as transformations. And transformations change the user-space
coordinate system. The turquoise copy of the circle is getting
clipped to the parts that overlap the blue circle, before it gets shifted
right to align with the green circle.

The Clean-Cut Clip | 557

Figure 15-4. A misaligned Venn diagram, caused by clipping a <use>
element directly

The solution—for this and most other problems involving transfor‐
mations messing up userSpaceOnUse clipping or masking—is to
apply the clipping to a group in the untransformed coordinate sys‐
tem. Then include the transformed element (or in this case, the
<use> with an x attribute) inside that group:

<g clip-path="url(#clip-left)">
 <use xlink:href="#circle" x="+6" fill="mediumTurquoise" />
</g>

With that, we finally have a proper Venn diagram: Figure 15-5. The
turquoise-colored cat’s-eye shape in the middle now correctly
matches the intersecting circles on either side.

Now that we have three distinct shapes for the three distinct areas,
we can fill those shapes however we like. Example 15-1 compiles all
the code snippets together, then adds a stripe pattern (instead of a
blended color) to represent the overlap, and some stroke outlines
over the top, as shown in Figure 15-6.

558 | Chapter 15: Less Is More

Figure 15-5. A solid-color Venn diagram, created with clipping paths

Figure 15-6. A two-circle Venn diagram with a striped pattern fill

The Clean-Cut Clip | 559

Example 15-1. Using clipping paths to draw a patterned Venn diagram

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 height="240px" width="360px" viewBox="-18 -12 36 24">
 <title>Two-Circle Venn Diagram</title>
 <style>
 .left { fill: royalBlue; }
 .right { fill: lightGreen; }
 .outlines {
 fill: none;
 stroke: indigo;
 }
 </style>
 <defs>
 <circle id="circle" r="11.5" />
 <use id="left" xlink:href="#circle" x="-6"/>
 <use id="right" xlink:href="#circle" x="6"/>
 </defs>
 <clipPath id="clip-left">
 <use xlink:href="#circle" x="-6" />
 </clipPath>
 <pattern id="stripes" patternUnits="userSpaceOnUse"
 width="2" height="100%"
 patternTransform="rotate(30)">
 <rect width="2" height="100%" class="left" />
 <rect width="1" height="100%" class="right" />
 </pattern>
 <use xlink:href="#left" class="left" />
 <use xlink:href="#right" class="right" />
 <g clip-path="url(#clip-left)">
 <use xlink:href="#circle" x="+6" fill="url(#stripes)" />
 </g>
 <g class="outlines">
 <use xlink:href="#left" />
 <use xlink:href="#right" />
 </g>
</svg>

The strokes in Example 15-1 are worth a second look. We can’t
stroke the clipped shape directly. Well, we could, but the stroke
would only wrap around the curve that is actually an edge of the cir‐
cle, not the curve that was created by the clipping path. And we can’t
just stroke the underlying circles, because those strokes would get
hidden by the overlapping layers.

So, instead, the strokes are their own layer: copies of the intersecting
circles, drawn with just strokes and no fill.

560 | Chapter 15: Less Is More

Finally, because “inside” strokes aren’t yet supported in SVG, the
overall radius of our predefined circle has been shrunk slightly, so
that the outside radius of the circle + stroke is still 12 units.

Clipping a clipPath
With that example accomplished, how would we create a three-
category Venn diagram? That’s a diagram like Figure 15-7, with three
circles, all overlapping, including a center section for items that
belong in all three categories.

Figure 15-7. A three-circle Venn diagram

The three overlapping sections between pairs of circles can be cre‐
ated by the same method as in Example 15-1. The overlap between
the top circle and the left circle can be created with the existing
clip-left clipping path, but you’ll also need a clip-right path to
cut out the overlap on the other side.

The Clean-Cut Clip | 561

But the center section is a little more complicated. It is the intersec‐
tion of all three circles. To create it, we need to draw a circle (for
example, aligned with the top circle) and then clip it twice: first to
include only the parts that overlap the left circle and then to include
only the parts that also overlap the right circle.

The clip-path property can’t apply two separate clipping paths to
the same element. Instead, you have a few choices:

• Use nested <g> groups to apply the two different clipping paths
consecutively:

<g clip-path="url(#clip-left)">
 <g clip-path="url(#clip-right)">
 <use xlink:href="#circle" y="-10"
 fill="url(#stripes-all)" />
 </g>
</g>

• Create a dedicated clip-both <clipPath> element, where the
shape inside it is the result of clipping the left circle to the right
circle. However, because we can’t clip a positioned <use> ele‐
ment directly, and because we can’t include a <g> element inside
a clipping path, that means redefining the <circle> and posi‐
tioning it on the right with cx:

<clipPath id="clip-both">
 <circle r="11.5" cx="6" clip-path="url(#clip-left)"/>
</clipPath>
<g clip-path="url(#clip-both)">
 <use xlink:href="#circle" y="-10"
 fill="url(#stripes-all)" />
</g>

• Create a dedicated clip-both <clipPath> element, where the
shape inside it is one of the circles, and apply a clip-path
directly to the <clipPath> to clip it to the other circle:

<clipPath id="clip-both" clip-path="url(#clip-left)">
 <use xlink:href="#circle" x="6" />
</clipPath>
<g clip-path="url(#clip-both)">
 <use xlink:href="#circle" y="-10"
 fill="url(#stripes-all)" />
</g>

562 | Chapter 15: Less Is More

Yes, a <clipPath> element can have a clip-path
applied to it. The effective clipping path is then
the intersection of the two paths.

All these options decrease the size of the final clipped graphic: only
the parts that intersect both clipping shapes will be drawn.

If you instead wanted a clipping path that clipped to areas that over‐
lap either of two shapes, the solution is simpler: include both shapes
(or <use> copies of them) inside the same <clipPath> element.

For example, the following <clipPath> would clip an element to the
combined shape of both our left and right circles:

<clipPath id="clip-either">
 <use xlink:href="#circle" x="-6" />
 <use xlink:href="#circle" x="+6" />
</clipPath>

That <clipPath>, applied to a gradient-filled rectangle, results in
Figure 15-8.

Figure 15-8. A gradient-filled rectangle, clipped to two overlapping
circles

The Clean-Cut Clip | 563

Unfortunately, the (rather arbitrary) restrictions on <clipPath>
contents means that you cannot easily generate a clipping path from
an existing <g> group of shapes, or from a <symbol> or <svg>. You
need to copy all the shapes individually, and position each one with
transformations, without using groups or viewBox scaling.

More Online
There’s one extra feature of clipping paths (whether shorthand or
SVG) that isn’t shared with masks. A clipping path clips the interac-
tive region of a shape, so that only the unclipped parts will respond
to mouse and touch events.

However, beware: Microsoft Edge and Internet Explorer do not clip
the interactive region when they clip a graphic. So this can currently
only be used as an enhancement, to provide more nuanced user
feedback where it is supported.

Read more, including an example of using clipped images to create
an interactive image map, in “Clipped Clicks”:

https://oreillymedia.github.io/Using_SVG/extras/ch15-
imagemap.html

We’ll also have more clipping and image-map examples in Chap-
ter 18.

Stretch-to-Fit Clipping Effects
The previous <clipPath> examples have used the default
userSpaceOnUse scaling. It’s usually the easiest to use, because the
shapes in your <clipPath> can be sized and positioned to match
shapes in your drawing. But when clipping an entire <svg> or an
<image> element—and especially when clipping HTML elements—
you often want to define the clipping path relative to the normal size
and position of that element, not relative to the SVG coordinate
system.

In other words, you will want to change clipPathUnits to
objectBoundingBox.

With objectBoundingBox units, the shapes in the clipping path
should be defined in units between 0 and 1. Don’t use percentages—

564 | Chapter 15: Less Is More

https://oreillymedia.github.io/Using_SVG/extras/ch15-imagemap.html
https://oreillymedia.github.io/Using_SVG/extras/ch15-imagemap.html

just like with patterns, percentages are scaled up by the bounding-
box scale and are therefore not useful.

The shapes in your bounding-box clipping path will stretch to fit the
graphic being clipped. If the graphic’s bounding box isn’t square,
that stretching effect will be nonuniform, distorting the clipping
path. So a <circle> clipping path will be stretched into an ellipse, if
it is applied to a rectangular shape.

When a bounding-box clipping path (or other layer effect, such as
mask or filter) is applied to a <g>, or <use> element, the bounding
box used is the tightest box that fits all the grouped content’s bound‐
ing boxes, after their sizes and positions have been converted to the
parent element’s coordinate system.

The bounding box isn’t affected by any clipping
or hidden overflow on the child content.

Bounding-box units can trigger the second type of frustrating
clipping-path debugging situation—a clipping path that doesn’t
appear to have any effect at all! That can be caused if the shapes
inside your <clipPath> are too big, completely overlapping the 1×1
bounding-box dimensions, so nothing gets clipped off.

Of course, a lack of clipping sometimes just
means that a typo in an element or attribute
name or id value has prevented the clipping
path from being applied at all. So remember to
check that, too.

In addition, bounding-box clipping paths have all the same frustra‐
tions as bounding-box gradients and patterns: they stretch and dis‐
tort shapes, they don’t include strokes and markers when
determining the scale, and they create errors if applied to a straight
horizontal or vertical line.

Example 15-2 creates a bounding-box <clipPath> within inline
SVG, and then uses it to clip both an SVG <image> and CSS layout
boxes within the HTML section of the page. Figure 15-9 shows the
resulting web page.

The Clean-Cut Clip | 565

Figure 15-9. HTML elements (and CSS pseudoelements) and an SVG
image, all clipped by the same object bounding-box clipping path

Example 15-2. Creating curved boxes, in SVG and HTML, with object
bounding-box clipping paths

<!DOCTYPE html>
<html>
<head>
 <meta charset='UTF-8'>
 <title>Object Bounding-Box Clipping paths,
 on SVG and HTML elements</title>
<style>
@import url('https://fonts.googleapis.com/css?family=Pacifico');
svg {

566 | Chapter 15: Less Is More

 display: block;
}
body {
 background-color: #432;
 margin: 0.5em;
}
header {
 background: darkSeaGreen;
 position: relative;
 z-index: 0;
 padding: 0.1rem;
}
header::before {
 background: indigo;
 content: "";
 display: block;
 position: absolute;
 z-index: -1;
 top: 0.5rem; bottom: 0.5rem;
 left: 1.5rem; right: 1.5rem;
}
h1 {
 background: plum;
 color: indigo;
 text-align: center;
 padding: 10%;
 margin: 2rem 4rem;
 font-size: 300%;
 font-family: Pacifico, sans-serif;
 font-weight: normal;
}
header, header::before, h1 {
 -webkit-clip-path: url(#wave-edges);
 clip-path: url(#wave-edges);
}
</style></head>
<body>
<header>
 <h1>Curvy Clipping Paths</h1>
</header>
<svg viewBox="0 0 400 300" role="img"
 aria-label="Blue and white violets,
 in a garden filled with autumn leaves">
 <clipPath id="wave-edges" clipPathUnits="objectBoundingBox">
 <path d="M0.05,0.01
 Q0.15,0.15 0.5,0.05 T0.99,0.05
 Q0.85,0.15 0.95,0.5 T0.95,0.99
 Q0.85,0.85 0.5,0.95 T0.01,0.95
 Q0.15,0.85 0.05,0.5 T0.05,0.01
 Z"/>
 </clipPath>

The Clean-Cut Clip | 567

 <image xlink:href="violets.jpg" width="100%" height="100%"
 preserveAspectRatio="xMidYMid slice"
 clip-path="url(#wave-edges)" />
</svg>
</body>
</html>

The stacked outlines in the header in Example 15-2 are created with
separate elements (the <header> and <h1>) and a CSS pseudoele‐
ment, all clipped with the same wavy SVG <clipPath>. When you
clip an element, you clip all of it, including SVG strokes and mark‐
ers, CSS padding and borders, and even shadow and filter effects.
So, in order to have a contrasting border for our heading, we needed
to draw the contrasting color in a separate element, outside the clip‐
ping path.

The three heading layers are all clipped to the same shape, in
bounding-box units. However, the clipping path gets stretched and
scaled slightly differently for each, so the final curves are not neatly
parallel.

The “bounding box” for a CSS layout element is
the border-box. In contrast, the “user space” for
non-SVG elements is not well defined, and may
not work how you expect.

Just like the opacity property, a clip-path has a flattening effect. It
turns each layer into its own stacking context for CSS z-index layer‐
ing. This means that the z-index declarations in Example 15-2
aren’t actually required: they are there to ensure that the stacking is
correct in browsers that don’t support clip-path on CSS boxes.

As we mentioned at the start of the chapter, support for SVG clip‐
ping paths on non-SVG elements is not universal. At the time of
writing, the -webkit- prefix is required for support in Safari; Micro‐
soft Edge won’t clip the HTML elements at all. However, the fallback
layout—with simple layered rectangles for the heading—looks
acceptable in Edge and other browsers that don’t support clip-path
outside SVG. And the SVG <image> element gets clipped to the
curved shape in any browser that supports SVG.

568 | Chapter 15: Less Is More

Shorthand Shapes
As we’ve hinted at previously, the CSS Masking module extends the
clip-path property in more ways than just applying it on CSS lay‐
out boxes.

Instead of defining the clipping path in a SVG <clipPath> element,
and then using a url() reference in the clip-path property, you
can define the clipping path shape directly in the clip-path prop‐
erty with a CSS shape function. For example, a circular clipping path
like the one used in the Venn diagram examples earlier in the chap‐
ter would look like this:

clip-path: circle(12px at -6px center);

We introduced the shape functions in Chapters 5 and 6. To recap,
they are:

• circle() and ellipse()
• inset() for drawing rectangles and rounded rectangles
• polygon()

• path()

The path() shape function for creating curved
shapes in CSS was defined later than the other
shapes. At the time of writing, it is not sup‐
ported in any web browsers for clip-path.

You rarely need to use the circle() and ellipse() functions in
clip-path for CSS boxes: you can achieve elliptical clipping—with
much better browser support—with border-radius combined with
overflow: hidden. So, for now, CSS shapes and clip-path is
mostly about the polygon() function.

Within a shape function, you can create fixed-size clipping paths
with absolute length units, or create a bounding-box effect by using
percentages. The exception is the path() function, which uses the
SVG path syntax, and therefore only accepts user-unit coordinates
(not lengths or percentages).

You can also mix percentages with absolute values, using the calc()
function. This allows you to create clipping paths that scale to the

The Clean-Cut Clip | 569

full size of the element and then clip a fixed distance from each edge,
something that is not currently possible with SVG <clipPath>.

For example, the following polygon clips a 30px wide and tall trian‐
gle from each corner of the box, regardless of the box size:

clip-path: polygon(0 30px, 30px 0,
 calc(100% - 30px) 0, 100% 30px,
 100% calc(100% - 30px), calc(100% - 30px) 100%,
 30px 100%, 0 calc(100% - 30px));

Figure 15-10 shows the result if we use that clipping path to replace
the wavy <clipPath> in Example 15-2.

Figure 15-10 offers a warning about the limits of “absolute” sizing:
the clipping path on the SVG <image> is applied in the scaled SVG
coordinate system, so the 30px triangles are much larger than they
are for the boxes in the header. (For this example, you could avoid
that discrepancy by clipping the <svg> element instead of the scaled
<image>.)

According to the latest specs, you should also be able to specify
which reference box to use for measuring percentages: content-box
instead of border-box, for example. For SVG, you could use
stroke-box instead of fill-box. An SVG user-space clipping path
would be equivalent to using view-box as the reference box.

At the time of writing, changing the reference
box is not supported in Chrome/Blink browsers,
or in the -webkit- prefixed property used in
Safari/WebKit.

Because a CSS shape’s geometry is defined entirely in the clip-path
property, you can animate or transition between similar shapes. For
example, you could transition a circular clipping path down to zero
radius to make an element disappear. To be “similar” enough to
transition, shapes must be the same type. For polygon() and
path(), they must have the same number of points.

570 | Chapter 15: Less Is More

Figure 15-10. HTML and SVG elements clipped to the same CSS poly‐
gon clipping path

In contrast, when you animate the shapes inside in an SVG
<clipPath>, it affects all elements that use that graphical effect.
(Also, support is currently poor for animating SVG geometry prop‐
erties with CSS.)

One limitation of using CSS shapes functions, particularly for
polygon(), is that you can’t draw the shapes in a visual software and
then copy the generated SVG code: the coordinates need to be in the

The Clean-Cut Clip | 571

CSS syntax. A few tools are currently available to help you draw
shapes, especially for clipping image files:

• Clippy, by Bennett Feely, provides a web interface with click-
and-drag points, as well as a number of preset polygons for
common shapes.

• The Adobe CSS Shapes Editor JavaScript library allows you to
add a visual CSS shapes editor into a web page, such as the web
interface to a content management system.

• The CSS Shapes Editor extension for Chrome (and related
browsers), by Razvan Caliman, adds an extra tab to your Devel‐
oper Tools panel that allows you to edit shape functions for ele‐
ments in your page using the Adobe JS library. It’s currently
optimized for use with the shape-outside property, but you
can copy and paste the code into clip-path.

A similar CSS shapes editor will be natively included in Firefox dev
tools, starting sometime in late 2017.

As we mentioned in Chapter 5, the shape-outside property con‐
trols how text wraps around floated elements in CSS layout. It uses
the same CSS shapes functions as clip-path, so you may find your‐
self reusing the same value twice, making them a good candidate for
CSS variables. However, beware that the two properties have differ‐
ent default reference boxes: if you don’t specify the reference box,
shapes are measured relative to border-box for clip-path, but
margin-box for shape-outside.

CSS Versus SVG
clip Versus clip-path

You may be wondering where the long-established CSS clip property fits into
all of this. The short answer: it doesn’t. The clip property is considered a leg-
acy feature, kept around only for backward compatibility. clip-path is the
way of the future.

The longer answer: clip was initially proposed with the plan to make it some-
thing like what clip-path and CSS shapes are now. However, the only value
of clip that has ever been supported (other than the default auto) is a

572 | Chapter 15: Less Is More

http://bennettfeely.com/clippy/
https://github.com/adobe-webplatform/css-shapes-editor
https://github.com/oslego/chrome-css-shapes-editor

rect() function. And the syntax of rect() is so inconsistent from all other
CSS geometry that CSS Shapes replaced it with inset().

The parameters to rect() are the distances to the top,
right, bottom, and left edges of the rectangle, as meas-
ured from the top/left side of the element.

In contrast, the parameters to inset() are always
measured from the nearest side.

The clip property’s other limitation is that it only applies to absolutely posi-
tioned elements in CSS. In SVG, it applies to elements that can have hidden
overflow (<svg>, <symbol>, <pattern>, <marker>), and to <image>.

Hiding Behind Masks
Clipping paths are useful for quickly including or excluding specific
regions of a graphic, or changing the shape of rectangular elements
such as images. But clipping paths are limited. You must be able to
define them with simple vector shapes. The final effect is binary:
graphics are either inside or outside the path, never in between.

For more subtle effects, you need a mask.

A mask works somewhat differently from a clipping path. Where a
clipping path is defined as a vector shape, a mask is defined as a
single-channel (e.g., grayscale) image layer. The resulting transpar‐
ency effect doesn’t have a 1-bit, on-or-off value—it has a full 8-bit (1
byte) channel of 256 possible levels. Masks are commonly used in
photo-editing applications such as Adobe Photoshop and GIMP,
because they operate on pixels, not vectors.

Android browsers did not support SVG masking
until version 4.4. Masking is also not supported
in some software that is used to convert SVG to
raster images or PDF, so if you’re creating fall‐
back PNG images with an automated script,
double-check that they look correct.

Masks can create stunning visual effects, but going from 1 bit to 1
byte of transparency information adds considerable computational

Hiding Behind Masks | 573

cost. If you can achieve an effect with clip-path instead of mask, it
will give you better performance, especially for animated graphics.

The masks defined in SVG 1.1 are known as luminance masks.
Loosely, that means that the brightness (luminance) of the mask
image determines the opacity of the final masked graphic. The
mask’s image layer is converted to grayscale, it is scaled and posi‐
tioned as required, and then the grayscale intensity of a given pixel
in the mask becomes the alpha factor applied to the corresponding
pixel in the graphic that you are masking.

Pure white areas in the mask (100% luminance) correspond to an
opacity of 1 (opaque), meaning no masking occurs—the masked
graphic has its normal transparency in those sections. Pure black
(0% luminance) corresponds to an opacity of 0 (transparent), mean‐
ing those sections of the masked graphic will be entirely clipped
away, letting the background shine through.

The luminance calculation converts colors to
grayscale using a formula the recognizes that
yellows and greens are brighter (higher lumi‐
nance) than equally intense reds and blues.
The same formula is used in filters (but not in
blend modes!), and in calculating contrast ratios
for accessibility.

Figure 15-11 shows a mask in action: the mask is created from
black-to-white linear and radial gradients. We’ll look at the code to
create the effect in the following sections.

The masked version of the photograph is drawn in the regions that
are white in the mask, and fades away to transparent (revealing the
white page background) in the regions that are black in the mask.
The end result is much softer than the sharp lines created when the
same photograph was clipped to a triangle in Figure 15-2.

574 | Chapter 15: Less Is More

Figure 15-11. A masked graphic is constructed from a full-color
graphic (here, a photograph) and a single-channel mask image (here,
an arrangement of grayscale gradients)

The luminance levels of the mask are calculated after the brightness
is scaled down according to the transparency of the mask image
itself, as if the mask content were drawn on a black background.

That means that any transparent sections in the mask content are
treated the same as black, completely masking that section of the
graphic. This can be a problem when you’re creating a mask from
SVG shapes. Unstyled SVG elements are drawn as black shapes on a

Hiding Behind Masks | 575

transparent background. Within a luminance mask, those black
shapes and transparent background are treated equally, turning your
masked graphic invisible.

Just like with clipping paths, debugging masks
can be frustrating because of graphics that com‐
pletely disappear. A white rectangle inside the
mask can make your graphics reappear, and help
you figure out the layout issues.

In contrast, in an alpha mask, the alpha (transparency) levels in the
mask image are used directly to determine the alpha factors for the
masking effect. That means that opaque black, white, and color sec‐
tions in the mask are all treated equally. Alpha masks are included in
the CSS Masking module.

Future Focus
More Masks for More Content

It won’t surprise you that the CSS Masking module extends masks as well as
clipping. Once again, the two main changes are allowing the effect to be used
on CSS layout boxes (not only SVG elements), and adding a shorthand version
that doesn’t require extra SVG markup.

Also once again, browsers have been inconsistent in implementing the new
features. Support is currently lagging behind that for the new clipping options,
so this book still considers them “future” features.

Microsoft browsers have not yet implemented mask-
ing for non-SVG elements, or the new masking
syntaxes.

WebKit Safari and Chrome/Blink currently require
-webkit- prefixed properties to use the new syntax,
and only support them on non-SVG elements. The
-webkit- version of masking doesn’t include SVG
masks. So you can’t use the CSS-only masks on SVG
elements, and you can’t use SVG masks on HTML ele-
ments.

576 | Chapter 15: Less Is More

Firefox, in contrast, has a fairly complete implementa-
tion of the CSS Masking module as of version 53
(released in April 2017). Support of SVG masks applied
to non-SVG elements has been in Firefox for a couple
years.

Again, there are also still some details that might change in the specifications,
as feedback is received from early adopters.

Who Was That Masked Graphic?
A mask effect is defined in SVG with a <mask> element, and applied
to another element with the mask style property or presentation
attribute.

The mask property works much like the clip-path property—in
SVG 1.1, anyway: its value is either none (the default) or a url() ref‐
erence. But this time, the element in the cross-reference must be a
<mask>.

Also like clip-path, mask is a layer effect that
flattens graphics, and is not inherited.

Or at least, that’s how it’s supposed to work.
WebKit browsers currently apply the mask sepa‐
rately to every drawing operation: every child of
the masked element is masked before being lay‐
ered together, and strokes are masked separately
from the fill.
That means you get an incorrect appearance if
you are masking a group with more than one
element, or if any of the elements you are mask‐
ing have strokes on them. Unfortunately, there is
no easy workaround for the problem.

Like <clipPath>, a <mask> element is a container for other graphics,
and it can be scaled to the object bounding box or to the user space.
But that’s about where their similarities end.

Hiding Behind Masks | 577

A <clipPath> had extensive restrictions on its contents, because
those contents needed to be converted into pure vector outlines. A
<mask> doesn’t have those restrictions.

Any valid SVG graphics can be drawn inside the mask, including
groups, reused symbols, and embedded images. All the normal SVG
styles apply: strokes, markers, fill patterns and gradients, opacity
changes: they are all used to draw the image layer, which will then be
converted into the luminance mask.

The <mask> element’s scaling attributes follow the same format as
the <pattern> element attributes, one for the dimensions and one
for the contents:

• maskUnits (objectBoundingBox by default) controls the scale of
the overall mask region, a rectangle defined by x, y, width, and
height attributes on the <mask>.

• maskContentUnits (userSpaceOnUse by default) controls the
scale of the elements inside the mask. There is no viewBox to
make scaling easier, however: only bounding-box or user-space
scale.

The mask region defined by maskUnits and x, y, width, and height
defines the outer bounds of the mask. Everything outside of that
rectangle will be clipped completely. You can usually ignore these
attributes, and just use the default mask dimensions.

The defaults for the mask dimensions create a mask that covers the
object bounding box of the graphic being masked, plus 10% padding
on each side. That’s good enough for masking images (which fit
neatly in their bounding box) and for shapes or text with thin
strokes.

The defaults are a problem if the actual dimensions of the graphic
are noticeably bigger than its official bounding box:

• shapes or text with thick strokes
• shapes with large markers
• text with large “swash” characters that extend beyond their lay‐

out boxes

In those cases, you may need to expand the mask region to com‐
pletely cover the graphic.

578 | Chapter 15: Less Is More

When you use a <mask> on an element that is
larger than its fill bounding box, x and y on the
mask should be negative, and width and height
should be greater than 100%. This is how the
defaults work: x and y default to –10%, and
width and height default to 120%.

Adjusting the attributes won’t be enough if the fill bounding box of
your shape might have zero height or width (e.g., arrows drawn
from straight lines). In that case, you’ll need to switch maskUnits to
userSpaceOnUse, and adjust x, y, width, and height to match.

The choice of maskContentUnits is more of a design decision.

The userSpaceOnUse default means that the shapes inside the mask
are measured in the main SVG coordinate system. This makes it
easy to size and scale the content, but you’re also responsible for
making sure your mask content correctly overlaps the shapes you
are masking.

If you switch maskContentUnits to objectBoundingBox, then all
coordinates in the mask contents are relative to the width and height
of the masked graphic’s fill bounding box.

Just like with bounding-box clipping paths, this means using lengths
scaled from 0 to 1. (Or slightly larger, to cover strokes outside the fill
bounding box.) Just like with bounding-box everything in SVG, it
also means watching out for distorted shapes and errors from zero-
height or zero-width bounding boxes.

Just like with patterns, avoid using percentage
lengths and lengths with units in the content of
bounding-box masks. They are scaled up pro‐
portional to the scaling of SVG user units.
In contrast, percentages for x, y, width, and
height work as you would expect them to: rela‐
tive to the bounding-box size when maskUnits is
set to objectBoundingBox.

The <mask> in Figure 15-11 used bounding-box units to position
three gradient-filled rectangles to cover the 1×1 bounding box:

Hiding Behind Masks | 579

<mask id="mask" maskContentUnits="objectBoundingBox">
 <g id="mask-contents">
 <rect fill="url(#fade-left)"
 width="0.2" height="1" />
 <rect fill="url(#fade-top-right)"
 x="0.2" width="0.8" height="0.5" />
 <rect fill="url(#fade-bottom-right)"
 x="0.2" y="0.5" width="0.8" height="0.5" />
 </g>
</mask>

The <g> element is there solely so that the contents could be copied
with a <use> element to draw them in the figure—like a <pattern>
or <symbol>, the <mask> is never drawn directly. But it’s also a
reminder that <mask>, unlike <clipPath>, lets you use groups in the
content.

Depending on the browser and the size of the
SVG, you may detect hairline cracks in the
mask, caused by rounding errors that leave a
pixel gap (or smaller) between the rectangles.
For SVG luminance masks like this, you can
usually fix it by making each rectangle slightly
larger that it should be, so they overlap by a few
pixels.

Because this mask was going to be applied to an <image>, not a
stroked shape, we did not need to scale the mask contents to cover
any graphics outside the bounding-box rectangle.

Because we’re using bounding-box units—by default for the mask
boundaries, and explicitly for the mask content—this mask will
strech or compress to fit images, or other SVG graphics, of different
dimensions. Figure 15-12 shows the mask applied to different ver‐
sions of the photo, cropped to different aspect ratios.

We created the black-and-white versions of the mask in
Figure 15-12 (and Figure 15-11) by copying the mask contents into
a <symbol> with a 1×1 viewBox and no aspect-ratio control:

<symbol id="mask-image" viewBox="0 0 1 1"
 preserveAspectRatio="none">
 <use xlink:href="#mask-contents" />
</symbol>

580 | Chapter 15: Less Is More

Figure 15-12. The object bounding-box mask stretches to fit masked
images of different dimensions

Hiding Behind Masks | 581

The symbol is then reused at dimensions matching each bounding
box, so that the nonuniform viewBox scaling mimics the scaling
from objectBoundingBox units.

The photos were cropped in a photo editor, and saved as separate
files. Normally, you can “crop” a photo dynamically in SVG by
putting it inside a nested <svg> element with hidden overflow
(using viewBox to adjust the scale and offset of the visible portion, as
we did in Example 10-4 in Chapter 10).

But that hidden overflow is still used to determine the bounding-
box size, which would mean that our masks would stretch to cover
the full image size, ignoring any cropping. That would be good if the
mask had been carefully designed to match the full image. But it’s
not so useful for demonstrating how masks can stretch to fit differ‐
ent bounding boxes.

Masks aren’t just for photos, of course. You can also mask SVG vec‐
tor shapes or text. Figure 15-13 shows the same mask applied to a
<text> element (containing the word “SPEED” with solid black fill)
to show an all-SVG masking effect.

Figure 15-13. An object bounding-box mask applied to SVG text

If you look closely at the text in Figure 15-13, you’ll notice another
bounding-box issue, which we briefly mentioned in Chapter 12: text
bounding boxes are sized to the layout boxes of the individual char‐
acters, not to the visible shapes. The mask isn’t perfectly centered
over the visible text. It is stretching to cover the space that would be
used for lowercase letters that drop below the baseline, or accents
that sit above the capitals.

582 | Chapter 15: Less Is More

1 For a discussion of how to make duotones with filters, see “Color Filters Can Turn Your
Gray Skies Blue,” by Amelia Bellamy-Royds, on CSS-Tricks.

Using a mask this extreme on <text> is proba‐
bly not a good idea—it’s hard to tell that the last
letter in Figure 15-13 is a D when most of it has
been masked away! But if it were included in
inline SVG or an embedded SVG object, it
would still nonetheless be “real” text that can be
selected and copied, or read by screen readers.
In contrast, when you include text inside the
<mask> itself (or inside a <clipPath> or
<pattern>), that text is just a decorative effect
on another element, and is not accessible.

As we mentioned at the start of the section, for performance rea‐
sons, you should never use a <mask> when a <clipPath> will do.
That means that most masks will have gradations in brightness. Gra‐
dients like those used in Figure 15-12 are one possibility. Another
possibility is to use a photograph—not as the masked graphic, but as
the mask itself!

Making a Stencil
One of the more interesting applications of masks is to create
dynamic duotones out of photographs or other images.

A duotone is an image in which the darkest color in the image is
mapped to one color (call it the background), the lightest is mapped
to the foreground color, and in-between brightnesses become in-
between colors. Depending on the colors you choose, the end result
can look like lightly tinted black-and-white photographs, or like
psychedelic posters.

You can create duotones by manipulating the colors in an <image>
directly with filters.1 But masks require less math.

You create the effect by including the photograph (as an <image>)
inside a <mask>. The mask effectively converts your photograph into
a stencil, through which your masked graphics will be painted. The
masked “graphic” is normally just a rectangle of solid color, painted
on top of a background (unmasked) rectangle of a contrasting color.

Hiding Behind Masks | 583

https://css-tricks.com/color-filters-can-turn-your-gray-skies-blue/
https://css-tricks.com/color-filters-can-turn-your-gray-skies-blue/

The colors in the image are automatically converted to grayscale,
based on their luminance. The dark parts in the image become
transparent parts in your masked rectangle, so your background
color shines through. The bright parts in your image become the
parts that are drawn in the color of the foreground rectangle.

To test this effect, we’re going to work with the photograph in
Figure 15-14. To show off all the color possibilities, we’re going to
arrange four copies of our duotone image in a figure.

Figure 15-14. The photograph that will be used to create the duotone

So should this mask use userSpaceOnUse or objectBoundingBox
units? It turns out, neither is ideal.

What we really need is a viewBox option, like we
used in Chapter 12 for including images inside
pattern fills. But that’s not yet available for
<mask>.

An objectBoundingBox mask distorts the mask when the shape
being masked isn’t square. Since our image isn’t square, our duotone
rectangles won’t be, either.

584 | Chapter 15: Less Is More

We could distort the image inside the mask in the reverse direction,
drawing it to exactly fit the 1×1 bounding-box region. Then we
would make sure that the <rect> dimensions match the correct
image ratio, so that the bounding-box scaling exactly cancels out the
image scaling. But (depending on the browser implementation), this
may mean that the browser applies the scale twice, using up extra
processing power and risking lingering distortions in the image.

A userSpaceOnUse mask avoids distortion, but means that we can’t
rely on the mask to scale our photograph and position it over each
masked rectangle. We need to directly size the <image> inside the
<mask> to the same size as the rectangles, and we need to position
them both in the same position of the coordinate system.

But we want four different copies of the image, in four different
positions. Do we need four different masks?

Figure 15-15. Duotone effects created from a photographic mask on
SVG rectangles

Thankfully, no. If we use transformations to position the different
duotones, we can draw all the rectangles—and the <image> in the
mask—at the origin, so the mask will align with all of them simulta‐
neously.

Hiding Behind Masks | 585

Example 15-3 gives the code, and Figure 15-15 shows the final
result.

Example 15-3. Creating a duotone photograph with a mask

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="4in" height="3in" viewBox="0 0 8 6">
 <title>Duotone Photographs from Masked Rectangles</title>
 <mask id="photo-mask" maskContentUnits="userSpaceOnUse">
 <image xlink:href="lilies.jpg" width="4" height="3"/>
 </mask>
 <g>
 <title>#FFC480 (cream) over #402020 (dark brown)</title>
 <rect width="4" height="3" fill="#402020"/>
 <rect width="4" height="3" fill="#FFC480"
 mask="url(#photo-mask)"/>
 </g>
 <g transform="translate(4,0)">
 <title>#402020 (dark brown) over #FFC480 (cream)</title>
 <rect width="4" height="3" fill="#FFC480"/>
 <rect width="4" height="3" fill="#402020"
 mask="url(#photo-mask)"/>
 </g>
 <g transform="translate(0,3)">
 <title>hotPink over royalBlue</title>
 <rect width="4" height="3" fill="royalBlue"/>
 <rect width="4" height="3" fill="hotPink"
 mask="url(#photo-mask)"/>
 </g>
 <g transform="translate(4,3)">
 <title>3-color radial gradient over indigo</title>
 <radialGradient id="pink-grad" r="0.6">
 <stop offset="0" stop-color="gold" />
 <stop offset="0.4" stop-color="hotPink" />
 <stop offset="1" stop-color="papayaWhip" />
 </radialGradient>
 <rect width="4" height="3" fill="indigo"/>
 <rect width="4" height="3" fill="url(#pink-grad)"
 mask="url(#photo-mask)"/>
 </g>
</svg>

The duotone on the upper left uses a dark brown background and
cream-colored foreground. Since the foreground paints the bright
parts of the mask, the result is a sepia-toned print of the photograph.

The duotone on the upper right reverses the colors. The dark fore‐
ground color is preserved in the bright parts of the photo, and the

586 | Chapter 15: Less Is More

light background color shows through in places where the photo
was dark: the final impression is that of an old photographic
negative.

The third sample (on the bottom left) slides into psychedelic terri‐
tory, with pink brights on blue background.

The fourth sample isn’t technically a duotone, but it’s there to prove
a point: once you create the “stencil” from your photograph, you
don’t have to fill it in with a solid color. Here, we use a radial gradi‐
ent as the fill on the foreground rectangle.

To make our sepia-toned photograph a little more authentic, we can
add a “vignette” effect. Early photographs had a characteristic dark
fading or fogging along the outer edges, which were not lit as effec‐
tively by the light from the curved lens. This round shadow is now
known as a vignette.

To recreate it, we need to combine our photograph mask with a
mask that uses a radial gradient. Because the content of a mask can
be any SVG graphic, we can most easily create compound masking
effects like this by masking the mask contents (the <image> in this
case).

Unlike with clipping paths, you cannot apply the
mask property to the <mask> element itself: it
needs to be on the mask contents.
(But, unlike with clipping paths, you can always
group the mask contents in a <g> if you want to
apply an effect to all of them!)

In Example 15-4 we create an artificial vignette by using a radial gra‐
dient in a bounding-box mask to fade out the corners of the photo‐
graph in our duotone mask. The transparent corners of that masked
image are treated the same as underexposed (dark) areas when the
second mask is used to create a sepia duotone, as shown in
Figure 15-16.

Hiding Behind Masks | 587

Figure 15-16. A sepia photograph, with vignette corners, created with
SVG masks

Example 15-4. Creating a duotone photograph with a mask

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="4in" height="3in" viewBox="0 0 4 3">
 <title>A Faded Photograph from a Masked Mask</title>
 <radialGradient id="dark-corners" r="0.6">
 <stop offset="0.7" stop-color="white" />
 <stop offset="1" stop-color="#222" />
 </radialGradient>
 <mask id="vignette" maskContentUnits="objectBoundingBox">
 <rect width="1" height="1" fill="url(#dark-corners)"/>
 </mask>
 <mask id="photo-mask">
 <image xlink:href="lilies-large.jpg" width="4" height="3"
 mask="url(#vignette)" />
 </mask>
 <g>
 <rect width="4" height="3" fill="#402020"/>
 <rect width="4" height="3" fill="#FFC480"
 mask="url(#photo-mask)"/>
 </g>
</svg>

588 | Chapter 15: Less Is More

More Online
For the most part, you use masks when you need subtle variations
or gradations in colors. As we’ve mentioned a couple times already,
clipping paths are much more efficient for trimming an element to
crisp edges.

But masks can also be useful to create an inside-out clipping path,
clipping a transparent window out of a solid shape.

Read more, with an example of an SVG window mask used to create
the appearance of video-filled text, in “Clipping on the Outside, with
a Mask”:

https://oreillymedia.github.io/Using_SVG/extras/ch15-video-
mask.html

Future Focus
Easier Image Masks

The shorthand mask syntax introduced in the CSS Masking module allows you
to directly reference an image file as a mask, without needing to nest it in a
<mask> element. Because CSS gradients are treated as image types in CSS, that
means you can directly use a CSS gradient function as a mask, too.

But it doesn’t stop there. You can layer multiple masks images together, and
control their size, position, and repeat patterns, using a syntax directly bor-
rowed from CSS layered backgrounds. That means that the mask property is
now a shorthand for other properties: mask-image, mask-size, mask-repeat,
and so on.

If you use the longhand properties (e.g., mask-image) to
set a CSS mask, then browsers that don’t support the
syntax will ignore them and use an SVG mask as a fall-
back. In contrast, if you use a url() reference in the
mask property, CSS parsers will accept that as a valid
syntax even if they don’t support references to image
files.

Hiding Behind Masks | 589

https://oreillymedia.github.io/Using_SVG/extras/ch15-video-mask.html
https://oreillymedia.github.io/Using_SVG/extras/ch15-video-mask.html

But here’s where it gets confusing: by default (to be consistent with the
-webkit- version of the property), image masks in CSS are alpha masks, not
luminance masks. That means that a white-to-black gradient or a JPEG photo-
graph won’t mask anything. You would need a solid-to-transparent gradient or
a partially transparent PNG image to have an effect.

So to create the gradient mask from Figure 15-11 with CSS, you would layer
three different CSS color-to-transparent gradients as nonrepeating images,
and size and position them with percentages so they would fit the image box.
The CSS code would be as follows:

img {
 mask-image:
 linear-gradient(to right, transparent, red),
 radial-gradient(ellipse 120% 156% at 120% -30%,
 transparent 70%, red),
 radial-gradient(ellipse 120% 156% at 120% 130%,
 transparent 70%, red);
 mask-size: 20% 100%, 80% 50%, 80% 50%;
 mask-position: left top, right top, right bottom;
 mask-repeat: no-repeat;
}

Again, you’ll often detect 1-pixel cracks between the
sections, caused by browsers rounding the size of each
image. Unfortunately, it’s not as easy to fix with CSS
alpha masks: although you can still make the gradients
overlap slightly, this can cause the overlap section to
be too opaque.

Applied to any of our fighter jet photos, this would provide the same masking
as the all-SVG approach. At the time of writing, the code works as-is in Firefox.
To get support in WebKit and Blink browsers, you would need to duplicate all
the mask properties with a -webkit- prefix. In Microsoft Edge and in older
browsers, you would just see the unmasked image.

Switching from luminance to alpha is easy enough for gradients—although
you can’t just paint over part of one gradient with another, like you can with
SVG masks.

Converting a photograph to an alpha mask is not so simple. Luckily, there’s an
better solution: the mask-mode property. It allows you to set, for each mask
image layer, whether it should be treated as an alpha mask or luminance mask.

590 | Chapter 15: Less Is More

The mask-mode property has three possible values:
alpha, luminance, or match-source. The default is
match-source, which means alpha masks for image lay-
ers and luminance by default for <mask> references.

For <mask> elements, you would also have the option to change the default
when you define the mask. The new mask-type style property also takes the
values luminance (the default) or alpha, but it is set on the <mask> element
itself. The mask-type determines the “source” mode when mask-mode is set to
match-source.

An even more interesting new property is mask-composite. It allows you to
combine multiple mask-image layers (including SVG mask layers) in such a
way that they add together, cancel each other out, or interact in other ways.
The options are:

• add, the default, meaning that solid areas in either mask are solid in the
result. It is the same as if the masks were converted to alpha masks and
then layered one on top of the other.

• subtract, meaning that solid areas in the top mask are cut away from
the lower mask layer.

• intersect, meaning that only areas that are solid in both mask layers are
solid in the result. This is the same as one mask masking the other.

• exclude, meaning that only areas that are solid in one mask but not the
other are solid in the composited result.

So to recreate the vignetted, sepia-toned photograph from Example 15-4,
without any SVG markup, we’ll need two mask layers: our photo of lilies and a
CSS gradient version of our SVG gradient mask. They’ll need to be in lumi-
nance mode, and they’ll need to use intersect compositing. We’ll also need
two overlapping solid-colored CSS layout boxes, with the mask applied to the
top layer.

The following CSS code creates that effect with a masked pseudoelement
inside a <figure> element, using intersecting luminance masks:

figure {
 background: #402020; /* dark brown */
 position: relative;
 width: 4in; /* or create the correct aspect ratio */
 height: 3in; /* using the padding-bottom hack */
 margin: 0;

Hiding Behind Masks | 591

}
figure::after {
 content: "";
 position: absolute;
 top: 0; left: 0;
 width: 100%; height: 100%;

 background: #FFC480; /* cream */
 mask-image: url(lilies.jpg),
 radial-gradient(60% 60%, white 70%, #222);
 mask-size: cover;
 mask-mode: luminance, luminance;
 /* the repetition is required for now,
 due to a Firefox bug */
 mask-composite: intersect;
}

The end result is a <figure> that looks identical to the <svg> from
Figure 15-16. Or it does in Firefox, anyway. The -webkit- version of masking
doesn’t support luminance masks, so at the time of writing this code doesn’t
yet work in other browsers. (But try it! Support may have improved by the time
you read this.)

When a complete image file is used as a mask, it is
allowed to be cross-origin. If you reference a same-
origin SVG file with a target (#) fragment, the browser
will first try to load it as a <mask> reference; if that fails,
the browser will use the SVG as an image mask.

The CSS Masking module also introduces a mask-border property, which has
various longhand subproperties inspired by the border-image properties. The
layout of the mask border images would work equivalently to border images,
but then the results would be used as masks. Just like border images, the
property is difficult to use (as currently defined) with SVG images or CSS gradi-
ents, because it assumes the images are a fixed size measured in pixels.

At the time of writing, there are no implementations of border masks that
match the standards (not even in Firefox). WebKit and Blink browsers support a
similar, nonstandard -webkit-mask-box-image property.

592 | Chapter 15: Less Is More

Summary: Clipping and Masking
Both clipping and masking achieve the same broad ends: restricting
the user’s view to a portion of a element. The element being clipped
or masked may be any SVG content, including vector graphics, text,
or embedded raster images. In the latest browsers, it can also be any
CSS layout box, so you can clip or mask HTML images or video.

The clipping paths and masks are distinguished by the way in which
they affect elements: a mask is an image layer, and it is applied to the
masked element pixel by pixel. Each pixel in the mask is converted
into an alpha (transparency) value that can have any intensity from
fully transparent to fully opaque. Those values are then used to
reduce the opacity of the corresponding pixel in the masked
element.

A clipping path is similar to a “1-bit” mask, where every pixel is
either fully transparent or fully opaque. However, because clipping
paths are defined with vector shapes, they can be much more effi‐
cient to implement, and they can affect pointer-events hit testing,
changing the interactive region of an element.

Clipping and masking share many similarities with filters, which are
the subject of Chapter 16. Clipping, masking, and filters are all layer
effects that can apply to a composited group or image, not just to
individual vector shapes. But while clipping and masking can only
alter that graphic layer to change its transparency, filters can twist
and remix the painted pixels in many different ways.

Summary: Clipping and Masking | 593

More Online
A quick reference to the elements introduced in this chapter is con-
tained in the “Clipping and Masking Elements” section of the
markup guide:

https://oreillymedia.github.io/Using_SVG/guide/
markup.html#masking

The clip-path and mask style properties (and the CSS3 mask long-
hands) are included with other styles in the “SVG Style Properties”
guide:

https://oreillymedia.github.io/Using_SVG/guide/style.html

A reference of the shape functions for clip-path is provided in the
“CSS Shape Functions” guide:

https://oreillymedia.github.io/Using_SVG/guide/css-shapes.html

594 | Chapter 15: Less Is More

https://oreillymedia.github.io/Using_SVG/guide/markup.html#masking
https://oreillymedia.github.io/Using_SVG/guide/markup.html#masking
https://oreillymedia.github.io/Using_SVG/guide/style.html
https://oreillymedia.github.io/Using_SVG/guide/css-shapes.html

CHAPTER 16

Playing with Pixels
Filters and Blend Modes

Vector graphics are defined with mathematics. That tends to mean a
very geometric design style. Since SVG is a 2D vector graphics for‐
mat, it also means a very “flat” design style.

Gradients and masks offered the first steps toward softening those
crisp, precise geometric lines. Filters break them down completely.

Filters are instructions for modifying a rendered layer of a graphic
or web page by performing calculations on its individual pixel val‐
ues. When applied to vector shapes or text elements, SVG filters
allow you to add blur or jitter to shake up the smooth edges. When
applied to embedded images, filters can also dynamically adjust
color and contrast.

SVG filters are incredibly powerful. By some measures, they are the
most complex aspect of SVG.

Not only are there many possible filter operations to choose from,
but there are countless possible combinations. Filter instructions
can be chained together, so the result of one filter becomes the input
of another. Some filter operations combine multiple inputs, so you
can split and recombine the chain of filtered graphic layers in com‐
plex flow-chart arrangements.

That complexity has a cost. The SVG filter syntax can make some
simple filters unnecessarily obscure. The sheer number of options
can scare off some developers who don’t know where to start.

595

The open-ended nature of SVG filters also makes it more difficult
for browsers to optimize filter processing. Modern graphical pro‐
cessing unit (GPU) chips can perform some filter operations effi‐
ciently, but not others, and reading data back from the GPU to the
main software can cancel out the performance benefits.

New CSS shorthand functions have been designed to reduce these
barriers, making it easier to define simple, easily optimized filter
effects. However, the shorthands only represent a slice of what is
possible with the full SVG filter syntax.

This chapter introduces the most common SVG filter elements, and
compares them with the shorthand filter convenience functions for
the same operations. By necessity, it is only a brief overview of what
filters can do, focusing on the big concepts and some unique fea‐
tures. The full possibilities of SVG filters are only limited by the cre‐
ativity of the developer—and the processing speed of the browser.

This chapter also describes the mix-blend-mode property. It replaces
a feature of SVG filters that was never well supported in web brows‐
ers: the ability to alter how the filtered element is combined with its
backdrop.

The Filter Framework
Just like masks and clipping paths, filters were defined in SVG as a
matching pair of element and style property. The <filter> element
defines a filter effect, which is referenced in the filter style prop‐
erty or presentation attribute of another element:

<filter id="wow">
 <!-- filter contents here -->
</filter>
<style>
 .wow-me { filter: url(#wow); }
</style>
<path d="..." filter="url(#wow)" />

Just like masks and clipping paths, the url() references can theoret‐
ically be to a different file, but browser support isn’t great and cross-
origin restrictions apply.

Just like masks and clipping paths, filters have expanded from SVG
to all of CSS. The Filter Effects module redefines the filter prop‐

596 | Chapter 16: Playing with Pixels

erty to apply to CSS layout boxes as well as SVG graphics. It also
defines the new shorthand functions.

Just like masks and clipping paths, implementa‐
tion of the new filter options has been inconsis‐
tent. Some browsers implemented SVG filters on
HTML elements before they implemented the
shorthands, and some implemented the short‐
hands to apply to HTML elements before imple‐
menting them for filtering SVG elements. And
some browsers initially only supported prefixed
versions.
At the time of writing (mid-2017), filter sup‐
port in the latest browser versions is as follows:

• Blink/Chrome and WebKit/Safari: both
shorthand functions and url() references
on HTML elements, only url() references
on SVG elements

• MS Edge: only shorthand functions on
HTML elements, only url() references on
SVG elements

• Firefox: shorthand functions or url() ref‐
erences everywhere, but with a few bugs in
the details

These combinations mean that @supports tests
are not reliable. It also means that you need to
think carefully about fallback, and use different
approaches for SVG elements versus CSS layout
boxes.
All the latest browsers also support the -webkit-
filter prefixed property in the same ways as
the unprefixed version. But please, only add pre‐
fixes for backward compatibility, and use an
automated preprocessor script to do it.

Unlike masks and clipping paths, the content of a <filter> element
isn’t defined with SVG graphic elements. Instead, a <filter> con‐
tains filter primitive elements, which define the individidual pro‐
cessing instructions.

The Filter Framework | 597

There are 16 different filter primitive elements in SVG 1.1, some of
which have their own child elements. This can make filters some‐
what overwhelming at first, since each filter primitive has its own
attributes to learn, and many of them are defined in very mathemat‐
ical ways.

All the filter primitive elements have names
starting with fe, like <feFlood> or <feMerge>.
The fe stands for “filter element.”

But you don’t need to know all the filter primitives. You can get
started with just one.

A Basic Blur
One of the most effective single-primitive filters is the Gaussian
blur. A blur is useful on both vector shapes and photographs. On its
own, it creates either an “out of focus” effect or a fast-motion swipe
effect. But blurs are also an important first step in more complex fil‐
ters, including drop shadows and glows.

The “Gaussian” in a Gaussian blur refers to the
Gaussian statistical distribution, named after
19th-century German mathematician Carl Frie‐
drich Gauss. You might know the Gaussian dis‐
tribution as the normal distribution, or the bell
curve.
In statistics, a Gaussian distribution represents
the probability of achieving different outcomes
when there is random and unbiased variation
around an expected (or mean) value.
In graphics, a Gaussian blur is one where the
color value of each pixel is distributed among
neighboring pixels, by amounts that approxi‐
mate a Gaussian distribution. The “expected”
value in this case is that the pixel’s color doesn’t
move at all.

598 | Chapter 16: Playing with Pixels

A blur is defined in SVG with the <feGaussianBlur> element. The
<feGaussianBlur> element must be a child of a <filter> element.
It is the <filter> element that gets the id you reference in the
filter property:

<filter id="blur">
 <feGaussianBlur />
</filter>

This is technically a valid filter already. But it won’t have a visible
effect. You need to tell the browser how much blurring to apply. By
default, it doesn’t apply any.

The amount of blur created by an <feGaussianBlur> element is
determined by the stdDeviation attribute. Its value is either one or
two numbers (separated with whitespace or a comma), which can‐
not be negative. The default is 0.

The numbers represent a length in SVG user
units (px), but they must be given as unitless
numbers, not lengths with units.

If you give a single value for stdDeviation, you will get a uniform
blur in all directions. If you give two values, the first is the amount
of blur in the horizontal direction and the second is the amount of
blur in the vertical direction.

Example 16-1 defines two blur filters: a normal bidirectional blur fil‐
ter, and a single-direction blur that smears colors in the vertical
direction without blurring them horizontally. Both filters are then
applied to a photograph and to SVG text, as shown in Figure 16-1.

The Filter Framework | 599

Figure 16-1. Blur filters applied to SVG text and an embedded photo:
(top) unfiltered, (middle) bidirectional Gaussian blur, (bottom) verti‐
cal motion blur

Example 16-1. Defining bidirectional and unidirectional blur effects

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 viewBox="0 0 400 360" width="4in" height="3.6in">
 <title>Blur Filters, bi-directional or vertical only</title>
 <filter id="blur">
 <feGaussianBlur stdDeviation="1.5"/>
 </filter>
 <filter id="vertical-smear">
 <feGaussianBlur stdDeviation="0 3"/>
 </filter>

 <text id="t"
 font-size="60px" font-family="Stencil, Stencil Std,
 Copperplate, sans-serif"
 fill="#CDB" stroke="#352"
 stroke-width="6px" paint-order="stroke"

600 | Chapter 16: Playing with Pixels

 x="5" y="107" dy="-0.9em" text-anchor="start"
 >Fuzzy
 <tspan dy="0.9em" x="195" text-anchor="end"
 >Text</tspan></text>
 <image id="i"
 x="200" y="10" width="200" height="100"
 xlink:href="sleepy-siamese.jpg"/>

 <use xlink:href="#t" y="120" filter="url(#blur)" />
 <use xlink:href="#i" y="120" filter="url(#blur)" />

 <use xlink:href="#t" y="240" filter="url(#vertical-smear)" />
 <use xlink:href="#i" y="240" filter="url(#vertical-smear)" />
</svg>

The bidirectional Gaussian blur (with only one stdDeviation value)
creates a soft, fuzzy, out-of-focus effect. The vertical-only blur cre‐
ates the blur effect of something moving quickly up and/or down.
This is known as a motion blur effect. Although SVG doesn’t have a
general-purpose motion blur option (you can’t create a one-
direction blur on an angle other than horizontal or vertical), with
careful use of transformations you can use the two-value
<feGaussianBlur> effect for that purpose.

Be careful with motion blur effects. If the
motion blur effect doesn’t agree with the actual
motion of an element (like here, where the ele‐
ments aren’t actually moving) it sends conflict‐
ing messages to your brain, and can trigger
vestibular disorders.
In contrast, a motion blur carefully applied to an
animated item can help smooth the appearance
of the animation, making it feel much more nat‐
ural.

A larger stdDeviation value means more blur. A smaller
stdDeviation is less blur, and of course a 0 value for stdDeviation
is no blur at all. You can pick a stdDeviation value with trial and
error in your web browser. But what do the numbers mean?

stdDeviation is short for standard deviation. In statistics, the stan‐
dard deviation of a data set is a measure of how much variation
there is from the mean. It is measured in the same units as whatever
the statistics are measuring. For the Gaussian blur, the statistic is the

The Filter Framework | 601

x- and y-position of the pixel’s color value. The standard deviation is
a measure of how far away from the initial position that color ends
up.

Figure 16-2 shows the normal (Gaussian) distribution as a chart.
The x-axis is measured in the number of standard deviations from
the mean; the y-axis is the probability. The majority of the values
(68%, to be precise) are within one standard deviation from the
mean. 95% will be within two standard deviations from it, and
99.7% will be within three standard deviations.

Figure 16-2. The normal distribution, measured as a probability distri‐
bution (y) relative to standard deviations offset from mean (x) (adap‐
ted from a graphic by Wikimedia commons contributor Geek3)

In a Gaussian blur, that means that 95% of the color from the origi‐
nal pixel will stay within a circle with a radius of two standard devia‐
tions, centered on the original pixel. Nearly all of the color will stay
within three standard deviations. In fact, most Gaussian blur algo‐
rithms don’t bother calculating any effects further than three stan‐
dard deviations.

Of course, you don’t usually blur a single pixel. You blur a picture.
The final color of each pixel in the blurred result is the sum of the
color that didn’t get blurred away from the original pixel, plus the
color that spilled over from all the neighboring pixels.

The uniform blur in Example 16-1 used stdDeviation="1.5", or
1.5px. That means that most (95%) of the blurring effect is spread
within a radius of 3px (two standard deviations) from the original.
This is enough spread to make it obviously blurred, without com‐
pletely obscuring the original shape.

602 | Chapter 16: Playing with Pixels

CSS Versus SVG
Blurred Elements Versus Blurred Shadows

Even before the introduction of shorthand filter functions, one type of blur
existed in CSS: blurred shadows. The box-shadow and text-shadow proper-
ties both include a “blur radius” value.

The shadow blur radius is not the standard deviation. Instead, it is twice the
standard deviation, and therefore covers most of the blurred color.

That said, the exact mathematical definition of the blur radius in the shadows
wasn’t defined until after browsers had implemented them. There may be
slight discrepancies in older browsers.

The CSS shorthand filter functions include a drop-shadow() function, which
accepts parameters in the same form as text-shadow. However, the Filter
Effects module was originally unclear about whether the blur-amount value in
a drop-shadow filter should be treated as a standard deviation or as a shadow
radius. Since an <feDropShadow> element was created at the same time, and
it did use stdDeviation explicitly, that’s how the browsers implemented it.
That means you get half as much blurring for drop-shadow() as you do for
the same values in text-shadow or box-shadow.

Fast Filters from CSS Alone
Blurs are popular, so it’s no surprise that Gaussian blurs are included
in the shorthand filter function. The url(#blur) filter from
Example 16-1 is equivalent to the following shorthand declaration:

filter: blur(1.5px);

The value inside the blur() function is the standard deviation, as a
length with units.

There is currently no shorthand function for a nonuniform blur
(one with a different standard deviation for the x and y directions).
This reflects the fact that uniform blurs are more popular, but also
that many GPUs have optimized pathways for uniform blurs (but
not for single-direction blurs).

In general, browsers that have implemented the shorthand filters
have integrated them with GPU processing where available. Brows‐
ers are starting to optimize their SVG filter implementations to use

The Filter Framework | 603

the GPU where possible, but some SVG filters can be noticeably
slower than the shorthands in animated web pages.

The shorthand blur() function isn’t just less code to write—it also
adds new functionality! Because the blur’s standard deviation is part
of the CSS declaration, it can be animated or transitioned from CSS.

For example, the following code blurs an image within a link until
the user hovers over or focuses it, at which point the blur clears up
in a smooth transition:

img {
 filter: blur(3px);
 transition: filter 0.3s;
}
img:hover, a:focus img {
 filter: none;
}

This will be treated as a transition from blur(3px) to blur(0px) in
supporting browsers, with the standard deviation changing accord‐
ing to your transition timing function. All of the filter functions
have a “none” equivalent that is used for transitioning.

Short and simple transitions are good, but test
carefully before applying significant, ongoing
animations with filters, especially to large graph‐
ics: they can be huge performance killers! This
includes animating the appearance of elements
that are being filtered, since the filter results
need to be recalculated after each change.

If you want to blur an HTML element like an , you can now
get pretty good browser support with just the shorthand (and
slightly better if you duplicate it with the -webkit- prefix). But at
the time of writing, if you want to blur an SVG element—whether it
is inline SVG or in an SVG document—you are better off referenc‐
ing an SVG <filter> element.

The only exception is the <svg> element that is the root element or a
direct child of HTML elements: it has a CSS reference box, and is
therefore treated like other CSS layout elements by the browsers that
have different filtering support for SVG. (This also means that—for
now—you should avoid applying SVG filters on the root <svg>
element.)

604 | Chapter 16: Playing with Pixels

Unfortunately, you can’t just define a set of SVG filters in a separate
file and reference them from your CSS. Theoretically, that’s allowed,
but Firefox is the only browser that currently supports it. Similarly,
Firefox is the only browser with reliable support for SVG filters
specified as data URIs. And Firefox is the one we don’t need fall‐
backs for any more.

What’s worse: if browsers cannot find or apply a filter you specify
with url() reference, the filtered element disappears!

Based on SVG 1.1 error-handling rules, most
browsers will not draw an element at all if it has
a filter that causes an error.
The latest specs instead recommend that the
erroneous filter be ignored, and that the element
should be drawn without the filter.

So, for best support, when filtering individual SVG elements, use
SVG filter markup in the same document.

Older versions of Internet Explorer had a
(unprefixed, but nonstandard) filter property.
The syntax is completely unlike the new filter
shorthands—or any standard CSS syntax, in any
property.
The old IE filter isn’t supported in any
browser that supports SVG filters (that is, IE 10
and later). But it’s one more reason why testing
for browser support of filters is painfully
difficult.

Future Focus
Filtering Images Within CSS

The Filter Effects module also introduces a filter() function syntax to CSS.
The function would modify a CSS image object being used in another style
property.

The filter() function takes two parameters:

The Filter Framework | 605

• a CSS image (a url() of an image file, or a CSS gradient)

• a list of filter effects (shorthand functions or references to SVG filters) to
apply to that image

The result is another CSS image, so that filter() could be used anywhere an
image can be used in CSS.

For example, this code would load a background photo, blur it, make it half-
transparent, then layer it over a mistyRose background color:

background: filter(url(photo.jpg), blur(2px) opacity(0.5))
 0 0/cover mistyRose;

The filter() image function is not yet supported in browsers.

Mixing Multiple Filter Operations
Beyond browser support issues, why would you use SVG filter
markup instead of shorthands? Because the full SVG syntax lets you
do things the shorthands can’t.

We already mentioned one example: unidirectional motion blurs are
currently only available with <feGaussianBlur>. Most of the other
shorthands are similarly limited to common options for each primi‐
tive. This chapter focuses on some of the less common operations. If
you need to, you can look up the markup equivalent of a
contrast(150%) or saturation(70%) filter in the Filter Effects spec.

But the real power of SVG filters comes when you combine multiple
filter primitives to create compound effects. Multistep filters can
mix, modify, and recombine the vector graphics in surprising ways.

You can find lots of interesting filter examples online, and there are
many available as presets in SVG software. The purpose of this
chapter is to give you just enough knowledge to start tweaking and
remixing those filters to your own needs—and maybe creating new
ones from scratch.

606 | Chapter 16: Playing with Pixels

https://drafts.fxtf.org/filters/

If you’re using Adobe Illustrator or other soft‐
ware, pay attention to the difference between
true SVG filters, which can be exported into
standard SVG, versus other effects which need
to be converted into images for export.

The Chain of Commands
Filters convert input images to output or result images. Each filter
primitive has its own inputs and outputs.

You can chain filter primitives together. If you include multiple filter
primitive elements as children of the <filter>, the output from one
is passed (by default) as the input to the next in a straight chain.

The output of the final filter primitive in the filter is the final
appearance of the element. Well, not quite final: clipping, masking,
and hidden overflow all apply after filters.

So the following blur-desaturate filter blurs an element (with a
2px standard deviation) and then desaturates the blurred image (to
30% of the original color saturation):

<filter id="blur-desaturate">
 <feGaussianBlur stdDeviation="2" />
 <feColorMatrix type="saturate" values="0.3"/>
</filter>

Figure 16-3 shows the steps, from the original image to the blur.

For this particular case, the results would look fairly similar if you
desaturated first and blurred second, but that’s not true in general—
the order of operations matters in filters.

Mixing Multiple Filter Operations | 607

Figure 16-3. A two-step SVG filter applied to a photograph: (left)
unfiltered, (middle) after the first primitive is applied, (right) final
result

The <feColorMatrix> element is another of the most common filter
primitives. It comes in four type variations, each of which has a dif‐
ferent values requirement:

• type="saturate" increases and decreases saturation, while pre‐
serving luminance; values is a positive number where 1 means
no change, 0 means complete desaturation (grayscale), and val‐
ues greater than 1 increase saturation. There is an equivalent
saturate() shorthand that takes either numbers or percentages
(100% is no change), and also a grayscale() shorthand where
the values are reversed: 100% is fully gray and 0% is no change.

• type="hueRotate" spins every color around the color wheel,
adjusting the lightness to maintain constant luminance while
changing hue; values is a number representing the angle
between hues, in degrees. For the shorthand hue-rotate(), you
need to specify the angle unit explicitly.

• type="luminanceToAlpha" performs a conversion like the one
used in luminance masks, converting colors to degrees of trans‐
parency; values is ignored.

• type="matrix" performs complex color manipulations using
matrix algebra; values is a list of 20 numbers.

608 | Chapter 16: Playing with Pixels

For any filter primitive element that adjusts colors, the color-
interpolation-filters property (or presentation attribute) can
change the calculations. To get consistent results with the equivalent
shorthand filters, set it to sRGB (the default is linearRGB). The prop‐
erty is inherited, so you can set it once on a <filter>, or even on
the <svg> as a whole.

The final colors in Firefox (version 54, anyway)
are noticeably different for some color effects,
regardless of whether you use the longhand or
shorthand formats, or whether you set color-
interpolation-filters. The problem shows
up most noticeably on the hue-rotate,
saturate, and grayscale filters.

You can also chain filter operations together when you are using
shorthand filter functions, by giving a list of functions as the filter
value. So in shorthand notation, the blur-desaturate filter can be
written in one line:

filter: blur(2px) saturate(30%);

You can also include url() references to SVG
markup filters within the filter operations list.
Or at least, you can when more browsers sup‐
port both the new shorthand filter syntax and
SVG markup filters on the same elements…

There is no formal limit to the number of filter operations you can
chain together in a row, although browsers may have their own
practical limits. But at a certain point, there’s not much more you
can do to the graphic by adding another filter function to the chain
that you couldn’t do by changing one of the other functions earlier
in the list.

Chaining outputs to inputs is the default behavior. For the short‐
hands, it’s the only behavior: a straight chain from the original
graphic appearance, through the filter list, to the final result.

For SVG markup filters, however, you can mix things up.

Mixing Multiple Filter Operations | 609

Mixing and Merging
By default, the input to the first filter primitive is the source graphic
—the rendered result of whatever element has the filter property.
That includes all its child elements, layered together, after any filters,
clipping, and masking are applied to them.

The default input to every other filter primitive is the output (result)
from the previous primitive.

You can change the input to a filter primitive by giving it an in
attribute. So this primitive blurs the SourceAlpha layer:

<feGaussianBlur stdDeviation="2" in="SourceAlpha" />

The value of in is either a predefined keyword or a name you have
given to the result of a previous primitive in the filter.

There are two keyword inputs that are currently supported in all
web browsers:

• SourceGraphic is the painted result of the element being fil‐
tered, before any filters are applied (in other words, the default
input for the first primitive).

• SourceAlpha is the source graphic with all colors set to black, so
only the transparency outline remains.

The other keywords defined in the specifications are
BackgroundImage, BackgroundAlpha, FillPaint, and StrokePaint.
None of them are currently supported reliably cross-browser. Inter‐
net Explorer and Microsoft Edge support the background inputs
(but they are buggy in IE).

If you’re using filters generated by Adobe Illustrator or Inkscape,
make sure they aren’t using these inputs. Browsers either treat
unknown keywords as a transparent black layer (sometimes not too
bad a result) or as an error stopping filter processing (a very bad
result: the filtered element disappears).

The keyword names are case-sensitive, and don’t
follow the normal camel-casing rules. in=

"sourceGraphic" won’t work.

610 | Chapter 16: Playing with Pixels

The other option for naming inputs is to use a custom named out‐
put from a previous step.

You give a filter output a name by setting it in a result attribute. So
the output of the following primitive would be named “blur” for the
purpose of other primitives’ inputs:

<feGaussianBlur stdDeviation="2" result="blur" />

The result name is a case-sensitive identifier. It
should be unique within a given <filter>, but
doesn’t have to be unique within the document.
The Filter Effects module says it should be a
valid CSS identifier (no whitespace, and doesn’t
start with a number), but browsers seem to
accept any string. Just don’t use any of the key‐
words as your custom result names—even the
keywords that don’t have good browser support.

Using named inputs and outputs, we can rewrite the blur-

desaturate filter from the previous section, but with the inputs
made explicit:

<filter id="blur-desaturate">
 <feGaussianBlur in="SourceGraphic"
 stdDeviation="2"
 result="blur" />
 <feColorMatrix in="blur"
 type="saturate" values="0.3"
 result="final" />
</filter>

If all filter primitives were like <feGaussianBlur> and
<feColorMatrix>, and only accepted one input, the ability to name
your inputs and results wouldn’t be that interesting. The usefulness
comes from the filter primitives that accept a second input, indicated
with an in2 attribute.

Three filter elements use an in2 attribute; we’ll have examples of
each later in the chapter:

• <feBlend> combines the two inputs by performing mathemati‐
cal operations on the color channels (red, blue, and green) on
each pixel, after adjusting for opacity of that pixel.

Mixing Multiple Filter Operations | 611

• <feComposite> combines the inputs based on opaque versus
transparent areas, or by applying a specified set of mathematical
calculations to all four channels (red, green, blue, and alpha)
equally.

• <feDisplacementMap> moves the pixels in one input by an
amount determined by the color of the pixel from the other
input, creating distortion effects.

If in2 isn’t specified, the default input for the element is used, so you
often only need to specify either in or in2.

In addition, the <feMerge> primitive combines any number of
inputs, each of which is specified with the in attribute on a child
<feMergeNode> element. If any <feMergeNode> doesn’t have an in
attribute, it gets the default input for its parent <feMerge> primitive.

The different inputs to <feMerge> are layered
together from bottom to top, just as if they were
sibling images in the document.

Example 16-2 uses <feMerge> to create a filter that merges the
source graphic over the top of multiple copies of a blurred version of
its alpha channel shadow. The filter is then applied to our heart icon,
drawn 180px tall, as shown in Figure 16-4.

Figure 16-4. A heart surrounded by a dark shadow

612 | Chapter 16: Playing with Pixels

Example 16-2. Creating a blurred shadow by merging filter layers

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 viewBox="0 0 200 200" width="2.5in" height="2.5in">
 <title>Dark Blurred Halo</title>
 <filter id="halo-dark">
 <feGaussianBlur in="SourceAlpha" stdDeviation="5" />
 <feMerge>
 <feMergeNode />
 <feMergeNode />
 <feMergeNode />
 <feMergeNode in="SourceGraphic" />
 </feMerge>
 </filter>

 <use xlink:href="../ch10-reuse-files/suits-symbols.svg#heart"
 fill="mediumVioletRed" filter="url(#halo-dark)"
 x="10" y="10" width="180" height="180"/>
</svg>

The result is the original shape surrounded by a blurred black
shadow. The extra layers make the shadow darker than the blur
would have otherwise created.

The size of the icon matters, because the stan‐
dard deviation of the blur is (by default) meas‐
ured in user-space units.
When the filter is applied on a reused symbol
like this, the user space is that of the <use> ele‐
ment with the filter, not of the scaled <path>
inside—because a filter is a layer effect, applied
to the <use> directly.

To finish off the discussion of inputs, there are a few primitives that
ignore their in value, creating completely new image layers:

• <feFlood> creates a uniform layer of a single color, based on its
flood-color and flood-opacity presentation attributes.

• <feImage> loads a separate image file (or, with limited support,
clones an element from the document) as a new filter layer.

• <feTurbulence> creates pseudorandom patterns of swirling
color.

Mixing Multiple Filter Operations | 613

You can then blend or composite these onto your source graphic or
other filter primitive results, to add colors or textures.

Example 16-3 adds an <feFlood> and <feComposite> filter primi‐
tives to Example 16-2, to turn that dark shadow into a golden glow.
Figure 16-5 shows the result on a dark background.

Figure 16-5. A heart with a golden glow

Example 16-3. Creating a golden glow by compositing a flood color on
a shadow layer

<filter id="halo-gold">
 <feGaussianBlur in="SourceAlpha" stdDeviation="5"
 result="blur" />
 <feFlood flood-color="#fe7" />
 <feComposite in2="blur" operator="in" />
 <feMerge>
 <feMergeNode />
 <feMergeNode />
 <feMergeNode />
 <feMergeNode in="SourceGraphic" />
 </feMerge>
</filter>

By default, <feComposite> acts like <feMerge> with only two inputs,
layering the in on top of in2. The operator attribute defines how
those two layers are combined, or composited, together. The default
operator, over, means the first layer on top of the second.

614 | Chapter 16: Playing with Pixels

Using operator="in" turns the compositing step into an alpha-
masking operation: you get the first input (the yellow layer from
<feFlood>) masked by the alpha channel of the second input (the
blurred shadow). In other words, you turn the shadow gold, making
the heart appear to glow from behind.

The in operator name stands for inside—you
get the colors of the first layer, but only when
they are inside the opaque regions from the sec‐
ond layer. Try not to confuse it with the in and
in2 attributes (which are inputs).

With the addition of the <feOffset> filter primitive—which trans‐
lates the filter input layer according to distances set in its dx and dy
attributes—you have all the makings of a drop-shadow filter. Drop
shadows are so common that there’s a shorthand drop-shadow()
function for that—and a new <feDropShadow> primitive to match.
But the same techniques can be applied to less common solutions.

Building a Better Blur
The basic all-direction blur we introduced in Example 16-1 blurs
both the colors within a graphic and the edges of the graphic.
Figure 16-6 shows the results again, so you don’t have to flip back to
the beginning.

Figure 16-6. A basic blur filter applied to SVG text and an embedded
photo

The text is indeed “fuzzy,” and the edges of the <image> reveal that
this is a blurred image element, and not just a blurry photograph.

Sometimes this is the effect you want. Sometimes it isn’t.

Mixing Multiple Filter Operations | 615

The “dissolving edges” result of blurring a photograph is such a
common complaint that the Filter Effects module adds a new
edgeMode attribute that allows you to control it. A value of
duplicate would pad the edges with the nearest color. A value of
wrap would treat the input graphic as if it were a pattern tile, and
blur from one tile to the next. The shorthand blur() function is
supposed to use duplicate mode.

At the time of writing, WebKit/Safari is the only
browser to have implemented edgeMode, and
they treat “wrap” as equivalent to “duplicate.”

So we’ll have to fix the blurry edges ourselves.

We can use the <feComposite> in operation to remove the blurred
bits that have strayed outside the outline of the original graphic:

<filter id="blur-trimmed">
 <feGaussianBlur stdDeviation="1.5" />
 <feComposite in2="SourceAlpha" operator="in" />
</filter>

Figure 16-7 shows what that looks like.

Figure 16-7. A blur filter on SVG text and a photo, with the result
trimmed to the original alpha outline

It’s better, but the edges are still a little fuzzy. We’ve cleaned up the
blurred color that spilled off the edges, but we haven’t replaced the
color that was lost.

One option would be to composite our blurred layer on top of a
copy of the source. That looks pretty good for the text outlines. But

616 | Chapter 16: Playing with Pixels

in a photo, especially with a large blur radius (or if you zoom in), it
can be obvious that the edges aren’t as blurry as the rest.

Example 16-4 shows another possible solution, using an
<feMorphology> filter to pad the edges of the blur result, before
trimming it to fit within the original outline. Figure 16-8 shows the
final result.

Figure 16-8. Text and a photo in which the edges have been reconstruc‐
ted after blurring

Example 16-4. Blurring colors but not edges

<filter id="blur-trimmed-filled">
 <feGaussianBlur stdDeviation="1.5" result="blur"/>
 <feMorphology radius="3" operator="dilate" />
 <feMerge>
 <feMergeNode />
 <feMergeNode in="blur" />
 </feMerge>
 <feComposite in2="SourceAlpha" operator="in" />
</filter>

The first step is still a basic blur of the source graphic (as the
default in to the first primitive). However, we now give the
result a name (blur) so that we can reference it later in the filter.

The result of the blur is also passed to the following
<feMorphology> filter primitive (which does not specify an in
attribute). An <feMorphology> filter with the dilate operator—
among other effects—causes transparent pixels to become solid
if they are within radius units of a solid pixel. Here, the radius
is twice the blur stdDeviation, so we should more than com‐
pensate for the dissolved edges.

Mixing Multiple Filter Operations | 617

An <feMerge> primitive layers the <feMorphology> result (as
the default in) underneath the original blur (identified by
name).

Finally, an <feComposite> in operation clips those combined
layers to include only the pixels that are within the original
alpha outline.

Even when edgeMode is fully implemented—and able to preserve
edges when filtering rectangular shapes, like the embedded photo—
the <feMorphology> approach would still be useful to reconstruct
edges of text and vector shapes.

How does it work? The name “morphology” refers to the change in
shape. But an <feMorphology> filter is a very particular change in
shape, created by expanding pixels into rectangles.

The <feMorphology> element has two modes, which are specified as
the value of its operator attribute:

• erode (the default) sets each pixel to its darkest or most trans‐
parent neighbor, as measured separately for the red, green, blue,
and alpha channels. This causes shapes to crumble away at the
edges, while still maintaining—approximately—strokes around
the edge.

• dilate sets each channel of each pixel to match the brightest or
least transparent value from its neighbors. This causes edges to
expand into transparent areas.

The amount of erosion or dilation (the distance at which a pixel is
considered a “neighbor”) is set by a radius parameter, as a number
of user units (px). Similar to the standard deviation in blurs, you can
give two radius numbers to have different horizontal and vertical
values.

Although it’s called a radius, the effect is rectangular, not elliptical.
Whether eroding or dilating, the result of applying <feMorphology>
to a finely detailed image tends to look like someone painted a por‐
trait using a paint roller, with lots of big blocks of color and very few
fine details, as shown in Figure 16-9.

618 | Chapter 16: Playing with Pixels

Figure 16-9. A photo modified with an <feMorphology> filter: (top)
with an erode operator, (bottom) with a dilate operator

Note that both <image> elements in Figure 16-9 are the same size,
before filtering.

When <feMorphology> is applied to smooth gradients and blurs, the
effect is more subtle. Edges and bright spots expand or contract,
without changing the intermediary colors too much.

Morphology applied to photographs creates a very specific effect,
with not a lot of subtleties. But it’s the only option we have in filters
for scaling up or down a shape—as rough as it is—so it’s not surpris‐
ing that it has many uses.

Mixing Multiple Filter Operations | 619

Morphing Shapes into Strokes
SVG strokes can create many effects (have you read Chapter 13
yet?), but they can’t do everything. One limitation of strokes is that
there is no “group” stroke effect, to stroke the composite outline of a
set of shapes.

For text, this ruins many desired effects. Each letter in a text element
is stroked individually. Under normal circumstances, characters
with strokes that are brought closer to each other will overlap, not
merge. If you have cursive letters that are supposed to look continu‐
ous, stroking them reveals the seams.

Even paint-order can’t help you, as individual letters are still pain‐
ted one after the other in most browsers. You could merge all the
letters into a single <path> in graphics software, but that ruins the
accessibility and editability of the text.

By using <feMorphology> to dilate the joined letter shapes and then
compositing the results back with the original, we can create a rough
outline around the combined shape. Example 16-5 gives the code
applied to some comic-book text, and Figure 16-10 shows the result.

Figure 16-10. Merged letters with a shared “stroke”

Example 16-5. Creating a group outline with <feMorphology>

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 viewBox="0 0 120 60" width="4in" height="2in">
 <title>Merge Stroke with feMorphology</title>
 <filter id="outline">

620 | Chapter 16: Playing with Pixels

 <feMorphology in="SourceAlpha"
 operator="dilate" radius="3"/>
 <feComposite in="SourceGraphic"/>
 </filter>
 <style>
 @font-face { /* omitted */ }
 text {
 font-size: 60px;
 font-family: BadaboomBB, Impact, sans-serif;
 text-anchor: middle;
 }
 </style>
 <rect fill="aqua" width="100%" height="100%" />
 <text fill="yellow" filter="url(#outline)"
 x="50%" y="50%" dy="0.35em"
 dx="0, -10, -10, -12">
 BOOM
 </text>
</svg>

The filter starts with the SourceAlpha outline of the filtered
shape (which will be the unstroked text). The dilation morphol‐
ogy filter converts any transparent pixels that are within 3px (in
the scaled coordinate system) of the shape’s edge into opaque
pixels.

The <feComposite> primitive, with the default over operator,
layers two inputs over one another. The primary (in) input
(here, the SourceGraphic) goes on top of the secondary (in2)
input. Since in2 isn’t specified on the element, it defaults to the
result of the previous primitive—the expanded alpha outline.

The <text> that we are filtering is styled to use a web font, but
the really important detail is the dx attribute. The negative val‐
ues cause subsequent letters to be pulled back from their normal
relative position, so that they overlap.

Filters on text, like this, are particularly useful due to the fact that
the text remains readable, selectable, and accessible for both users
and search engines. The visual effect itself remains easily editable if
you need to change the text. This makes the technique far more
powerful and adaptable than “baked in” effects created in an image
editor and saved as a bitmap image or SVG paths.

Mixing Multiple Filter Operations | 621

For text in particular, filters are also an improvement over many
vector effects that rely on <use> copies. Multiple <use> copies of text
can be interpreted as repeated words by screen readers, or when
copying and pasting. Within the filter, you can copy the image of the
text as many times as you require, without duplicating the text itself.

For best support, only apply filters on complete
<text> elements (or their parent groups).
Although most browsers support filters on
<tspan> and <textPath> elements, this was not
allowed in the SVG 1.1 specs and—at the time of
writing—is not yet supported in Firefox.
Filters in CSS layout apply to both inline and
block elements.

Nonetheless, filters have their limitations. Because this “group
stroke” is a pixel effect, not a true SVG stroke, it can create a pixela‐
ted edge, especially with large dilation radius values. The stroke in
Figure 16-10 is noticeably blocky at the corners. You could use addi‐
tional filter operations to smooth it out, but you can’t recreate the
precise geometry of a true stroke, let alone all the other functionality
of SVG strokes.

Figure 16-11. Changing the color of “stroke”

The outline in Example 16-5 is black because it is derived from the
colorless SourceAlpha input. You could color the outline by compo‐
siting it with an <feFlood> layer, in the same way we colored the

622 | Chapter 16: Playing with Pixels

glow shadow in Example 16-3. Example 16-6 shows the code for an
indigo outline; Figure 16-11 shows the result.

Example 16-6. Coloring the group outline

<filter id="outline-indigo">
 <feMorphology in="SourceAlpha" result="expanded"
 operator="dilate" radius="3"/>
 <feFlood flood-color="indigo" />
 <feComposite in2="expanded" operator="in" />
 <feComposite in="SourceGraphic"/>
</filter>

The expanded outline is created with the same <feMorphology>
primitive. It’s now given a name (expanded) so we can access it
later.

The <feFlood> creates a continuous indigo layer.

The first <feComposite> takes that infinite color layer (as the
default in input) and clips it to only include the pixels that are
inside the expanded shape.

The second <feComposite> layers the original SourceGraphic
over the colored expanded shape from the previous step (as the
default in2 input).

A filter like that in Example 16-5 is exactly the use case for the
StrokePaint input. The idea of StrokePaint (and FillPaint) is
that your filter could access the continuous “wallpaper” of the color,
gradient, or pattern used to stroke the filtered shape. Instead of
hardcoding the outline color in the filter, you would be able to apply
a stroke value on the <text> (but with zero stroke width), then cre‐
ate the outline shape in the filter, and use it to clip the StrokePaint
wallpaper.

Unfortunately, not only is StrokePaint not supported anywhere yet,
but Firefox currently treats it as an error of the sort that causes the
filtered element to disappear. (Other browsers treat it as a black
input, so the results look the same as Figure 16-10.)

Sigh. The good news is that flood-color (on an <feFlood> ele‐
ment) is a presentation attribute, so you can set it with CSS rules.
You can also use currentColor or CSS variables to quickly change

Mixing Multiple Filter Operations | 623

the color your filter applies. The bad news is that when you change
the color, you change it for all elements that use that filter. You
would need a separate filter for a separate color.

Drawing Out of Bounds
Blurs, dilation morphology, and a few other filters can create graphi‐
cal effects that are larger than your input. Is there a limit to how big
you can get?

There is. But there’s also a way to control it.

We’re Going to Need a Bigger Boom
Like masks, filters require the browser to construct temporary image
layers, which can use up memory. For that reason, the results of the
filter are limited to a rectangular filter region, outside of which
everything is clipped.

Just like with masks, the default filter is the object bounding box
plus 10% padding. The exact dimensions are set by rectangular
attributes on the <filter> element: x and y default to –10%, and
width and height default to 120%. These are bounding-box units by
default; you switch them to userSpaceOnUse with the filterUnits
attribute.

There are the usual reasons for modifying the default dimensions, or
switching away from bounding-box units completely:

• The bounding box is based on the fill region only; if your
graphic has thick strokes or large markers, it may extend more
than 10% beyond its box.

• If the bounding box has zero height or width (straight horizon‐
tal or vertical lines), bounding-box calculations will cause an
error. And errors with filters usually mean that the filtered ele‐
ment disappears.

In addition, filters (unlike masks) can create an output result that is
larger than the input, so certain filters will always need larger
bounds, regardless of which element you apply them to.

Example 16-7 provides a variation on the text-outline filter from
Example 16-5. To really emphasize a “BOOM!” sound effect, we’re
going to add visible “echoes” of the text offset from the center.

624 | Chapter 16: Playing with Pixels

Figure 16-12 shows what happens if we apply this filter (as written
in Example 16-7) to the “BOOM!” text from Example 16-5 (but in
an SVG with a larger viewBox).

Figure 16-12. Offset filter layers, clipped to the filter region

Example 16-7. Adding duplicate, offset layers with a filter

<filter id="outline-echo">
 <feFlood flood-color="darkRed" />
 <feComposite in2="SourceAlpha" operator="in" result="echo" />
 <feOffset in="echo" dx="-45" dy="-25" result="echo-1" />
 <feOffset in="echo" dx="-40" dy="+30" result="echo-2" />
 <feOffset in="echo" dx="+45" dy="+25" result="echo-3" />
 <feOffset in="echo" dx="+40" dy="-30" result="echo-4" />

 <feMorphology in="SourceAlpha" result="expanded"
 operator="dilate" radius="3" />
 <feMerge>
 <feMergeNode in="echo-1" />
 <feMergeNode in="echo-2" />
 <feMergeNode in="echo-3" />
 <feMergeNode in="echo-4" />
 <feMergeNode in="expanded" />
 <feMergeNode in="SourceGraphic" />
 </feMerge>
</filter>

A dark red copy of the original text is created with <feFlood>
and <feComposite>.

Drawing Out of Bounds | 625

Four named copies of the red text are created with <feOffset>,
each one offset to left or right, up or down, with different dx
and dy values.

The expanded outline is created with the same <feMorphology>
primitive.

All the red copies are layered together, then the expanded black
outline, and finally the original graphic, in an <feMerge> stack.

As we warned—and as Figure 16-12 clearly demonstrates—the
default filter region is not big enough for all the offset layers in
Example 16-7. We’re going to need a bigger filter region.

But how much bigger? And how do we specify it?

The final size of our filter result is the full bounding-box size, plus
30px above and below, and 45px to the left and right. If you’re used
to working with CSS, you may be thinking that now is a good time
to reach for your trusty calc() function:

x="-45px"

width="calc(100% + 2*45px)"

y="-30px"

height="calc(100% + 2*30px)"

That would be a great idea, if we could use calc() in SVG filter
attributes. But we can’t. (Not yet, anyway.)

So, instead, we have to roughly estimate (and, to be sure, over-
estimate) how much the absolute-distance offsets will be as a per‐
centage of the bounding box:

<filter id="outline-echo"
 x="-50%" y="-50%" width="200%" height="200%" >

That gives us enough room for all the “echo” copies of the text, as
shown in Figure 16-13. But if you applied the same filter to a much
smaller element, you might still get clipping.

626 | Chapter 16: Playing with Pixels

Figure 16-13. Offset filter layers, in a filter region that is large enough
to contain them

For this particular SVG, where the filtered element takes up most of
the SVG dimensions (but doesn’t overflow them), a simpler solution
is to switch to user-space dimensions:

<filter id="outline-echo" filterUnits="userSpaceOnUse"
 x="0" y="0" width="100%" height="100%" >

You could even skip the x, y, width, and height attributes, leaving
them as their default 10% padding around the box—which in this
case is the SVG’s viewBox.

Despite the problems with bounding-box units,
avoid creating excessively large filter regions,
especially if you will be animating content
within the filter. It consumes extra memory, and
more pixels means more processing time.

User-space coordinate systems are not without their own issues, of
course. In most browsers, you cannot easily predefine the graphical
effect in one <svg> in an HTML document and use it elsewhere,
because percentages will be misinterpreted. And if your SVG uses a
viewBox with a centered coordinate system, you’ll need to change
the x and y attributes to match, or else your filter will only cover the
bottom-right corner of your SVG.

Drawing Out of Bounds | 627

You mostly only need to worry about the filter region when it is too
small, to avoid clipping. It can sometimes be useful to make it fit
tightly against the bounding box to clip overflowing blur or dilation,
by setting the <filter> element’s x and y to 0, and width and
height to 100%. But if you want to do any creative clipping, you’ll
usually use a <clipPath>. (Remember that clipping paths are
applied after filters on the same element.)

In contrast, it is often useful to clip the output from a particular step
in the filter chain.

Half-and-Half Filter Effects
Each filter primitive works with input image layers and output
image layers. These layers, like the filter as a whole, are defined by
rectangular boundaries.

By default, the layers match the filter region set on the <filter> ele‐
ment. However, you can specify filter primitive regions for each
layer. Once you do, each subsequent layer matches the previous one
unless you give it different dimensions.

You set the dimensions of the filter primitive element with x, y,
width, and height attributes on that element. These cause that
primitive’s result to be clipped to the specified rectangle. The rectan‐
gle dimensions are measured according to the primitiveUnits (not
filterPrimitiveUnits) value for the <filter> element, which is
userSpaceOnUse by default.

In addition to x, y, width, and height, the primitiveUnits setting
controls most length-based attributes on filter primitives, including:

• stdDeviation on <feGaussianBlur>
• radius on <feMorphology>
• dx and dy on <feOffset>

628 | Chapter 16: Playing with Pixels

You can’t change the primitiveUnits for indi‐
vidual filter primitives, let alone individual
attributes. This means, if you switch to
objectBoundingBox units, you need to redefine
every blur radius and offset distance to match.
That’s an awful bother, so pick your
primitiveUnits carefully.

Example 16-8 makes use of the filter primitive regions to apply a fil‐
ter to part of an element, without having to duplicate it with <use>
and apply a clipping path. Instead, the two halves will be clipped
with filter region attributes, and then merged back together after
processing, as shown in Figure 16-14.

Figure 16-14. Photo-filled text in which the bottom half is given a
wave distortion effect

The example makes use of two of the more exotic SVG filter primi‐
tives, <feTurbulence> and <feDisplacementMap>, to apply a wavy
distorted effect to the filtered section of the text. For now, though,
just focus on the inputs, outputs, and filter-region attributes.

Example 16-8. Applying filter effects to a subregion of the element

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 viewBox="0 0 285 65" width="4in">
 <title>Wave-Filtering Half of an Element</title>
 <pattern id="beach" patternUnits="userSpaceOnUse"
 width="285" height="65">
 <image x="0" y="-50" width="300" height="200"
 xlink:href="hawaii-beach.jpg"
 transform="rotate(0.5)" />
 <!-- photo by Daniel Ramirez, licensed CC-BY
 https://www.flickr.com/photos/danramarch/6225153931 -->
 </pattern>

Drawing Out of Bounds | 629

 <filter id="hawaiifilter">
 <feOffset result="top" y="0" height="36px" />

 <feTurbulence y="30px" height="40px" result="waves"
 type="turbulence" baseFrequency="0.01 0.1"
 numOctaves="1" seed="53" />
 <feDisplacementMap in="SourceGraphic" in2="waves"
 y="36px" height="29px"
 scale="4"
 xChannelSelector="G"
 yChannelSelector="B" />
 <feGaussianBlur result="bottom"
 y="34px" height="32px"
 stdDeviation="0.4" />
 <feMerge>
 <feMergeNode in="top" />
 <feMergeNode in="bottom" />
 </feMerge>
 </filter>
 <style>
svg text {
 font-family: Arvo, Rockwell, sans-serif;
 font-weight: 700;
 text-transform: uppercase;
 font-size: 64px;
 fill: url(#beach) azure;
 stroke: darkSlateGray;
 stroke-width: 3px;
 filter: url(#hawaiifilter);
}
 </style>
 <style>
@import url(https://fonts.googleapis.com/css?family=Arvo:700);
 </style>
 <rect width="100%" height="100%" fill="lightSkyBlue" />
 <rect width="100%" y="36px" height="30px"
 fill="lightSeaGreen" />
 <text x="50%" y="56" text-anchor="middle"
 dx="-1 2 -7 -7 2 2">Hawaii</text>
</svg>

The text will be filled with a photograph of water and sky, using
a <pattern>. The pattern tile is defined in user-space units, and
scaled to completely cover the SVG. The photo inside is scaled
and positioned to reveal the parts we want to use. A half-degree
rotation straightens the horizon line between sea and sky. If this
were the only place in the website using this photo, it would be a
good idea to crop it ahead of time, to save on file downloads.
But here, the hidden overflow of the pattern crops it for us.

630 | Chapter 16: Playing with Pixels

The filter will be applied to the same element as the pattern, and
it’s important that we haven’t changed the default user-space
primitiveUnits. That means that the y and height attributes
on the filter primitives are defined in the user space.

The output from the first <feOffset> primitive will therefore be
clipped to the area from the top of the SVG to the line where y =
36px. And 36px just happens to be the height of the horizon line
in the photo after we positioned it in the user-space <pattern>.
The <feOffset> itself doesn’t do anything without dx or dy, so
the effect of this element is just to clip and set aside the top half
of our element as a named filter layer.

The next filter primitive, <feTurbulence>, generates a wavy pat‐
tern of colors from a mathematical algorithm. The y and height
attributes ensure that the output color will be slightly larger
than the bottom half of our SVG.

The <feDisplacementMap> filter primitive takes our original
SourceGraphic as input, then distorts it according to the waves
generated by the <feTurbulence>. The distorted image is pre‐
cisely clipped to the bottom of our SVG, starting from y = 36px.

An <feGaussianBlur> softens the distorted image slightly,
using a slightly larger filter primitive region so that the blurred
top edge isn’t clipped.

Finally, an <feMerge> combines the top and bottom sections
back together.

The visible parts of the SVG consist of two colored rectangles
and our <text> element. The bottom, sea-green rectangle is
precisely positioned to start at that y = 36px horizontal horizon
line.

The text itself is mostly styled with CSS, using a web font. How‐
ever, the letter spacing is manually tweaked with dx, to leave
extra space for the strokes while also tightening up the kerning
around the “AWA” part of the word.

Drawing Out of Bounds | 631

More Online
Hopefully, you now understand how the two halves of the Hawaii
filter were clipped and put back together. But how did we make the
“underwater” section all wavy and distorted?

Read more about the <feTurbulence> and <feDisplacementMap>
filter primitives in “Making the Wave”:

https://oreillymedia.github.io/Using_SVG/extras/ch16-
feTurbulence.html

This example isn’t as DRY as we normally like. The magic number
36 (calculated from the photograph itself) appears in multiple
places. But it is defined so that it can easily be reused. The alignment
between the photo pattern and the filter layers is measured entirely
in user-space units, so neither has to be adjusted if you change the
text content, or even the text font-size, as shown in Figure 16-15.

Figure 16-15. The same paired photo pattern and filter effect, on dif‐
ferent text

You can even make the text editable, by placing the SVG inline in an
HTML element with the contenteditable attribute. But it’s a little
buggy: if the user completely erases the text and then types new
material to replace it, the extra text gets added as a sibling to the
<svg>, instead of being included in the SVG <text>. So you’d need a
bit of JavaScript to make it work nicely.

Although some browsers (MS Edge and IE) sup‐
port contenteditable directly on SVG ele‐
ments, it is not defined in the SVG specs, and
isn’t supported elsewhere.

632 | Chapter 16: Playing with Pixels

https://oreillymedia.github.io/Using_SVG/extras/ch16-feTurbulence.html
https://oreillymedia.github.io/Using_SVG/extras/ch16-feTurbulence.html

In an ideal world, you could replace the “magic number” in the fil‐
ter, at least in part, by accessing the <rect> element behind the text
as a separate filter input, the BackgroundAlpha layer. Then you
could use it (with <feComposite>) to mask the above- and below-
water sections of the text. And it wouldn’t even have to be a rectan‐
gle: since you’d be masking according to the alpha region of the
shape, it could be a wavy path instead.

But web browsers don’t (yet) support access to the backdrop from
within your filter. The relevant part of the filters spec has been rede‐
fined—to fix the most problematic parts from SVG 1.1—so hope‐
fully this will change in the future. But in the meantime, we can be
glad of the one area where implementations have moved ahead:
blend modes.

Blending with the Backdrop
If you use graphics software that is built around “layers” (such as
Adobe Photoshop or GIMP), you may be familiar with blend
modes, which control how the pixels on different layers interact
with and influence the resulting color that is shown for that portion
of your screen.

Blend modes allow you to create many unique color effects, making
your images look like light being projected onto a screen instead of
layers of paint on paper.

SVG 1.1 defined blend modes as a filter operation. The new Compo‐
siting and Blending module redefines them as a separate graphical
effect, applied using the mix-blend-mode property. There’s also a
background-blend-mode property for CSS layered backgrounds, and
in the future there may be similar properties for layered SVG strokes
and fills.

Blending Basics
We’ve already used blend modes, in a way. The type of blending that
is used everywhere in SVG and CSS is known as normal blending.

With normal blending, layers in an image are combined as if they
were physical prints (sometimes on transparent film) stacked
together, and you were looking down from above. If the top layer is

Blending with the Backdrop | 633

completely opaque, it completely obscures any elements that it
overlaps.

Blend modes take things much further, allowing the pixels of an ele‐
ment to “read” the color of the pixel underneath them, and calculate
the result based on a particular set of algorithms.

Even normal blending—also known as alpha blending—has some
math hidden in the implementation. If the top layer is semitranspar‐
ent, the final color of each pixel is calculated as a combination of the
color for that pixel in the top layer and the cumulative color of the
layers stacked below. Blend modes change the formula for that
calculation.

In SVG filters, blend modes are used in the <feBlend> filter primi‐
tive. It blends its primary (in) input layer over the top of the secon‐
dary (in2) input. By default, it uses normal blending, and is
therefore the same as <feMerge>, or the default operator for
<feComposite>. You change the default by setting the mode

attribute.

SVG 1.1 defined four other blend modes for <feBlend>, in addition
to the default mode="normal". The exact mathematical formulas can
be found in the Compositing and Blending specification. But con‐
ceptually this is how they work for fully opaque layers:

screen

Imagine that the two image layers are being displayed by two
different projectors shining on the same screen. The only areas
that stay dark in the final result will be those that are dark in
both pictures. Light tones overlapping will combine to make the
result lighter than either input. Colors will combine like they do
in the RGB model, so that red plus green will create yellow.

multiply

Imagine a single slide projector shining light through two dif‐
ferent slides, stacked together. For light to reach the display, it
must pass through both images: the only areas that will be light
in the final result are those that are light in both pictures. Dark
sections overlapping will make the result darker than either of
the inputs. Opposite colors (like red and green) will cancel each
other out to create black.

634 | Chapter 16: Playing with Pixels

https://drafts.fxtf.org/compositing-1

darken

This mode can’t be imagined by a physical process, but is much
easier to think of mathematically. For each channel (red, green,
and blue), on every pixel where the two layers overlap, select the
smaller (darker) value from either the top layer or the cumula‐
tive bottom layer. This means that opposite colors again cancel
out (red + green = black), but equal colors don’t get any darker
or lighter.

lighten

Not surprisingly, this mode is the opposite of darken: for each
color channel, for each pixel, take the larger (brighter) value
from either the top layer or the backdrop.

For semitransparent layers, all the blend modes are adjusted so that
you see more of the original backdrop color in the final blend, pro‐
portional to the amount of transparency in that pixel on the top
layer. The alpha channels themselves are not calculated with the
same formulas as the color channels.

Note the spelling of darken and lighten; they
are often confused as “darker” and “lighter.”
If you misspell a mode name, the attribute will be
ignored and you’ll get normal blending.
Which…is better error handling than most
errors with filters, actually.

The Compositing and Blending spec defines 11 additional modes:
overlay, color-dodge, color-burn, hard-light, soft-light,
difference, hue, saturation, color, luminosity, and exclusion.
The names and definitions are all based on blend modes used in
other graphical software.

More Online
A reference with descriptions for all the blend modes is available in
the “Blend Modes” guide:

https://oreillymedia.github.io/Using_SVG/guide/blend-modes.html

Blending with the Backdrop | 635

https://oreillymedia.github.io/Using_SVG/guide/blend-modes.html

Figure 16-16. The 16 blend modes, when applied to a vector graphic
layer over the top of a photo layer

636 | Chapter 16: Playing with Pixels

The newer blend modes are supported for
<feBlend> in all the latest browsers, but might
not be recognized in older browsers (e.g., Inter‐
net Explorer) or other software.

Figure 16-16 shows all 16 blend modes, including normal, applied to
a vector graphic (red and cyan SVG text on a white-to-black gradi‐
ent rectangle) over the top of a photograph.

Example 16-9 provides the code for creating Figure 16-16 with
<feBlend>. Only the markup for the normal and multiply mode is
included. All the others are the same except for the filter id, <svg>
offsets, and the mode attribute on <feBlend>. Note that we’ve set
color-interpolation-filters to sRGB, so that color calculation
will use the standard color model used in browsers and most graph‐
ics software.

Example 16-9. Blending a vector graphic onto a photo, with filters

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 viewBox="0 0 240 390" width="4in">
 <title>Blending Modes Compared</title>
 <style>
 filter {
 color-interpolation-filters: sRGB;
 }
 .label {
 font: 7px Consolas, monospace;
 text-anchor: middle;
 fill: royalBlue;
 }
 .warning {
 font: 16px impact, sans-serif;
 text-anchor: middle;
 fill: red;
 stroke: orange;
 paint-order: stroke;
 }
 .warning tspan {
 fill: cyan;
 stroke: darkCyan;
 }
 </style>
 <defs>
 <linearGradient id="b-w-b">
 <stop offset="0" />

Blending with the Backdrop | 637

 <stop offset="0.4" stop-color="white" />
 <stop offset="0.6" stop-color="white" />
 <stop offset="1" />
 </linearGradient>
 <g id="warning" transform="rotate(-56 30,45)">
 <rect fill="url(#b-w-b) white"
 x="-25" width="110" y="35" height="20" />
 <text class="warning" x="30" y="45" dy="0.6ex"><tspan
 >¡</tspan> DANGER <tspan>!</tspan></text>
 </g>
 </defs>
 <svg width="60" height="25%">
 <filter id="blend-normal" filterUnits="userSpaceOnUse">
 <feImage xlink:href="heron.jpg"
 x="0" y="0" width="60" height="90" />
 <feBlend in="SourceGraphic" mode="normal" />
 </filter>
 <use xlink:href="#warning" filter="url(#blend-normal)" />
 <text class="label" y="95" x="50%">normal</text>
 </svg>
 <svg width="60" height="25%" x="60">
 <filter id="blend-multiply" filterUnits="userSpaceOnUse">
 <feImage xlink:href="heron.jpg"
 x="0" y="0" width="60" height="90" />
 <feBlend in="SourceGraphic" mode="multiply" />
 </filter>
 <use xlink:href="#warning" filter="url(#blend-multiply)" />
 <text class="label" y="95" x="50%">multiply</text>
 </svg>
 <!--...and the rest...-->
</svg>

There’s an important limitation of using <feBlend> to merge two
graphics like this. The image file is directly incorporated in the filter,
using <feImage>. That means you can’t change the photo or its posi‐
tion within the SVG without creating a new filter. The photo is also
not an accessible element in the document. You can’t add a <title>
or aria-label to it to provide an accessible description. And it can’t
be interactive—as far as the browser is concerned, the entire photo
is just a decoration on the warning label.

Ideally, the <feImage> element would only be used when you want
to import a small bitmap for creating a textured effect within a filter,
and not as a substitute for actual document content.

638 | Chapter 16: Playing with Pixels

The <feImage> element, as defined in the specs,
can be used for both importing image files (like
<image>) and for duplicating sections of the cur‐
rent document (like <use>). However, the sec‐
ond case wasn’t very well defined, and has never
been implemented in Firefox.
For cross-browser support, only use <feImage>
for importing complete image files (or data URI
images).

The logical way to create this graphic would be to use an <image>
element to draw the photo as a direct child of our SVG, before draw‐
ing the #warning label on top. We would then set the warning label
to blend with its backdrop.

The original SVG filter specs used the term
background to refer to all the graphics behind an
element. But that’s confusing when you are
working with CSS layout boxes, which can have
their own background as part of the element
itself.
This chapter therefore follows the terminology
of the Compositing and Blending spec: the
graphics behind an element are the backdrop
for it.

The BackgroundImage input would have supported this directly in
filters, among many other interesting backdrop-filtering effects.
Most browsers aren’t yet ready to support general filter access to the
backdrop, but they have implemented blending into the backdrop—
just with a very different approach.

Premade Mixes
The new mix-blend-mode property allows you to apply blend
modes without filters. The blend mode is calculated as part of the
browser’s process of compositing an element on its backdrop.

Blending with the Backdrop | 639

This means that mix-blend-mode applies after
all filters, clipping, and masking. It isn’t part of
how this element is painted, but of how this ele‐
ment is combined with other elements.

The mix-blend-mode property is a layer effect, like filters and mask‐
ing. It applies to the combined image layer created by this element
and all its children, and creates a stacking context. It therefore does
not inherit by default. The value of mix-blend-mode is one of the 16
blending mode keywords, with the default being normal.

At the time of writing, WebKit/Safari does not
support the hue, saturation, color, and
luminosity values in CSS blend modes. These
four are unique because pixel values can’t be cal‐
culated for red, green, and blue channels sepa‐
rately, and therefore they aren’t as easily
optimized.
Microsoft Edge has not implemented CSS
blending support at all. It and older browsers
will ignore mix-blend-mode completely.
Consider fallbacks carefully, and use CSS
@supports tests if required.

To redefine Example 16-9 to use mix-blend-mode, you would create
an <image> element in each <svg> to embed the photograph of the
heron, as the prior sibling to the group containing the warning text.
Then you would remove the filter property from the warning
group and instead set the mix-blend-mode property.

Example 16-10 provides the modified code for the multiply blend.
The end result in supporting browsers would still look like
Figure 16-16. In unsupporting browsers, all versions would look like
normal blending—which, in this case, is an acceptable fallback
appearance.

640 | Chapter 16: Playing with Pixels

1 GPU-optimized blending on a newer system with a high color-depth monitor might
use a different color space, but it will likely be closer to sRGB than to linearRGB.

Example 16-10. Blending a vector graphic onto a photo, with mix-
blend-mode

 <defs>
 <image id="heron" xlink:href="heron.jpg"
 width="60" height="90" />
 </defs>
 <svg width="60" height="25%" x="60">
 <use xlink:href="#heron" />
 <use xlink:href="#warning"
 style="mix-blend-mode: multiply" />
 <text class="label" y="95" x="50%">multiply</text>
 </svg>

No more extra filter markup; only one keyword to change to change
the blend mode. The color-interpolation-filters property is
also no longer required: CSS blend mode properties, like the short‐
hand filter functions, are always calculated in the color space used
for compositing, which is usually sRGB.1

Isolating the Blend Effect
The separation of blending from filters means you can use and
modify filters and blending separately. It is also closer to how it
works in Photoshop and other software. And it is absolutely essen‐
tial when you’re using shorthand functions as filters, as they do not
have any way of merging multiple inputs in the first place.

The compositing-stage timing of mix-blend-mode is also designed
to make it easier for browsers to optimize blend modes, just like
they optimize normal compositing of semitransparent layers, using
the GPU.

But not all GPUs support blend modes, so
beware that blend modes (like filters) can use up
a lot of processing power.

Blending with the Backdrop | 641

But the order of operations for blend modes can cause some confu‐
sion. You need to remember that the colors you see aren’t part of one
element or the other, but are instead generated from the combina‐
tion of the two. So if you want to use a filter to tweak that blended
color (changing its saturation or brightness, for example), the filter
needs to be applied on a group that contains both layers that you are
blending.

A filter is one way to create an isolation group for blend modes.
This is similar to how filters create a flattening effect for 3D trans‐
forms and z-index stacking.

When a container element is isolated from its backdrop, its child
elements do not “see” the greater backdrop. Instead, they are blen‐
ded as if the isolated container created a new image layer, starting
from transparent black.

An isolated container element can itself have a
blend mode, but all of its children will be blen‐
ded together first, to create a combined image
layer that will be blended with the backdrop.

Blending modes, whether in CSS or in Photoshop layers, are applied
cumulatively, from bottom to top. The second layer is blended into
the bottom layer to create a cumulative result. The third layer is
blended into that combined result, without needing to know that the
result was created from two other layers. The only way you can
change the order that your blends are applied is by grouping ele‐
ments in the DOM and isolating them.

Most “layer effect” properties create an isolation group, including
opacity, filter, mask, and mix-blend-mode itself, when any of
them is set to its nondefault value. Three-dimensional transforma‐
tions also force isolation. In CSS layout, so do 2D transforms and
anything else that creates a stacking context, including z-index.

But those are all side effects. In order to control isolation directly,
you can set the isolation property to isolate. The default value
for the property is auto, reflecting all the other properties that can
automatically isolate an element.

642 | Chapter 16: Playing with Pixels

Firefox is currently buggy about isolation, iso‐
lating groups that shouldn’t be isolated, includ‐
ing SVG elements with 2D transforms and those
that are direct children of an element with
viewBox scaling.

Figure 16-17. Venn diagrams created from colored circles with mix-
blend-mode: (top row) without isolation, (bottom row) where each
diagram is an isolated group; (left column) blending uses multiply
mode, (right column) blending uses screen mode

Example 16-11 demonstrates the use of isolation to create a group of
elements that blend with each other but not with their backdrop.
Figure 16-17 is the result: the top pair of Venn diagrams are not iso‐
lated, so they blend with the checkered backdrop. The bottom set
are contained in isolated groups. The samples on the left use

Blending with the Backdrop | 643

multiply blending; those on the right use screen. CSS variables are
used to pass the different blend mode options through the <use>
element trees, since mix-blend-mode itself isn’t inherited.

Example 16-11. Using isolation to limit the impact of blend modes

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 viewBox="0 0 400 400" width="4in" height="4in" >
 <title>Blend Modes and Isolation</title>
 <style>
 #venn use { mix-blend-mode: var(--mode); }
 .multiply { --mode: multiply; }
 .screen { --mode: screen; }
 .isolate { isolation: isolate; }
 .left { fill: royalBlue; }
 .right { fill: lightGreen; }
 .top { fill: paleVioletRed; }
 </style>
 <pattern id="checks" width="20" height="20"
 patternUnits="userSpaceOnUse">
 <rect fill="#aaa" width="20" height="20" />
 <rect fill="#444" width="10" height="10" />
 <rect fill="#444" x="10" y="10"
 width="10" height="10" />
 </pattern>
 <rect width="100%" height="100%" fill="url(#checks)" />
 <defs>
 <circle id="c" r="11.5" />
 <svg id="venn"
 width="200" height="200" viewBox="-18 -22 36 34">
 <use xlink:href="#c" x="-6" class="left" />
 <use xlink:href="#c" x="6" class="right" />
 <use xlink:href="#c" y="-10" class="top" />
 </svg>
 </defs>
 <use xlink:href="#venn" class="multiply" />
 <use xlink:href="#venn" class="screen" x="200" />
 <use xlink:href="#venn" class="isolate multiply" y="200" />
 <use xlink:href="#venn" class="isolate screen" x="200" y="200" />
</svg>

The isolation property replaces the enable-background property
(or presentation attribute) from SVG 1.1 filters.

There were two problems with enable-background:

644 | Chapter 16: Playing with Pixels

• The enable-background syntax did not translate well to non-
SVG contexts. It used a viewBox-like parameter to specify the
region of an element that needed to be remembered. Even the
name is confusing in a CSS context.

• enable-background was required to be specified at some point
in order for child elements to use backgrounds in filters. That
resulted in many SVG tools automatically adding it to the root
SVG, whether it was needed or not. So it ceased to be useful as a
hint to browsers about whether or not it needed to keep a copy
of the graphical layer in memory.

Microsoft browsers support enable-background: new, but not the
viewBox-style qualifications on the enabled background size.
Unfortunately, when Adobe Illustrator adds enable-background
presentation attributes, it always adds the extra parameters. So if you
decide to use BackgroundImage to polyfill mix-blend-mode in
Microsoft browsers, keep this in mind!

If both isolation and BackgroundImage/BackgroundAlpha were
supported in the same browser, the nearest isolation group would
also limit the background used for those inputs.

Future Focus
Filtering the Backdrop

Blend modes only address one set of effects for which you’d want to access
the backdrop. What if you want to blur the backdrop in the parts where the
current element overlaps it? Or desaturate it, without blending it with the fore-
ground?

The Filter Effects level 2 module introduces a backdrop-filter property that
would enable these effects. Its value would be a filter function list (the same as
for filter). There’s an experimental implementation in Safari, but expect the
details to change as the spec is developed.

The filter functions would apply on the composited backdrop layers, but only
in the sections that are within the bounds of the element with the backdrop-
filter property. Which bounds is not currently clear in the spec.

Blending with the Backdrop | 645

Summary: Filters and Blend Modes
The set of filter primitives available in SVG is very extensive, as are
the effects that can be achieved with them. There are, however, three
problems with filters that limit their utility in complex web applica‐
tions.

One issue, which is thankfully fading, is lack of support: when this
book was started in 2011, no browser supported the full set of SVG
filter features. Over the years since then, that situation has changed
dramatically: basic filter support (SVG filters on SVG elements) is
available in all modern browser versions, although there are still
areas that need improvement, and bugs that need fixing.

A second problem with filters is that they can be expensive in terms
of performance. This is because they are render-time operations,
and a filtered object may require several layers of rasterizing and
then pixel manipulations. This becomes especially costly if filter
operations occur when you’re animating the elements that make up
your source graphic.

The final problem has more to do with the SVG standard itself. The
primitive operations are, taken together, fairly comprehensive, but
their effects—and the syntax used to create them—are far from
obvious, even to people who are relatively familiar with computer
graphics theory. This means that becoming proficient with filters
requires a little bit of math and a whole lot of experimentation.

The new shorthand filter functions and the mix-blend-mode prop‐
erty directly address the authoring complexity issue, making it sim‐
ple to specify simple filter effects. The shorthands don’t replace SVG
markup filters, however. Complex effects still need the full filter
capability.

The shorthands and newer approach to blend modes are also
designed to improve the performance issues, by making it easier for
browsers to use the GPU in their implementations.

Hopefully, with more developers experimenting with filters, we’ll
also see an improvement in the remaining browser bugs and sup‐
port limitations.

646 | Chapter 16: Playing with Pixels

More Online
The filter elements and their attributes are summarized in the “Filter
Elements” section of the markup guide, including a few we didn’t
have room for in this chapter:

https://oreillymedia.github.io/Using_SVG/guide/
markup.html#filters

The shorthand filters are listed for easy reference in a “Shorthand Fil-
ter Functions” guide:

https://oreillymedia.github.io/Using_SVG/guide/filter-
functions.html

The blend mode keywords are defined in the “Blend Modes” guide:

https://oreillymedia.github.io/Using_SVG/guide/blend-modes.html

Summary: Filters and Blend Modes | 647

https://oreillymedia.github.io/Using_SVG/guide/markup.html#filters
https://oreillymedia.github.io/Using_SVG/guide/markup.html#filters
https://oreillymedia.github.io/Using_SVG/guide/filter-functions.html
https://oreillymedia.github.io/Using_SVG/guide/filter-functions.html
https://oreillymedia.github.io/Using_SVG/guide/blend-modes.html

PART V

SVG as an Application

The final few chapters of the book consider SVG on the web as an
interactive application. They explore how you can add extra infor‐
mation to your graphic to make it more accessible to both human
beings and computers, and how you can manipulate your graphic to
make it interactive or animated. It is only a brief introduction to the
full possibilities of SVG applications, however: web development
with SVG is as large and diverse a topic as web development in
general.

Chapter 20 ends the book with a summary of tips and best practices
for creating SVG code that will be easier for you to work with—and
easier for all users to appreciate.

CHAPTER 17

Beyond the Visible
Metadata for Accessibility and Added Functionality

SVG on the web is more than just a picture. It’s a structured docu‐
ment that can contain structured information about what the
graphic represents.

This chapter looks at the metadata elements and attributes available
in SVG to make your graphic more accessible, or to annotate it with
information that will be used by your own scripts or by other
software.

Titles and Tips
The most commonly used metadata element in SVG is the <title>.
We’ve used titles throughout the book—in fact, unless we’ve messed
up, there should be a <title> (either SVG or HTML) in every com‐
plete example.

As we mentioned back in Chapter 1, a <title> is used to provide a
name for a web page or document as a whole. It is used in your
browser history list and bookmarks, among other places.

For SVG, a <title> behaves this way if it is the first child of the root
<svg> in a .svg file, like this (which is the code from Example 6-1 in
Chapter 6):

651

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 height="20px" width="20px">
 <title>Diamond</title>
 <path fill="red"
 d="M3,10 L10,0 17,10 10,20Z
 M9,11 L10,18 V10 H15 L11,9 10,2 V10 H5 Z" />
</svg>

The actual title (“Diamond”) is given in the text content of the
<title> element. The language of the title text is determined by the
nearest ancestor element with an xml:lang attribute—here, en
(English) is set on the root <svg>.

If you don’t set a language anywhere in the document, the browser
will assign its own default, usually based on the user’s language set‐
tings. This can result in very strange pronunciations by screen read‐
ers if the guess is incorrect, so always set languages in your web
documents, whether SVG or HTML.

This type of document title is consistent with the <title> element
in HTML. However, the <title> element in SVG isn’t used only for
the title of the document as a whole. It is also used to set titles on
parts of a graphic.

Example 17-1 shows the code to add titles to each individual light in
our stoplight graphic from Chapter 1 (specifically, the version from
Example 1-6). The new <title> elements are direct children of the
<use> elements that draw each light.

Example 17-1. Labeling parts of a graphic with <title> elements

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 height="320px" width="140px" >
 <title>Stoplight with Titled Lights</title>
 <defs>
 <circle id="light" cx="70" r="30" />
 </defs>
 <rect x="20" y="20" width="100" height="280"
 fill="blue" stroke="black" stroke-width="3" />
 <g stroke="black" stroke-width="2">
 <use xlink:href="#light" y="80" fill="red">
 <title>Red means Stop</title>
 </use>
 <use xlink:href="#light" y="160" fill="yellow">
 <title>Yellow means Slow</title>
 </use>
 <use xlink:href="#light" y="240" fill="#40CC40">

652 | Chapter 17: Beyond the Visible

 <title>Green means Go</title>
 </use>
 </g>
</svg>

You can add a <title> to any graphical element in SVG: shapes,
<use>, <image>, and also <g> or nested <svg>. The <title> element
should always be the first child of the element it is naming. If the
title is for a group, it applies to all content within that group, except
for parts that have their own title.

Why would you add extra <title> elements for parts of a graphic?
Three reasons:

• Titles are used by screen readers and other assistive technology
to describe the image to their users. For complicated graphics
and diagrams, you can provide much more useful alternative
text if you break it down into meaningful parts, which the user
can listen to or skip over depending on their interests. At the
same time, titles can help reduce the need to comment your
code.

• If any parts of the graphic are interactive, a title for that part is
essential, to clearly explain to assistive technology users what
will happen after interaction.

• Titles are used in most desktop browsers as tooltips (pop-up
labels) for that section of the graphic. When a mouse-user hov‐
ers over that section of the graphic, the tooltip will display.
Good titles can therefore help many users—not just screen-
reader users—understand what they are looking at.

The tooltip behavior of the <title> element in SVG matches the
behavior of the title attribute in HTML.

Titles and other alternative text within the SVG
markup are only available for interactive SVG
(inline SVG or SVG as an embedded object).
When SVG is used as an image, the alternative
text (alt attribute) for the element is used
instead.

Titles and Tips | 653

Or at least, that’s how it’s supposed to work. As
we’ve warned previously, some versions of Web‐
Kit browsers combined with the Apple Voice‐
Over screen reader expose the titles from the
SVG file for SVG in an , ignoring the alt
text. You can force them to follow the standard
behavior by adding role="img" to the
element.

There are nonetheless some important limitations with <title> as it
is currently supported in web browsers:

• Keyboard and touchscreen users cannot currently access title
tooltips in most browsers. (Microsoft Edge displays tooltips for
elements that receive keyboard focus, but it is currently the only
major browser to do so.) Browsers also disagree about whether
to create tooltips for titles that are direct children of inline
<svg> elements in HTML (Firefox does; others don’t).

• The dual nature of <title>, as alternative text and as a tooltip,
can make it difficult to come up with a title that is appropriate
both for users looking at the graphic and for users hearing it
described by a screen reader.

• Many browsers currently do not reliably use <title> elements
for the accessible description of the document that is given to
screen readers, unless additional ARIA attributes are provided.

The only solution to the first issue—not all users can access tooltips
—is to make sure that the text in the <title> is an enhancement to
the graphic, not essential information. If you want to use <title>
tooltips to expose data for a chart, make sure that the same data is
available in another way.

You can avoid the dual nature of <title> with ARIA attributes. The
aria-label attribute provides an accessible name for an element
without creating a tooltip. It’s especially useful when you’re adding
alternative text to text that has been converted to a path:

<g aria-label="Welcome" role="img">
 <!-- paths in the shape of the letters W-E-L-C-O-M-E -->
</g>

654 | Chapter 17: Beyond the Visible

Visual users get the meaning from the shape of the paths; a tooltip
would be a redundant distraction. But the label is essential for assis‐
tive technology users.

If an element has both aria-label and a child <title> element,
aria-label will be used as the accessible name, but <title> will
still form a tooltip. So you can use aria-label to give a bit more
context than is needed in the tooltip.

For example, in a chart the colors, patterns, and positioning of ele‐
ments might be enough for visual users to match the data with its
category label, but they could benefit from the exact numerical val‐
ues being available as a tooltip. Assistive technology users would
need both values:

<path d="..." aria-label="Monday: $72">
 <title>$72</title>
</path>
<path d="..." aria-label="Tuesday: $68">
 <title>$68</title>
</path>

A tooltip that isn’t used as the main label should be exposed to assis‐
tive technology as an additional description or help text—but you
currently can’t rely on browsers and screen readers to correctly con‐
vey that extra information to the user. So repeat the tooltip in the
label, and (as always) make important data available in other
formats.

When you’re using <title> as the main alternative text, two
changes can help maximize the likelihood that browsers will cor‐
rectly pass your accessible names to screen readers:

• Use the aria-labelledby attribute to connect the graphic ele‐
ment to its <title>: give the <title> a unique id and repeat it
in the graphic’s aria-labelledby attribute.

• Give the named element a role attribute.

Neither should be necessary, but at the time of writing, browsers
aren’t very good at making SVGs accessible by default. Combining
both fixes together looks something like this:

<path d="..." role="img" aria-labelledby="Canada-title">
 <title id="Canada-title">Canada</title>
</path>
<path d="..." role="img" aria-labelledby="USA-title">

Titles and Tips | 655

 <title id="USA-title">USA</title>
</path>

If unique IDs are problematic, repeat the title text in an aria-label
attribute instead.

Note that the attribute aria-labelledby uses
British spelling rules, with a double l.

The role attribute is also needed in some browsers when aria-
label is used on SVG shapes and groups (or HTML <div> and
, for that matter).

We’ll discuss role in more detail in “Roles and Relationships” on
page 663. For simple noninteractive graphics, the most useful roles
are img and group:

• Use role="img" for individual shapes, or for groups or <svg>
elements that should be treated as a single image, with no inter‐
active or accessible child content.

• Use role="group" to add names to elements with child content
that should also be accessible: <g> elements and nested <svg>
that have labeled or interactive child content, or text elements
that need a label in addition to the accessible text.

Avoid using role="group" on the <svg> that
defines the graphic as a whole. Instead, leave it
unspecified if you aren’t explicitly changing it to
img.
Browsers assign a graphics-specific role to this
element, which doesn’t have a well-supported
ARIA equivalent. The latest SVG accessibility
specs define this as the graphics-document role,
but any browser that would recognize that role
name should also get the default correct!

Finally, you sometimes need to explicitly tell the browser to ignore
parts of your SVG markup when it is building the accessible repre‐

656 | Chapter 17: Beyond the Visible

sentation of the document. There are two ways of doing this, which
are not interchangeable:

• role="presentation" tells the browser that this particular ele‐
ment is not meaningful, but its child content might be. Specifi‐
cally, it says that this element is used for styling and layout of
the child content.

• aria-hidden="true" tells the browser that, for accessibility
purposes, this element and all its child content should be treated
as if they had visibility: hidden.

Most of the time, neither attribute should be required. You should
only need aria-hidden when you have duplicated text that needs to
be ignored (like when we reused a <text> element to draw its
shadow in Example 11-11). You should only need
role="presentation" when an element that normally has a role is
instead being used for decorative effect (like when an SVG is used to
style text inside an HTML heading, and the <svg> element itself is
really just a styling hook for the text content).

But browsers aren’t very good at holding up their side of the
“shoulds” of SVG accessibility, so developers sometimes need to
make up the difference.

You don’t need to use either hiding method when a parent element
has role="img": the children of an element with the img role are
automatically hidden from assistive tech—which is why it’s really
important that img is not used when child content should be
accessible.

Putting it all together, Example 17-2 enhances Example 17-1 with
role and ARIA attributes, so that most browser and screen reader
combinations correctly read the three titles. If the graphic and titles
were a little more interesting to start out with, this would be a huge
help to screen reader users.

Example 17-2. Improving accessibility of SVG titles with ARIA
attributes

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 height="320px" width="140px"
 aria-labelledby="title-main">

Titles and Tips | 657

 <title id="title-main">Stoplight with Titled Lights,
 Redundant Cross-Browser Compatibility Edition
 </title>
 <defs aria-hidden="true">
 <circle id="light" cx="70" r="30" />
 </defs>
 <rect x="20" y="20" width="100" height="280"
 fill="blue" stroke="black" stroke-width="3"
 aria-hidden="true" />
 <g stroke="black" stroke-width="2" role="presentation">
 <use xlink:href="#light" y="80" fill="red"
 role="img" aria-labelledby="title-red">
 <title id="title-red">Red means Stop</title>
 </use>
 <use xlink:href="#light" y="160" fill="yellow"
 role="img" aria-labelledby="title-yellow">
 <title id="title-yellow">Yellow means Slow</title>
 </use>
 <use xlink:href="#light" y="240" fill="#40CC40"
 role="img" aria-labelledby="title-green">
 <title id="title-green">Green means Go</title>
 </use>
 </g>
</svg>

As with all things related to browser support, you will need to run
your own tests and decide for yourself whether you need the extra
compatibility fixes from Example 17-2, or whether you want to rely
on the standard approach in Example 17-1. Browser support for
SVG <title> (and SVG accessibility in general) is improving, and is
much better than it was a few years ago. But it lags far behind the
accessibility of standards-compliant HTML.

Future Focus
Multilingual Titles

Many websites offer text content in multiple languages, but reuse the same
image assets for each. Including alternative text directly in the image code
complicates this: the titles need to be translated every time you use the SVG
code.

SVG 2 proposes a solution: multiple <title> elements, one for each language
used. The language of each title would be set with the lang attribute (the
namespace-free replacement for xml:lang). A conforming browser (none yet)

658 | Chapter 17: Beyond the Visible

would pick the best title based on the user’s language preferences, and would
use that for both tooltips and accessibility:

<use xlink:href="#light" y="80" fill="red">
 <title lang="en">Red means Stop</title>
 <title lang="fr">Rouge signifie Arrêter</title>
 <title lang="es">Rojo significa Detener</title>
</use>

Of course, this assumes that browsers natively understand and correctly use
SVG <title> elements in the first place. The aria-labelledby hack doesn’t
have any way to switch languages.

Since SVG 1, there has been a similar language switch option for visual graph-
ics: the <switch> element and the systemLanguage attribute. For example,
this would switch the visible labels in Example 1-9:

<switch fill="red" stroke="darkRed">
 <text x="140" y="100"
 systemLanguage="en">Stop</text>
 <text x="140" y="100"
 systemLanguage="fr">Arrêtez</text>
 <text x="140" y="100"
 systemLanguage="es">Detener</text>
</switch>

(Note that this only works for switching complete <text> elements or graph-
ics; you cannot use <switch> to swap individual <tspan> elements.)

If a multilingual SVG tooltips are important, you can therefore use <switch>
and <use> to swap different elements with different titles:

<switch fill="red">
 <use xlink:href="#light" y="80" systemLanguage="en">
 <title xml:lang="en">Red means Stop</title>
 </use>
 <use xlink:href="#light" y="80" systemLanguage="fr">
 <title xml:lang="fr">Rouge signifie Arrêter</title>
 </use>
 <use xlink:href="#light" y="80" systemLanguage="es">
 <title xml:lang="es">Rojo significa Detener</title>
 </use>
</switch>

Titles and Tips | 659

Note that you need both systemLanguage attributes (to trigger the switch)
and xml:lang attributes (to trigger the correct pronunciation by screen read-
ers, with the xml prefix for browser compatibility). All in all, it is not a very DRY
solution: lots of repetition is required.

You cannot use <switch> for switching individual
<title> elements within a shape—or at least, no
browser implemented it this way. That is why the sim-
pler lang switch option was introduced in SVG 2.

The <switch> element was also designed for feature-support switches, similar
to the CSS @supports rule. However, these were never well designed and
have limited uses on the web.

The system-language switch has good support (if you can accept the repeti-
tive markup), but remember: neither you or your user can control which lan-
guage gets shown. The browser selects an option based on the user’s
language settings for the browser itself.

Linking Labels
Using aria-labelledby to associate a <title> with its parent is a
bit of a hack, and shouldn’t be required. The intended use of aria-
labelledby is to link an element with a visible text label.

For inline SVG, the element referenced by aria-
labelledby can be an HTML element in the
same document, instead of SVG text.

The value of aria-labelledby is usually the id of a single other ele‐
ment (without any # URL formatting). However, it can also be a
whitespace-separated list of multiple element IDs, which are com‐
bined—in order—to form the accessible label.

For example, consider the grouped bar chart in Figure 17-1. Each
bar has three labels: the category on the x-axis, the date series from
the legend, and finally its own text label, which gives the data value.
The final aria-labelledby attributes for the bars look like this:

660 | Chapter 17: Beyond the Visible

<rect aria-labelledby="group-label-Vancouver
 series-label-2013
 value-label-Vancouver-2013"
 ...other rect attributes... />

With matching id values on the correct <text> elements, that bar
should be read out as “Vancouver, 2013, 56%.” If you updated the
visible text, the alternative text would be automatically updated, too.

Figure 17-1. An SVG bar chart, where the full meaning of each bar is
generated from three different labels

You can even reference an element’s own id to concatenate its nor‐
mal name (from <title> or aria-label) with a separate label, such
as a category value. For example, in a scatterplot the shape and color
of symbols might match visible labels in a legend, but the individual
data values would be conveyed only by position on an axis, without
a matching label:

<use id="data-A-13" aria-label="June 13: 36cm"
 aria-labelledby="legend-category-A data-A-13"
 class="data-point category-A" xlink:href="#symbol-A" />
<!-- ...somewhere else in the document... -->
<text id="legend-category-A">Variety A</text>

The final name of the <path> would be “Variety A, June 13: 36cm.”

Of course, if you use <title> instead of aria-label, it is better for
browser support to give the <title> element its own id, and use
that in the aria-labelledby value.

Linking Labels | 661

Example 17-3 shows a complete (but simpler) example of using
aria-labelledby in a labeled SVG diagram. The code is for the
comparison of stroke-linejoin values in Figure 13-5 in Chap‐
ter 13. The <text> elements are grouped separately from the graph‐
ics, to share inherited styles, but the aria-labelledby attributes
make the connections.

Example 17-3. Associating visible labels with graphics

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="390px" height="130px" viewBox="0 0 300 100">
 <title>Strokes with Different Linejoin Options</title>
 <symbol id="shape" viewBox="-18 -12 36 24">
 <path d="M-5,-10 H5 V-5 H10 L15,0 L10,5 H5 V10
 H-5 V5 H-10 L-15,0 L-10,-5 H-5 V-10 Z" />
 </symbol>
 <g fill="deepskyblue"
 stroke="blueViolet" stroke-width="4" stroke-opacity="0.8">
 <use xlink:href="#shape" width="100" height="75"
 stroke-linejoin="round"
 role="img" aria-labelledby="round-label" />
 <use xlink:href="#shape" width="100" height="75" x="100"
 stroke-linejoin="bevel"
 role="img" aria-labelledby="bevel-label" />
 <use xlink:href="#shape" width="100" height="75" x="200"
 stroke-linejoin="miter"
 role="img" aria-labelledby="miter-label" />
 </g>
 <g fill="blueViolet"
 font-family="Consolas, monospace" font-size="20"
 text-anchor="middle">
 <text id="round-label" x="50" y="95">round</text>
 <text id="bevel-label" x="150" y="95">bevel</text>
 <text id="miter-label" x="250" y="95">miter</text>
 </g>
</svg>

If you review the code for other figures in the book, you’ll notice
that we don’t usually use aria-labelledby for visible labels. Partly
that was to keep the code simple when we were discussing other
topics. But it is also because aria-labelledby is often more trouble
than it’s worth for noninteractive graphics.

A screen reader reading the code from Example 17-3 would read
something like: “Graphic: Strokes with Different Linejoin Options;
round image; bevel image; miter image; round; bevel; miter.” The

662 | Chapter 17: Beyond the Visible

text labels get read twice, once as the name of the graphic they are
labeling, and then again for themselves.

You could use aria-hidden to hide the labels themselves, but that
would cause its own problems: a screen-reader user wouldn’t be able
to select and copy the text. So it is often easiest—for noninteractive
labeled diagrams—to let the visible labels be the accessible objects,
and let the shapes be ignored as decorative content.

This recommendation is based on current
screen readers, which don’t do anything with
graphics except read out their names and
descriptions.
In future, as technology gets smarter, it will
become more important to correctly link graph‐
ics and labels. For example, someone with par‐
tial sight (or full sight but difficulty reading)
might want to tap on a graphic on a touchscreen
device and have the correct label read out. Other
tools like screen magnifiers might zoom in on a
labeled item, and also move its label to be visible
in the magnified view.
Hopefully, part of “getting smarter” will be not
reading labels twice by default, so that will no
longer be a concern.

Where aria-labelledby is essential is for interactive graphics. If
users need to click (or keyboard-activate) a graphical element, then
they and their assistive tech need to be able to correctly associate
that element with its visible label.

Roles and Relationships
If you are creating custom interactive components—with SVG or
HTML—in web pages, you should probably learn the basics of the
Accessible Rich Internet Applications (ARIA, or WAI-ARIA) set of
attributes.

The core of ARIA is the role attribute; we’ve already seen a couple
of examples of role in action. It is supplemented by various other
ARIA attributes. The others all have names that start with aria-*;
we’ve discussed a few of them, too!

Roles and Relationships | 663

The role of role, and of ARIA as a whole, is to let assistive technol‐
ogy correctly communicate the structure and function of web pages,
when it can’t be fully expressed by the native semantics—the mean‐
ing, as opposed to the syntax—of the markup elements (HTML or
SVG). It is most important when you’re using JavaScript to create
custom widgets and form elements.

ARIA roles are divided into the following categories:

• Landmark roles, like main and navigation, identify the major
regions of a web page so that assistive-tech users can quickly
jump to where they need to go.

• Document structure roles describe finer-grained web page
structure, like tables, lists, article feeds, and figures.

• Widget roles describe form elements and other interactive
controls.

• Live region roles identify sections of the web page that will
change often, indicating why they are changing and therefore
how important changes are to the user: changing text in a
countdown timer is less important than new text in an error
warning!

A role only changes how an element is commu‐
nicated to assistive tech users, not how it
behaves. Setting role="checkbox" means that a
screen reader will announce an item as a check‐
box, but it’s up to the web page author to make
sure it also behaves like a checkbox: that it can
receive keyboard focus, and that clicking or
pressing the space bar causes it to toggle
between checked and unchecked states.

In HTML5, the role attribute (and ARIA in general) shouldn’t be
used very often. Most roles are equivalent to an HTML element that
should be used instead: use <main> instead of <div role="main">;
use <button> instead of . As the Using ARIA
guide recommends, never use ARIA when HTML will do.

But SVG markup is inherently presentational, not semantic: ele‐
ments and attributes describe what the content looks like, not what it

664 | Chapter 17: Beyond the Visible

https://w3c.github.io/using-aria/
https://w3c.github.io/using-aria/

means. So if your SVG document has complex structure—and espe‐
cially if it contains interactive widgets—ARIA can help assistive
technology users understand how all the individual labeled graphics
are related to each other.

The ARIA attributes (including role) were only officially added to
SVG in SVG 2, but they have fairly good browser support, at least in
inline SVG. We’ve already shown examples of using the good ARIA
support to compensate for poor support for native SVG accessibility.

We’ve already discussed the two most common roles you’ll use:

• img is for indivisible and noninteractive parts of the graphic.
• group is for a section of the graphic that should have a shared

label, but also have accessible parts inside it.

For more complex graphics, consider adding the following docu‐
ment structure roles:

• heading indicates that SVG text is equivalent to an HTML
heading. Use the aria-level attribute to indicate which heading
element: its value is 1, 2, 3, and so on, to represent <h1>, <h2>,
<h3>:

<text role="heading" aria-level="1">The Invention</text>
<text role="heading" aria-level="2">Before</text>
 <!-- graphical diagram with labels -->
<text role="heading" aria-level="2">After</text>
 <!-- a different graphical diagram with labels -->

However, if the heading text is the only content in an inline
SVG, consider using an HTML heading element wrapped
around the SVG instead:

<h1><svg role="presentation"><text>...</text></svg></h1>

• region identifies large parts of the graphic that are more impor‐
tant than a regular group, similar to an HTML <section>. A
region must have a name, and is often aria-labelledby an ele‐
ment with a heading role:

<g role="region" aria-labelledby="before-heading">
 <text id="before-heading"
 role="heading" aria-level="2">Before</text>
 <!-- graphical diagram with labels -->
</g>

Roles and Relationships | 665

• list (on a <g>) and listitem (on individual graphics inside
that <g>) can turn a group of items into an organized list, equiv‐
alent to or and in HTML.
The benefit of a list over a group is that most screen readers
announce how many items are in the list, and which item they
are currently reading, so that it is easier for screen-reader users
to keep track of where they are. It’s therefore recommended
whenever a group has more than four or five labeled graphics
within it, if they are all similar items (such as data points in a
chart):

<g role="list" aria-label="2017 data">
 <use xlink:href="#icon-1" role="listitem"
 aria-label="January: $15.3K" x="20" y="17" />
 <use xlink:href="#icon-1" role="listitem"
 aria-label="February: $12.1K" x="40" y="13" />
 <!-- and 10 more, for the rest of the months -->
</g>

• contentinfo is used for “footer” information, such as credits
and sources.

For interactive graphics, you’ll need to use the full suite of ARIA
roles and other attributes. Remember that the role doesn’t change
behavior: you still need to use JavaScript to make your graphics key‐
board accessible, in a way that matches the role.

Future Focus
Roles for Graphical Documents

The original set of ARIA roles wasn’t designed for structured graphics. The only
graphical role was img, which explicitly cannot have any structure inside it.

Describing parts of a graphic as groups or lists can help convey structure, but it
does so by ignoring the graphical nature of the content. There’s nothing to tell
the user—or their software tools, which only see the processed accessible
view of the web page, as created by the browser—that the content is really a
data chart, and not just a bulleted list of text. This doesn’t help the develop-
ment of smarter assistive technology for navigating charts, maps, and other
complex graphics.

666 | Chapter 17: Beyond the Visible

https://w3c.github.io/aria/aria/aria.html
https://w3c.github.io/aria/aria/aria.html

The WAI-ARIA Graphics module tries to address this limitation by defining
graphics-specific document structure roles. The first version of the spec only
covers basic structural roles:

• graphics-document for the <svg> that defines the canvas

• graphics-object for a section of a graphic that represents a single, mul-
tipart thing (as opposed to a group of distinct items)

• graphics-symbol for an individual component that isn’t divisible but
also isn’t really an image on its own, such as the symbols used for points
in a chart or on a map

Future versions of the module are expected to include more specific roles for
common graphical structures like chart axes, legends, data points, and data
lines.

At the time of writing, browsers don’t recognize the new role names. Guide-
lines haven’t been finalized for mapping the roles to the APIs used by assistive
tech such as screen readers. And a complete set of roles for data visualization
and mapping is still years away.

1,000 Words Are Worth a Picture
A short <title> may tell you what you are looking at, but it doesn’t
tell you much about what it looks like.

The SVG <desc> (or description) element is designed for providing
more comprehensive alternative text, either about a particular ele‐
ment, or about the SVG document overall. Just like <title>, a
<desc> applies to its parent element.

As with <title>, SVG 2 allows you to provide
multiple descriptions in different languages. But
that isn’t currently supported in any software.

Ideally, the content of the <desc> element would be available to
users of screen readers and similar tools as an optional description,
that they can either read or skip over. Unfortunately, support for

1,000 Words Are Worth a Picture | 667

<desc> is currently even worse than support for <title>. Support
for the aria-describedby attribute isn’t much better.

If you want to be sure that the extra descriptive content is available
to screen-reader users, you can use the aria-labelledby attribute
to concatenate the description after the title. For example, in a line
chart you might use the <desc> to provide an accessible description
of the shape of the line:

<path d="..."
 aria-labelledby="title-3 desc-3">
 <title id="title-3">Average Monthly Precipitation</title>
 <desc id="desc-3">
 Values peak at more than 90mm in July, dropping to
 half that in May and September, and stay below 20mm
 between November and March.
 </desc>
</path>

You should, of course, make the data available as a table, too. Not
only are tables easier for screen-reader users to navigate, but they
are very useful for anyone else who wants to see the exact numbers!
But the prose description of the key patterns in the data is a more
direct equivalent to the information that a sighted user gains from a
quick look at the chart.

The lack of native accessibility support doesn’t mean that <desc> is
completely ignored by software today. Certain tools, such as Ink‐
scape, may use it to provide summary information, and websites
such as Open Clip Art take their descriptions from the primary SVG
<desc> element.

Unfortunately, this has meant that some authoring tools use <desc>
to provide their own metadata—of the “Made with Software X” vari‐
ety—which isn’t very helpful as an image description.

An interesting feature of <desc> is that the element can contain
markup content from other namespaces, particularly HTML. The
markup isn’t used (or expected to be used) in accessible descriptions.
It’s allowed as part of a strategy for SVG fallback in browsers that
didn’t support SVG graphics—you could use paragraph tags and
other structured HTML in the <desc> and in <title>, too:

<p> The following diagram shows the steps: </p>
<svg>
 <title><h3>Step-by-step instructions</h3></title>
 <g>

668 | Chapter 17: Beyond the Visible

 <title>Step 1</title>
 <desc><p>Take the widget with the do-hicky
 and attach it to the something-or-other
 carefully
 ...</p>
 </desc>
 <path d="..."/>
 </g>

This can be a functional fallback for inline SVG in older browsers,
which will ignore all the elements they don’t recognize. But beware:
by default those old browsers will treat the <title> element like an
HTML <title>, and not display it (although you can change this
with CSS).

For inline SVG that is processed by a modern HTML parser, content
inside <desc> is parsed like content in the main HTML document,
meaning it is treated as HTML elements unless it is a <math> (or a
<svg>). Only HTML “flow” elements are allowed: no sectioning
content or landmarks.

For SVG processed by an XML parser, HTML elements require cor‐
rect namespacing.

To create markup that works with either parser,
use an xmlns attribute to change the default
namespace, instead of an XML prefix—which
won’t be recognized by the HTML parser.

The browsers may not use complex content inside a <desc>, but you
can always enhance a graphic with JavaScript to display the titles
and descriptions, for all users.

Example 17-4 uses an SVG <foreignObject> element to display the
alternative text for a section of the graphic when that region is
moused-over, focused, or tapped by the user. The script directly
clones the HTML markup inside the <desc>, so there is no duplica‐
tion of content. Figure 17-2 shows one description displayed.

1,000 Words Are Worth a Picture | 669

Figure 17-2. SVG title and description, displayed by cloning content
into HTML elements

Example 17-4. Associating visible labels with graphics

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 viewBox="0 0 400 400">
 <title>Displaying Titles and Descs
 with Scripting and foreignObject</title>
 <style type="text/css">
#display {
 background: white;
 padding: 1em;
 box-sizing: border-box;
 overflow: auto;
}
 </style>
 <defs>

670 | Chapter 17: Beyond the Visible

 <g id="gem">
 <polygon points="0,25 35,0 65,0 100,25 50,100" />
 <g fill="white" fill-opacity="0.3">
 <polygon points="0,25 30,30 50,100" />
 <polygon points="100,25 30,70 50,100" />
 <polygon points="28,5 35,0 65,0 72,5 50,10" />
 <polygon points="50,10 30,30 50,35 70,30" />
 <polygon points="72,5 70,30 100,25" />
 </g>
 <g stroke="white" stroke-opacity="0.5" fill-opacity="0.5">
 <polygon points="100,25 70,30 50,100" />
 <polygon points="28,5 30,30 0,25" />
 </g>
 </g>
 </defs>
 <linearGradient id="background" y2="100%">
 <stop offset="0" stop-color="#446" />
 <stop offset="0.3" stop-color="#333" />
 <stop offset="0.8" stop-color="#333" />
 <stop offset="1" stop-color="#456" />
 </linearGradient>
 <rect fill="url(#background)" width="100%" height="100%" />
 <g>
 <use xlink:href="#gem" x="50" y="10" fill="red"
 class="gem" tabindex="0" role="img">
 <title>Red</title>
 <desc>
 <p xmlns="http://www.w3.org/1999/xhtml">
 Red is the color
 of blood, rubies and strawberries. It is the color
 of the wavelength of light from approximately
 620–740nm on the electromagnetic spectrum.
 </p>
 </desc>
 </use>
 <use xlink:href="#gem" x="150" y="10" fill="limeGreen"
 class="gem" tabindex="0" role="img">
 <title>Green</title>
 <desc>
 <p xmlns="http://www.w3.org/1999/xhtml">
 Green is the color
 of growing grass and leaves, of emeralds, and of
 jade. In the continuum of colors of visible light,
 it is located between yellow and blue. It is the
 color of the wavelength of light from approximately
 520–570nm on the electromagnetic spectrum.
 </p>
 </desc>
 </use>
 <use xlink:href="#gem" x="250" y="10" fill="blue"
 class="gem" tabindex="0" role="img">

1,000 Words Are Worth a Picture | 671

 <title>Blue</title>
 <desc>
 <p xmlns="http://www.w3.org/1999/xhtml">
 Blue is the color
 of the clear sky and the deep sea. On the optical
 spectrum, blue is located between violet and green.
 It is the color of the wavelength of light from
 approximately 450–495nm on the electromagnetic
 spectrum.
 </p>
 </desc>
 </use>
 </g>
 <foreignObject width="380" height="260" x="10" y="120" id="fo">
 <div xmlns="http://www.w3.org/1999/xhtml" id="display"
 style="max-height: 260px"></div>
 </foreignObject>
 <script>//<![CDATA[
window.onload=function(evt){
 var gems = document.getElementsByClassName("gem"),
 fo = document.getElementById("fo"),
 display = document.getElementById("display"),
 displayedElement;

 for (var index=0; index < gems.length; index++){
 var gem = gems.item(index);
 gem.addEventListener("mouseover", showTitle);
 gem.addEventListener("focus", showTitle);
 gem.addEventListener("touchStart", showTitle);
 };
 function showTitle(evt){
 var element = evt.currentTarget,
 title = element.getElementsByTagName("title")[0],
 desc = element.getElementsByTagName("desc")[0];
 if (displayedElement) {
 displayedElement.removeAttribute("aria-describedby");
 }

 display.innerHTML = "<h2>"+title.textContent+"</h2>";
 display.appendChild(desc.firstElementChild.cloneNode(true));
 displayedElement = element;
 element.setAttribute("aria-describedby", "display");
 forceRepaint();
 }
 function forceRepaint() {
 fo.style.width = fo.style.width;
 }
};
//]]></script>
</svg>

672 | Chapter 17: Beyond the Visible

Something about the HTML elements in the
<desc> causes Chrome to stop parsing CDATA
markup correctly, if you copy and paste this
example into an HTML file. The HTML ele‐
ments themselves parse fine, and CDATA is usu‐
ally fine within inline SVG markup.
That was causing the script to break, since the <!
[CDATA[part was being treated as the first line of
the script. The solution was to add JavaScript
comments (//) before the CDATA markup.

The benefit of this approach is that you keep your descriptions of
the diagram organized directly with the SVG content that they
describe. Imagine a much more complicated technical diagram with
multipart instructions, and then imagine having to update that dia‐
gram to add a new step, and you can understand why it would be
easier to keep both graphic and text together.

Here, we aren’t using much HTML formatting (only a colored span),
but the description could just as easily contain multiple paragraphs
or numbered lists. However, when using complex markup, remem‐
ber that the normal SVG <desc> behavior for screen readers (even
where supported) is to just read the plain text. For screen readers
that do correctly support long descriptions, the aria-describedby
attribute is updated whenever we display the descriptions as HTML
text, so that they can prompt users to jump to the formatted version
of the text.

If you were using inline SVG, the display HTML region could
easily be a regular HTML element, outside of the SVG markup,
instead of HTML inside a <foreignObject>. (And thereby gain sup‐
port in Internet Explorer, which doesn’t support <foreignObject>.)
The benefit of <foreignObject> is that it can be positioned and
scaled within your SVG coordinate system.

The downside of <foreignObject> is that they tend to be a bit
buggy. The extra forceRepaint method addresses one of those bugs.
It contains a seemingly redundant statement:

fo.style.width = fo.style.width;

The <foreignObject> contents are essentially an escape hatch out of
the SVG, but in many cases this means that the SVG renderer and

1,000 Words Are Worth a Picture | 673

HTML renderer need to coordinate which one is responsible for
rendering a certain section of the screen. In older versions of
Chrome, the <foreignObject> wasn’t properly refreshing after it
was changed. Resetting the width was enough to poke the browser
to clean up the screen correctly. It’s not pretty, but it worked.

Machine-Readable Metadata
There is one last metadata element defined in SVG. It has the terri‐
bly creative name <metadata>.

The SVG <metadata> element differs from <title> and <desc> in
one critical way. While those elements are designed for providing
human-readable descriptive content for the SVG drawing or appli‐
cation, the <metadata> element exists primarily to provide machine
readable annotations.

The SVG specifications don’t define anything more about
<metadata>. Instead, it is a container for content from other XML
namespaces. There are a number of XML metadata schemes that are
used in digital publishing and on the web, any of which can be
embedded inside an SVG <metadata> block.

The HTML parser does not do anything special
for <metadata>. It does not accept foreign-
namespaced XML content, nor even HTML
<meta> elements.
If you want to add machine-readable metadata
to inline SVG content, use HTML metadata ele‐
ments and attributes elsewhere in the page.

At its simplest, the <metadata> tag can be used to store publishing
information about a given drawing—its creator, its title, when it was
created and last updated, and so forth. This information is typically
contained within the Dublin Core namespace, using a publishing
standard that has been around for several years. More context-
specific metadata can use the Resource Description Framework
(RDF) metadata system.

Many SVG-creating software programs generate <metadata> sec‐
tions automatically or based on document properties that can be set

674 | Chapter 17: Beyond the Visible

http://dublincore.org
https://www.w3.org/RDF/
https://www.w3.org/RDF/

by the author using the software’s graphical interface. You can also
add <metadata> by hand or script later.

Example 17-5 shows one possible structure, containing different
types of metadata commonly used for graphics.

Example 17-5. A sample SVG license and other metadata

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:cc="http://web.resource.org/cc/">
 <title>SVG with Metadata</title>
<metadata>
<rdf:RDF>
 <cc:Work>
 <dc:format>image/svg+xml</dc:format>
 <dc:type
rdf:resource="http://purl.org/dc/dcmitype/StillImage"/>
 <cc:license
rdf:resource="http://creativecommons.org/licenses/publicdomain/"/>
 <dc:publisher>
 <cc:Agent rdf:about="http://openclipart.org/">
 <dc:title>Open Clip Art Library</dc:title>
 </cc:Agent>
 </dc:publisher>
 <dc:title>A Sample Picture</dc:title>
 <dc:date>2013-10-08T04:31:22</dc:date>
 <dc:description>This is a picture
 of a sample object.</dc:description>
 <dc:source>http://example.com/detail/sample_picture
 </dc:source>
 <dc:creator>
 <cc:Agent>
 <dc:title>jane_doe</dc:title>
 </cc:Agent>
 </dc:creator>
 <dc:subject>
 <rdf:Bag>
 <rdf:li>thing</rdf:li>
 <rdf:li>sample</rdf:li>
 <rdf:li>object</rdf:li>
 </rdf:Bag>
 </dc:subject>
 </cc:Work>
 <cc:License
rdf:about="http://creativecommons.org/licenses/publicdomain/">
 <cc:permits
rdf:resource="http://creativecommons.org/ns#Reproduction"/>
 <cc:permits

Machine-Readable Metadata | 675

rdf:resource="http://creativecommons.org/ns#Distribution"/>
 <cc:permits
rdf:resource="http://creativecommons.org/ns#DerivativeWorks"/>
 </cc:License>
 </rdf:RDF>
</metadata>
<!-- actual SVG code here -->
</svg>

In this case, the metadata defines three distinct namespaces: the
RDF (Resource Description Framework) namespace, which gathers
metadata; the Creative Commons (CC) namespace, which contains
license information; and the Dublin Core (DC) namespace, which
provides information about titles, creators, and agents. Each meta‐
data scheme has its own documentation about how to use the ele‐
ments and attributes.

The Creative Commons logos are themselves
available in SVG. These can help people identify
quickly what use can be made of a given piece of
artwork or other intellectual work.

Integrating metadata directly in the SVG file helps keep your docu‐
ments organized but still easy to edit. The information is useful for
applications that query generic XML/RDF content. SVG editors can
read this content to determine the provenance of any given file. But
remember: easy to edit means easy to remove. Someone can always
copy the file and remove your license and other metadata, the same
as for any other file format. Furthermore, when you are optimizing
SVG files for the web, you will need to decide for yourself whether
the extra data is worth the extra bytes.

On the web, properly formatted metadata may be used by search
engines to index files. Many social media tools also look for meta‐
data in the form of HTML <meta> elements when creating previews
for a linked document. Just like other metadata elements, the HTML
<meta> elements (when correctly namespaced) can be included
within an SVG <metadata> section in an SVG file—but you’ll have
to test to see whether the social media sites you are trying to support
actually look inside the SVG file to find them.

676 | Chapter 17: Beyond the Visible

http://creativecommons.org/about/downloads

Summary: Metadata for Accessibility and
Added Functionality
Metadata elements and attributes allow you to enhance your SVG
graphic with structured information about what it means. You can
embed any XML-compatible metadata in a <metadata> block, and
you can add titles and descriptions for sections of the graphic as well
as for the SVG as a whole. ARIA roles and attributes allow you to
further annotate the structure and function of different elements,
and are particularly important for interactive graphics.

Software support for SVG accessibility, however, has lagged behind
support for HTML accessibility. Even where it is supported, there
isn’t an established framework for how browsers should describe
complex graphical structures (like data charts and maps) to assistive
tools like screen readers. Things are slowly getting better, but ensur‐
ing optimal accessibility currently requires a lot of redundant ARIA
attributes.

More Online
The markup guide has a short reference to the metadata elements:

https://oreillymedia.github.io/Using_SVG/guide/
markup.html#metadata

For deciding on ARIA roles, you’ll want to return to the list in
“Roles and Relationships” on page 663. For further information,
consult these guides for website authors:

• Using ARIA
• WAI-ARIA Authoring Practices

Summary: Metadata for Accessibility and Added Functionality | 677

https://oreillymedia.github.io/Using_SVG/guide/markup.html#metadata
https://oreillymedia.github.io/Using_SVG/guide/markup.html#metadata
https://w3c.github.io/using-aria/
https://w3c.github.io/aria-practices/

CHAPTER 18

Drawing on Demand
Interactive SVG

If you only think of SVG as a replacement for raster image formats
like PNG and JPEG, then you’re only scraping the surface of what
SVG can be on the web.

Sure, static SVG has its benefits: small files that are easily updated,
accessible text and structured alternative text, crisp curves at any
scale or resolution. If that’s all you want, you are still making good
use of SVG.

But comparing SVG to static graphics is like comparing HTML web‐
sites to printed articles. There is so much that the web can do that
print can’t. The web is a dynamic, interactive medium. Web pages
can be static content documents, but they can also be software appli‐
cations, or any combination of the two. And that’s just as true for
SVG as for HTML.

This chapter explores the potential for using SVG in interactive web
content. It is not in any way a comprehensive discussion of the topic:
interactive SVG is as complex a topic as interactive HTML. We
cover the main ways in which you can enable and react to user
actions—what you do with that is up to you. Interactive SVG can be
used in web application interfaces, games, and explorable data visu‐
alizations, among many other possibilities.

As we’ve mentioned various times throughout the book, the capabil‐
ities of SVG differ depending on how you add that SVG to your
HTML. If you use an SVG file as an image, in an tag or as a

679

CSS image type, it will behave as an image. None of the components
will be interactive.

To add interactive SVG to a web page, you need to either use inline
SVG markup or embedded SVG objects (with <object> or
<iframe>). Alternatively (and especially for testing), you can open
the SVG files directly as the main web page—which becomes much
more practical once you include links from that SVG web page to
other pages on the web.

Linking It All Together
Hyperlinks are the threads that hold the World Wide Web together.
To be a true web document language, of course SVG has links.

The link in SVG looks familiar to most web developers: it’s created
with an <a> (anchor) element. The only catch is that (in SVG 1, at
least) the link’s target is set with an xlink:href attribute, instead of
href like in HTML.

Like every other use of xlink:href in SVG, the
attribute has been simplified to plain href in
SVG 2, and in most new browsers. But keep
using the xlink prefix for now, for support in
Safari and older versions of other browsers.

Since SVG 1.1, the SVG <a> also accepts the familiar target
attribute to indicate whether the linked page should replace the
SVG document (target="_self", the default), replace a higher-level
document in the same tab (_parent or _top, useful for when the
SVG is an embedded object but you want the link to replace the
entire web page), or open in a new tab (_blank). As we mentioned
in Chapter 9, link targets can also be named <iframe> or <object>
elements in the same web page, or a named new tab.

As we mentioned in Chapter 9, Microsoft
browsers don’t currently support named
<object> contexts as a link target.

680 | Chapter 18: Drawing on Demand

SVG 2 also adopts the download, rel, hreflang, and type attributes
from HTML. SVG 1 had used various xlink-namespaced elements
for similar purposes (but they never had any effect in browsers).

For anyone used to HTML hyperlinks, the most familiar use of links
in SVG would be to create linked text. You can do that. The <a> ele‐
ment can be nested inside a <text> to turn a span of text into a
hyperlink. The text inside the link inherits any SVG text layout from
the surrounding elements, just like a <tspan> with no layout
attributes. You can also set any CSS styles on the link that would
apply to a <tspan>, such as different fonts or fill styles.

Example 18-1 shows an example of using links inside an SVG
<textPath>, to create a curved navigation menu; Figure 18-1 shows
the result, when the final link is focused. The complete SVG code
could be copy-pasted as inline markup in the header of an HTML
file for the bestest blog navigation ever.

Figure 18-1. Links in SVG text used as website navigation

Example 18-1. Adding hyperlinks to SVG text layouts

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="400px" height="200px" viewBox="0 0 400 200">
 <title>SVG Navigation Links</title>
 <defs>
 <path id="p" d="M30,220 C50,40 350,40 380,220" />
 </defs>
 <style>
 svg {

Linking It All Together | 681

 background: #222;
 margin: 0 auto;
 }
 text {
 font: bold 28px Pacifico, sans-serif;
 text-anchor: middle;
 fill: orangeRed;
 }
 svg a:link, svg a:visited {
 text-decoration: underline;
 fill: royalBlue;
 }
 svg a:focus {
 outline: none;
 stroke: lightSkyBlue;
 stroke-width: 2px;
 paint-order: stroke;
 }
 </style>
 <style>
@import url('https://fonts.googleapis.com/css?family=Pacifico');
 </style>
 <text x="200" y="30"
 role="heading" aria-level="1"
 >Welcome<tspan x="200" y="180">
 to my website! </tspan></text>
 <text role="navigation">
 <textPath xlink:href="#p" startOffset="50%">
 <a aria-current="page">Home
 <a xlink:href="/archives.html">Archives
 <a xlink:href="/about.html">About Me
 </textPath>
 </text>
</svg>

This particular layout is broken in MS Edge and
Internet Explorer. When a <textPath> has mul‐
tiple element children (links or <tspan>), only
the first element is used to determine the text-
anchor alignment.
Also, Internet Explorer and Safari don’t leave
spaces between the links.
In other words, if you want to use SVG text lay‐
out for a creative website navigation, be pre‐
pared to do a lot of testing and fussing to get
everything working correctly in every browser.

682 | Chapter 18: Drawing on Demand

1 For more on aria-current usage and support, see “Using the aria-current attribute” by
Léonie Watson.

Unlike with HTML links, there are no default link styles for SVG. In
order for users to know that something is a link, you need to add
underline, color change, or other styles yourself. Similarly, default
focus styles are often missing or are problematic. Without focus
styles, keyboard users are lost, unable to tell which link will be acti‐
vated if they hit Enter.

The link styles in Example 18-1 are applied with the :link
and :visited CSS pseudoclasses, so they only apply to <a> elements
that are valid links, and not to the placeholder <a> element for the
current page in the navigation. The aria-current attribute conveys
the same meaning as the style change to supporting screen readers.1

Any styles set with a:link should also apply to
visited links, unless an a:visited selector over‐
rides them. But Firefox doesn’t implement it that
way, which caused the blue link color to disap‐
pear once a link had been visited, without the
second selector.

The link selectors in Example 18-1 are qualified to only apply to
descendents of an <svg> element, to minimize style clashes if the
SVG was copied inline. Alternatively, namespace-sensitive CSS
selectors could be used to ensure that the styles only applied to SVG-
namespaced <a> elements, and not to HTML links.

More Online
We briefly mentioned namespace-sensitive CSS selectors in Chap-
ter 3; there is a longer discussion in the extra article “XML Namespa-
ces in CSS”:

https://oreillymedia.github.io/Using_SVG/extras/ch03-
namespaces.html

Linking It All Together | 683

https://tink.uk/using-the-aria-current-attribute/
https://tink.uk/using-the-aria-current-attribute/
https://oreillymedia.github.io/Using_SVG/extras/ch03-namespaces.html
https://oreillymedia.github.io/Using_SVG/extras/ch03-namespaces.html

The keyboard focus styles, set with the :focus pseudoclass, are simi‐
larly qualified, to only apply to the links within the SVG. The
normal default focus style for links (and other focusable objects) in a
web page uses the outline property. But that created two issues:
Firefox couldn’t draw an outline around a span within a
<textPath> at all; in browsers that did draw the outline, it was
drawn as a large rectangle, ignoring the curve of the text.

So the default outline is explicitly turned off in the focus rule, and a
stroke is used instead. It’s not perfect. Stroking cursive text emphasi‐
zes the edges between letters, and in the case of underlined text on a
path, it also emphasizes the edges between the underline sections.
But it is, above all, functional. And function is what focus styles are
all about.

Interactive Style Switches
The CSS pseudoclasses are a simple way in which a graphic can be
made interactive. You don’t need to click a link for something to
change in Example 18-1: simply tabbing through the links (that is,
changing the keyboard focus by using the Tab key) will change the
styles set with the :focus pseudoclass.

There are three pseudoclasses that are specifically defined by user
interaction states:

• :focus applies to the element that currently has keyboard focus.
• :hover applies to an element that currently has the mouse

pointer positioned over a clickable region, and also to any of its
ancestor elements.

• :active applies to an element that is in the process of being
activated, meaning it is currently being clicked, during the time
when the mouse is being pressed. For HTML elements that are
normally activated by the space bar (buttons, checkboxes, and
radio buttons), it also applies if the space bar is being held down
while the element has focus.

These selectors can apply to any graphical SVG element, not just
links. But links are the only element in SVG that are by default
keyboard-focusable. Also remember that touchscreen users or key‐
board users won’t be able to trigger :hover and may not be able to
trigger :active states.

684 | Chapter 18: Drawing on Demand

There are other CSS pseudoclasses that can be used to create inter‐
active effects, with a little more work. In “Targeting the Interaction”
on page 698, we’ll discuss using the :target pseudoclass, in combi‐
nation with same-document links. And as we demonstrated in
Chapter 2, the form-status pseudoclasses, like :valid or :checked,
can be used to control inline SVG elements that are child or sibling
to HTML form elements.

A Better Image Map
Links on text are all very well, but SVG is all about graphics. Can
you create a hyperlink out of a <path> or a <use> or other graphic?
Of course!

The <a> element can be used to wrap any SVG graphical elements—
shapes, images, entire <text> elements, or reused icons:

<a xlink:href="home.html"
 aria-label="Acme Company Home Page">
 <use xlink:href="#acme-logo">
 <title>Acme Co.</title>
 </use>

In this context, the link element (<a>) behaves much the same as a
<g> for styling and layout purposes.

Do not use the <a> element within a <defs> sec‐
tion or inside a <symbol> or other unrendered
element. Many browsers still allow the unren‐
dered element to receive keyboard focus. Reused
copies of graphics containing the link may or
may not be functional, depending on the
browser.

When a link’s contents are entirely graphical, instead of text, be sure
to add a meaningful name to the link element itself or to its child
content, using the methods described in Chapter 17. The best-
supported method for screen readers would be to use an aria-
label attribute on the <a> element itself, but a <title> that is a
direct child of the link also has fairly good support. Using a <title>
has the benefit of adding tooltip hints for visual users on a device
with hover support.

A Better Image Map | 685

Elements with certain ARIA roles, including
button, are treated as if they don’t have any chil‐
dren. That means that if you use aria-label to
replace the name that would normally be gener‐
ated from the child content, that content
(whether plain text or alternative text on child
elements) is no longer accessible.
This problem is not SVG specific, but it may
show up more often in SVG because of the more
frequent need to use aria-label for alternative
text.

Graphical links, known as image maps, have been a part of HTML
since the 1990s. In brief, HTML image maps are defined by a <map>
element containing <area> elements representing the individual
links as vector shapes. The map is then applied to an element
as a cross-reference in the usemap attribute. The map and link areas
are themselves invisible; they only serve to define the hyperlinked
“hotspots” on the visible image.

There are several problems with traditional HTML image maps:

• The map hotspots cannot easily be made responsive: they are
defined in pixels, and cannot scale to match the image size. This
means that you cannot adjust the image size to match the avail‐
able screen size, because then the invisible linked areas will be
misaligned.

• Loading a large image (especially for navigation) often delays
the page. And browsers currently do not provide functional
links if the image cannot load at all.

• It’s difficult to add interactive feedback or hover effects to an
image map. Browsers show basic focus outlines around link
areas, but you cannot alter them with CSS like you can for nor‐
mal focus outlines.

• It can be challenging to generate the markup for the invisible
hotspot areas, as very few tools output the correct code.

You can eliminate all of these disadvantages by using linked regions
in interactive SVG. When correctly set up, all of the elements in an
SVG are responsive; you can load extra image files, but (if carefully
designed) your SVG can still be functional without them; you can

686 | Chapter 18: Drawing on Demand

use :hover and :focus styles to give interactive feedback; and it’s
easy to add <a> elements to SVG markup generated from graphical
editors—or however else you usually create SVG.

But what if the image you want to use as a map isn’t a vector image?
What if it’s a photograph? Can you make parts of a photograph
hyperlinks to different destinations?

You can’t, but you can.

You can’t make only parts of an SVG <image> element clickable. If
the <image> is a child of an <a> element, all of the image (after clip‐
ping) will be clickable. There is no way to have multiple <a> ele‐
ments associated with the embedded image, equivalent to the <map>
and <area> elements in HTML.

But what you can do is draw your <image> as a backdrop, and then
draw transparent SVG <path> (or other shape) elements, each one
inside a different link, as invisible hit regions over top.

Defining a <path> element to match a feature in a photograph is
exceptionally difficult to achieve by hand. If you are only creating a
link hotspot, it doesn’t need to be super-precise (a rough polygon
will do), but if you want to add visual enhancements then you usu‐
ally want a close match between the curves of your path and the
objects in the photo.

The regular solutions for converting images to vectors—using
“Trace” in Adobe Illustrator, for example—provide sketchy edges,
not overall shape outlines. A better solution is to load the image into
Adobe Photoshop or GIMP and use the advanced selection tools
(“Magnetic Lasso” tool in Photoshop, or “Intelligent Scissors” in
GIMP) to select the region you want. Selections can then be con‐
verted into paths within the software, and those paths can be
exported as SVG.

For this example, we’re using the photograph of a skateboarding
crew from Figure 18-2. The goal is to create an image map where
each person in the photograph is a link to their biography page. SVG
paths for each person were created with Photoshop selections.

A Better Image Map | 687

Figure 18-2. The photograph to use in the image map

To add a little more interactivity, emphasizing the clickability of the
shapes, we want to turn most of the photograph black and white, but
with the skater under inspection—a link that is hovered, touched, or
focused—remaining in color, as shown in Figure 18-3.

There are a number of ways to achieve this effect, some simpler than
others. The approach we use relies on multiple copies of the photo‐
graph:

• The bottom layer is the grayscale backdrop, created with a desa‐
turating filter effect.

• For each link, there is a color version of the photo, clipped to
the desired person’s outline, which will be faded into view when
that link is hovered or focused. The clipping paths use copies of
the same outline paths used for the hotspot regions.

• A final color copy of the photo provides the main color view
when no links are hovered. It will be faded in and out (with
opacity changes), so that the color doesn’t instantly disappear
and reappear when the clipping path is changed.

688 | Chapter 18: Drawing on Demand

Figure 18-3. The final result, when one link is focused

Example 18-2 provides part of the code. To keep it readable, we only
show the elements for one of the 11 linked skateboarders in the
image, and we skip the actual path data.

Example 18-2. Creating an interactive image map with SVG links and
clipping paths

SVG MARKUP:
<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 viewBox="0 0 2074 1382">
 <title>Color-transitioning Image Map Links</title>
 <style>
 /* styles could be in the file or linked */
 </style>
 <defs>
 <image id="team-photo" width="2074" height="1382"
 xlink:href="team-photo.jpg" />
 </defs>
 <filter id="grayscaleFilter"
 x="0" y="0" width="100%" height="100%">
 <feColorMatrix type="saturate" values="0"/>
 </filter>
 <use xlink:href="#team-photo" filter="url(#grayscaleFilter)" />

A Better Image Map | 689

 <a class="hotspot" id="konni"
 xlink:href="/team-bios/konni.html">
 <title>Konni</title>
 <path id="konni-mask-path" d="..."/>
 <clipPath id="konni-clip">
 <use xlink:href="#konni-mask-path" />
 </clipPath>
 <use class="clip" xlink:href="#team-photo"
 clip-path="url(#konni-clip)" />

 <!-- and 10 other links with paths and clipped images -->

 <use id="fade" xlink:href="#team-photo" />
</svg>

The <image> is defined once, within a <defs> section, and will
be reused as required. It and the SVG viewBox are sized in the
image’s original high-resolution pixel size, to match the path
data generated by Photoshop.

The base copy of the image is made grayscale with an
<feColorMatrix> filter effect.

The links come next, one for each person in the photograph,
arranged left to right so that keyboard focus moves in a predict‐
able order. Each link has a <title> to create a tooltip and an
accessible name.

The <path> element within each link outlines that person’s posi‐
tion in the photograph. The path is then reused in a matching
<clipPath> element, which creates a clipped color version of
that person’s shape in the photograph.

Finally, at the end of the document is the unclipped color copy
of the photo that will be faded in and out.

CSS STYLES:
.hotspot path {
 fill: none;
 pointer-events: visibleFill;
}

#fade {
 pointer-events: none;
}
#fade, .clip {

690 | Chapter 18: Drawing on Demand

 transition: opacity 400ms ease-in-out;
}
.hotspot:hover ~ #fade,
.hotspot:focus ~ #fade,
.hotspot:active ~ #fade { opacity: 0; }

.clip { opacity: 0; }

.hotspot:hover .clip,

.hotspot:focus .clip,

.hotspot:active .clip { opacity: 1; }

.hotspot:focus {
 outline: none;
}
.hotspot:focus path {
 outline: skyBlue 3px solid;
 outline-offset: 20px;
}

The <path> elements inside each hotspot link have no fill
(and by default, no stroke either); however, the pointer-events
value ensures that the fill region is sensitive to mouse events so
long as the path element is itself visible.

The #team-photo element—and all its <use> copies—are made
transparent to clicks and taps, with pointer-events: none.

The opacity changes on the #fade color layer (the top, unclip‐
ped image) and all of the clipped color images will have smooth
transitions.

The #fade color layer will normally be visible, but will transi‐
tion to transparent whenever one of the hotspot links is hovered
or focused or activated by touch.

The .clip clipped color images will normally be invisible, but
will be made visible when the user is interacting with the image’s
parent link.

The color changes will provide an indication of keyboard focus,
but color alone is not an accessible distinction—some people
can’t see color well, and some devices can’t display color well. To
ensure focus is always clear, a standard focus outline is also
used. However, if the outline was drawn around the link, it
would be drawn around the combined bounding box of all its

A Better Image Map | 691

children, including the unclipped dimensions of the <image>.
Because that would mean that every link would have the same
bounding box, it’s not very useful. So, that outline is turned off,
and an outline specifically around the <path> element is used
instead.

Browsers that support the outline-offset property will posi‐
tion the outline 20px outside the bounding box of the path,
keeping it from looking too cramped.

To be able to use the :hover pseudoclass on the <a> elements to
affect the top color photo layer, the complete photograph must come
later in the document than the links. That means it will be drawn on
top of the links (because of the lack of z-index support for SVG),
and would normally grab all the mouse hover, click, and tap events.
That not only would ruin the interactive effect, it would mean that
the links couldn’t be opened!

The pointer-events property is used to ensure that the invisible
paths in the links are sensitive to clicks, but that the images drawn
on top are not.

More Online
We also used clipping paths, images, and links in “Clipped Clicks”, an
extra example for Chapter 15:

https://oreillymedia.github.io/Using_SVG/extras/ch15-
imagemap.html

In that case, we were relying on the clipping paths themselves to
control pointer events, which doesn’t have as good browser sup-
port: Microsoft Edge and Internet Explorer do not clip the pointer-
events region when they clip an image.

The invisible “hit region” approach was also used for displaying
interactive text labels on hover in “Interactive Text,” an extra exam-
ple for Chapter 7:

https://oreillymedia.github.io/Using_SVG/extras/ch07-interactive-
labels.html

692 | Chapter 18: Drawing on Demand

https://oreillymedia.github.io/Using_SVG/extras/ch15-imagemap.html
https://oreillymedia.github.io/Using_SVG/extras/ch15-imagemap.html
https://oreillymedia.github.io/Using_SVG/extras/ch07-interactive-labels.html
https://oreillymedia.github.io/Using_SVG/extras/ch07-interactive-labels.html

Getting the Point(er) Across
The pointer-events property is one of those SVG features that has
spread into CSS-styling of other web content. But the standard CSS
version only includes a narrow slice of the SVG property’s function.
Many web developers have thrown pointer-events: none on an
element to fix a user interface, without any idea of all the SVG-
specific options for the property.

The pointer-events property determines whether an element
receives mouse and touch events that pass over its region of the
screen. When there are multiple elements in the same region, the
topmost layer (i.e., the last element in the DOM for SVG elements)
normally receives the event. If that element isn’t sensitive to pointer
events, the event gets passed to a lower layer.

There are nine different pointer-events options for SVG shapes.
They control whether the fill region and/or the stroke region of the
shape is sensitive to pointer events, and whether the hit region is
affected by the visibility, fill, and stroke properties. The
pointer-events setting is inherited.

The fill region is the shape that would be colored
if fill were a solid-color value, and is affected
by fill-rule.
The stroke region is the shape that would be col‐
ored if stroke were a solid-color value, and is
affected by stroke-width, stroke-dasharray,
stroke-dashoffset, stroke-linejoin, stroke-
linecap, and stroke-miterlimit. In other
words: it includes dashes and line caps/line
joins, but not gaps in a dashed stroke.

Using pointer-events, you can make unpainted or hidden ele‐
ments, or sections of elements, sensitive to pointer events (like we
did in Example 18-2).

The values have the following meanings:

Getting the Point(er) Across | 693

visiblePainted

If the element has visibility set to visible, then the fill
region is sensitive unless fill is none, and the stroke region is
sensitive unless stroke is none.

visibleFill

If the element has visibility set to visible, the fill region is
sensitive (whether it is painted or not); the stroke region is
never sensitive.

visibleStroke

If the element has visibility set to visible, the stroke region
is sensitive (whether it is painted or not); the fill region is never
sensitive.

visible

If the element has visibility set to visible, both the fill
region and the stroke region are sensitive, regardless of whether
or not they are painted.

painted

The fill region is sensitive unless fill is none and the stroke
region is sensitive unless stroke is none, regardless of the
visibility value.

fill

The fill region is sensitive, regardless of whether it is painted or
not, and regardless of the visibility value; the stroke region is
never sensitive.

stroke

The stroke region is sensitive, regardless of whether it is painted
or not, and regardless of the visibility value; the fill region is
never sensitive.

all

Both the fill region and the stroke region are sensitive, regard‐
less of whether they are painted or not, and regardless of the
visibility value.

none

No parts of the element are sensitive to pointer events.

694 | Chapter 18: Drawing on Demand

As mentioned in Chapter 15, the pointer-sensitive region of an ele‐
ment can also be restricted by clipping paths (but this isn’t yet sup‐
ported in Microsoft browsers). Hidden overflow also clips the
clickable region.

An element that has display: none is never
sensitive to pointer events, regardless of the
pointer-events property.

The default pointer-events value is visiblePainted, which means
that the shape is sensitive to mouse events only in the places where it
is filled and stroked, and only if it is visible. Fill regions with no fill,
stroke regions that are unstroked, and hidden elements do not
receive clicks, taps, or hover events.

However, even with the default pointer-events, you can still create
invisible hit regions. The opacity, fill-opacity, and stroke-
opacity properties never affect pointer sensitivity. Neither does the
transparency of patterns, gradients, or colors used for fill or
stroke.

This means, if you can’t remember all the key‐
words, you can always leave pointer-events as
the default and create transparent fill or stroke
hit regions using the opacity properties.

The one thing you can’t fake with opacity is having a section of an
element that is visible but not interactive. For that, you always need
pointer-events. In addition to turning off pointer sensitivity alto‐
gether with the none option, you may find it useful to ensure that
shapes have a consistent hover shape regardless of whether or not
they are being stroked.

Example 18-3 shows a simplified case. The shapes in the graphic are
given a hover effect that causes the stroke-width to increase from 0
to 24px wide (as shown in Figure 18-4). With the default pointer-
events option, this would cause the size of the hoverable region to
change underneath the mouse pointer, making the hover effect
flicker on and off for certain mouse positions. By making pointer
events only sensitive in the fill region, the changing stroke width

Getting the Point(er) Across | 695

does not affect the hoverable shape, preventing any flickering feed‐
back loops.

Figure 18-4. The hoverable shapes, with the second circle hovered

Example 18-3. Maintaining predictable hover regions despite changing
strokes

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 viewBox="0 0 400 200" width="400px" height="200px">
 <title>Hover Effects that Don't Affect Hover Regions</title>
 <style>
 circle {
 fill: currentColor;
 stroke: currentColor;
 stroke-width: 0px;
 pointer-events: visibleFill;
 transition: all 0.5s;
 }
 circle:hover {
 stroke-width: 24px;
 fill-opacity: 0.3;
 }
 </style>
 <circle color="crimson" cx="75" cy="75" r="60" />
 <circle color="springGreen" cx="200" cy="125" r="60" />
 <circle color="royalBlue" cx="325" cy="75" r="60" />
</svg>

Turning off stroke pointer events to avoid flickering hover effects
can also be useful if you are animating a stroke dash pattern. The
stroke region for pointer events only includes the dash shapes, not

696 | Chapter 18: Drawing on Demand

the gaps, so animated dashes means flickering hover effects. Again,
you’d want to use the visibleFill value to ignore the shifting
stroke sections.

On the other hand, a visible value (forcing both the fill and the
stroke region to be clickable, even if they are set to none) can be use‐
ful to create an invisible—but still clickable—stroke region around
the outside of shapes. With a large stroke-width value, this can
increase the clickable size of links or buttons in an SVG interface,
making it easier to use.

Think you’ve got a handle on pointer-events? Maybe? It gets
worse. Everything we’ve said so far only applies to SVG shape ele‐
ments. Other elements have their own rules.

For SVG text elements, pointer-events does not distinguish the fill
region and stroke region. Instead, the sensitive region is always
based on the character cell (em-box) rectangles: rectangles around
each character, where each rectangle is 1 em tall and as wide as the
normal spacing for that letter.

With the visiblePainted and painted values for text, the complete
character cells are sensitive if the text has either fill or stroke. With
the other values (including fill and stroke), the character cells will
be sensitive even if the text is not painted at all—although
visibility continues to have its normal effect on the visible*
values.

For <image> elements, the fill and stroke settings have no effect,
but visibility does. So all the visible* values are equivalent: the
element will be sensitive to pointer events so long as it is not hidden.
Similarly, fill, stroke, and painted are all equivalent to all. For
images, the sensitive region is the rectangular shape of the <image>
element.

The SVG specs suggest that images should only
be considered “painted” for pixels that aren’t
fully transparent. No browsers implement this
behavior: all treat an image as a rectangular ele‐
ment, regardless of transparency.

For CSS layout boxes, pointer-events behavior isn’t specified any‐
where. The browsers, however, all act as if there are only two

Getting the Point(er) Across | 697

possible values: visible and none. Any value other than none causes
a CSS layout box to be sensitive to pointer events over its entire
border-box region (after adjusting for radiused corners), but only if
it has visibility: visible.

There is no way to make a CSS layout box sensitive to pointer events
when it has visibility: hidden. You can hide it with opacity: 0,
since opacity never affects pointer events. But with opacity, you
can’t unhide a specific child element, like you can with visibility.

Inline <svg> elements, and the root <svg> ele‐
ment in an SVG file, have CSS layout boxes and
behave like other CSS boxes, not like SVG
graphics. That means they are pointer-sensitive
over the entire border-box region, unless
visibility is hidden or pointer-events is
none.

Within SVG layout, pointer-events only applies directly to graphi‐
cal elements that actually draw content to the screen. Groups, links,
<use> elements, and nested <svg> elements don’t directly capture
pointer events. However, containers will match the :hover class if
any of their child elements are hovered, and other pointer events
will bubble up the DOM tree (or shadow DOM tree) from children,
which by default inherit the container’s pointer-events setting.

Targeting the Interaction
Before we get to DOM events and JavaScript interaction, there is
one more important type of declarative (nonscripted) interaction:
links! Again! This time, not links to a different web page, but links
within the same web page.

In other words, a link where the destination is a target fragment: a #
followed by an element’s id.

Same-page web links are used all the time in HTML, to allow the
user to jump to a different part of a long document. If you have a
number of small inline SVG graphics within an HTML page, you
can use this type of same-page links to jump to the graphic from a
table of contents, or from a cross-reference in the main text.

698 | Chapter 18: Drawing on Demand

When most browsers scroll to an SVG element
within an HTML document, they scroll to the
top of the <svg> that contains it, not to the spe‐
cific element’s position. If your SVG is too large
to fit on the screen, this can mean that your
desired element is still offscreen.

If the SVG is already fully in view, jumping to a particular element
with a same-page link doesn’t cause a scroll effect. So why would you
want to do it? Because you can create other effects in response to the
change in the web page’s target.

There are two SVG-specific ways to change the graphic by using link
targets:

• SVG views, which we introduced in Chapter 9. By including
links to views within the SVG, you can zoom in and out of the
graphic dynamically. Unfortunately, you can’t currently make
that zoom effect transition smoothly; you’ll get a sudden switch
from one view to the other.

• SVG animation elements, which we’ll introduce in Chapter 19.
When an animation element is the target of a link, that anima‐
tion effect is started when you trigger the link.

A final interaction option is to use the CSS :target pseudoclass
selector to change styles on the targeted element or a sibling/child.
Although not SVG-specific, it can be put to good use within interac‐
tive SVG.

Example 18-4 uses :target styles to create an interactive version of
our stroke-linejoin comparison from Chapter 13 (Figure 13-5).
Rather than show the three stroke-linejoin values side by side,
there is one large sample shape, and three links for the three possible
values. The targets are the links themselves, which has the benefit of
not losing the keyboard focus position when a link is activated. The
shape is then restyled according to which sibling <a> element
matches the :target pseudoclass.

Figure 18-5 shows one possible state, after the round value has been
set (but focus has been shifted to the next value).

Targeting the Interaction | 699

Figure 18-5. An interactive SVG style sample, after the first link has
been activated (but the second link is focused)

Example 18-4. Using same-page links and :target to create a style
switch

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="390px" height="338px" viewBox="0 0 300 260">
 <title>Strokes with Interactive Linejoin Options</title>
 <desc>
 Selecting one of the stroke-linejoin options
 will apply that effect to the sample shape.
 </desc>
 <style>
 svg {
 font: 20px Consolas, monospace;
 text-anchor: middle;
 }
 .shape {
 fill: deepSkyBlue;
 stroke: blueViolet;
 stroke-width: 4px;

700 | Chapter 18: Drawing on Demand

 stroke-opacity: 0.8;
 }
 #round:target ~ .shape { stroke-linejoin: round; }
 #bevel:target ~ .shape { stroke-linejoin: bevel; }
 #miter:target ~ .shape { stroke-linejoin: miter; }
 .option { fill: indigo; }
 text { fill: blueViolet; }
 .option:focus, .option:hover {
 outline: none;
 text-decoration: underline;
 }
 .option:target text { fill: inherit; }
 </style>
 <symbol id="shape" viewBox="-18 -12 36 24">
 <path d="M-5,-10 H5 V-5 H10 L15,0 L10,5 H5 V10
 H-5 V5 H-10 L-15,0 L-10,-5 H-5 V-10 Z" />
 </symbol>

 <text x="50" y="250">round</text>

 <text x="150" y="250">bevel</text>

 <text x="250" y="250">miter</text>
 <use class="shape"
 xlink:href="#shape" width="300" height="225" />
</svg>

There are a few limitations to using :target styles for interactive
graphics. You can only alter CSS-stylable properties, not XML
attributes. And you can only have one target at a time, so you can
only have a single set of options to pick from.

The Big Event
There’s only so far you can go with interactivity using just CSS and
links. You can go a little further with animation elements (albeit
with worse browser support), but you’re still going to hit barriers.
For flexible interaction, you need JavaScript.

We’ve used JavaScript in scattered examples throughout the book to
build SVG documents, but haven’t touched on interactivity yet.

Interactive scripting on the web uses an event model. The user (or
sometimes the browser, behind the scenes) does something, which
creates an Event object. The event is associated with a particular
DOM element, the event’s target. For example, when you click the

The Big Event | 701

mouse or tap the screen, the target is the element under your pointer
that receives the pointer event.

After creating an event, the browser looks for any JavaScript instruc‐
tions you—the web page author—set for what to do with an event of
that type. Those instructions could be set as event handler functions
(using the onclick attribute or property, for example) or event lis‐
tener functions (set using an element’s addEventListener() func‐
tion). Depending on the type of the event, those handlers or
listeners could be set directly on the target or on one of its ancestors
in the DOM tree.

Most things about JavaScript event handling work the same for SVG
as they do for HTML. So we’re not going to discuss them in detail
here. Instead, we’re going to review a few cases where SVG gets a lit‐
tle more complicated.

Back in Chapter 2, we reviewed some of the trickier aspects of
scripting and SVG, mostly related to XML namespaces. All of that
still applies here. Thankfully, event objects don’t have namespaces.
The complications come from switching to the SVG layout model,
from dealing with <use> shadow-DOM elements, and from working
around the fact that SVG doesn’t have native input elements like
HTML does.

Counting Clicks
For our basic event-handler demo, we’re going to build a simple
SVG game. We’ll draw a bunch of circles (confetti pieces) on the
screen, and run down a timer, and the user has to click as many cir‐
cles as possible before the time runs out. We won’t worry about key‐
board interaction right now, which will keep things simpler.

Example 18-5 provides the JavaScript. We haven’t included the
matching markup here, because the script is designed to work with
many different structures, either inline SVG or standalone. The
requirements:

• an <svg> element in the document with an id of gameboard, to
which the click targets will be added, and which is styled to have
a dark background (although the script could easily be tweaked
for a different color scheme)

702 | Chapter 18: Drawing on Demand

• text elements (SVG or HTML) with the IDs of timer and
scoreboard, with appropriate styles on them, whose text con‐
tent will be overwritten as the game progresses

Additional style changes should be triggered by the clicked class on
the circles and the game-over class on the document root element;
we’ll show one possible stylesheet in Example 19-1 in Chapter 19.

Figure 18-6 shows a version of the game in progress.

Figure 18-6. An SVG game using click events on colored circles

Example 18-5. Using click events to create an SVG game with
JavaScript

(function(){
/* constants */
var width = 400, //viewBox width in px
 height = 300, //viewBox height in px
 nShapes = 80, //number of confetti pieces to draw
 timeLimit = 15, //total time in seconds,
 gameboard = document.getElementById("gameboard"), //the SVG
 timer = document.getElementById("timer"), //for time remaining
 scoreboard = document.getElementById("scoreboard"), //counter
 svgNS = gameboard.namespaceURI;

The Big Event | 703

var score = 0; //number of pieces collected so far

/* initialize */
gameboard.setAttribute("viewBox", [0,0,width,height]);
for (var i=0; i<nShapes; i++) {
 var circle = document.createElementNS(svgNS, "circle");
 circle.setAttribute("class", "clickable");
 circle.setAttribute("r", 8); //fixed size
 circle.setAttribute("fill", randomColor());
 circle.setAttribute("cx", Math.random()*width);
 circle.setAttribute("cy", Math.random()*height);
 gameboard.appendChild(circle);
}
var endTime = Date.now() + timeLimit*1000;
updateTime();
var timerInterval = setInterval(updateTime, 100);
updateScore();
gameboard.addEventListener("click", checkClick);

function randomColor() {
 /* returns a random color with at least 50% saturation
 and 50-80% lightness (for drawing on dark background) */
 var hue = Math.random()*360,
 sat = 50 + Math.random()*50,
 light = 50 + Math.random()*30;
 return "hsl(" + hue+"," + sat+"%," + light+"%)";
}
function updateTime() {
 var timeLeft = endTime - Date.now();
 if (timeLeft <= 0) {
 endGame();
 timeLeft = 0;
 }
 timer.textContent = (timeLeft/1000).toFixed(1);
}
function updateScore() {
 scoreboard.textContent = score.toFixed(0);
}
function endGame() {
 clearInterval(timerInterval);
 gameboard.removeEventListener("click", checkClick);
 document.documentElement.setAttribute("class", "game-over");
}
function checkClick(event) {
 var element = event.target;
 if (element.getAttribute("class")=="clickable") {
 element.setAttribute("class", "clicked");
 score++;
 updateScore();
 }

704 | Chapter 18: Drawing on Demand

}
})();

Customizable game-play constants are set at the top of the
script, including the size of the board, the number of confetti
pieces to create, the initial time for the countdown, and the IDs
of the elements we’ll be modifying.

The viewBox of the gameboard <svg> is updated to match the
dimensions that will be used in the script. The value is set using
an array of four numbers, which will automatically be converted
into a string as a comma-separated list.

For each confetti piece, we create a new <circle> element,
using the namespace-sensitive createElementNS method and a
namespace URI string we extracted from the <svg> element.

Each circle is given the same class name, a fixed radius, and
then a random color (using a function we define later in the
script) and a random position within the gameboard. The
Math.random() method returns a value between 0 and 1, so
multiplying it by width returns a value between 0 and width
(and similarly for height). The circles are then appended as
children of the gameboard <svg> element.

With the confetti in place, it’s time to start the timer.
Date.now() returns a timestamp from the system clock, meas‐
ured in milliseconds. Since our timeLimit is measured in sec‐
onds, we need to multiply it by 1,000 to convert. The
updateTime() function will update the timer display and also
check if we’ve run out of time. We call it once to start and then
tell the browser to call it repeatedly on a 100ms interval.

An updateScore() function sets the initial score display;
changes to the score, however, won’t come at predictable inter‐
vals, but based on user events. We add the event listener to the
gameboard <svg> element, so that it can react to click events
from all the child confetti elements.

The randomColor() function uses Math.random() and CSS
hsl() color notation to create random colors that will still be
bright and easy to see on our dark gameboard.

The Big Event | 705

The updateTime() function uses Date.now() again, comparing
it against our saved value, in order to calculate how many milli‐
seconds remain in the game. After checking whether the
endGame() method needs to be called, it updates the onscreen
timer, using the Number.toFixed(digits) method to format
the time nicely.

The endGame() function is fairly simple: it turns off the timer
using the clearInterval() method, removes the event listener
that was counting clicks, and then sets the game-over class on
the document, which will trigger additional changes in the CSS.
The class is changed using setAttribute(), not classList, to
avoid issues on Internet Explorer and other older browsers that
don’t support classList for SVG—but beware that this will
replace any other classes on the element. If using inline SVG in
a more complex HTML document, you may want to switch to a
more robust method.

The final method, checkClick(), is our event listener. The
browser calls it with the MouseEvent object as a parameter. The
event object’s target property is a reference to the element that
initially received the click. If that element is one of our confetti
circles, it will match our clickable class. We switch it to the
clicked class (again, using backward-compatible methods) so
that the CSS can change the styles and then update the score.

The styles used in Figure 18-6 make the clicked confetti pieces
almost transparent (with opacity). We can also make those pieces
fully transparent to further click events using pointer-events:
none, although the changed class means we will ignore those clicks
anyway:

.clicked {
 opacity: 0.1;
 pointer-events: none;
}

We don’t, however, remove the <circle> elements completely. That
makes it easy to switch styles when the game is over, to highlight the
pieces that were collected, as shown in Figure 18-7. The unclicked
pieces are turned to black with another style rule that overrides the
fill presentation attributes on the individual circles:

706 | Chapter 18: Drawing on Demand

.game-over .clickable { fill: black; }

.game-over .clicked {
 opacity: 1;
 filter: drop-shadow(0 0 3px gold);
}

Figure 18-7. A completed version of the confetti game

Although this game isn’t keyboard accessible, we still want to make
it accessible to screen readers and other assistive tech. (After all, it
could be played on a touchscreen even if your eyesight wasn’t per‐
fect.) Frequently updating text can be a distraction with screen read‐
ers, so appropriate ARIA roles are needed to tell the browser to be
more polite:

<div class="count" role="timer" aria-atomic="true"
 >Time remaining: 00.0s</div>
<div class="count" role="status" aria-atomic="true"
 >0 collected</div>

The ARIA attributes would be the same if you used SVG <text> ele‐
ments; this version is HTML to minimize the number of other
attributes you need.

The Big Event | 707

For the score count, the status role tells screen readers that the user
probably wants to know the changed value, and it should be read
out the next time there is a break in speech.

Adding aria-atomic="true" to the parent element indicates that
the changed value makes more sense if read out in context of the
entire element—for example, “13 collected” instead of just “13.”

For the timer, the timer role indicates that the value is changing
automatically and doesn’t normally need to be read out. However,
we might want to give the user a warning when time is almost up;
the aria-live attribute can be changed to indicate that the timer is
a bit more important.

To add that to our script, we would add a new game variable, and
then add one more check in the updateTime() function:

if ((!last5seconds)&&(timeLeft <= 5000)) {
 //less than 5 seconds left
 timer.setAttribute("aria-live", "polite");
 last5seconds = true;
}

Because we don’t want to reset the attribute every tenth of a second,
we use a Boolean variable to record the fact that we’ve already
passed the 5-second warning point.

The polite value for aria-live switches the timer to the same
behavior as the status role: the screen reader mentions the updated
value whenever it has a break in speech, counting down the last few
seconds on the timer. In contrast, the default behavior for a timer is
equivalent to aria-live="off".

Finally, to give visual users the same warning, you could change the
color of the timer text when it matches the [aria-live] attribute
selector.

Bubbling Out of Shadows
The confetti collector game is all very well. But what if you wanted
to collect something more interesting than confetti? For example,
maybe we would like to use the gemstone shapes from Example 17-4
in Chapter 17, creating a game that looks like Figure 18-8.

708 | Chapter 18: Drawing on Demand

Figure 18-8. An SVG game using click events on colored gems made
from <use> elements

There are a few changes to the code required. For starters, we’ll want
to predefine our gemstone shape as a graphic we can reuse.
Although we could define it as a <symbol>, we’re going to instead
define it as a nested <svg> so we can set a default size and offset the
position:

<defs>
 <svg id="gem" viewBox="0 0 100 100"
 x="-8" y="-8" width="16" height="16">
 <polygon points="0,25 35,0 65,0 100,25 50,100" />
 <g fill="white" fill-opacity="0.3">
 <polygon points="0,25 30,30 50,100" />
 <polygon points="100,25 30,70 50,100" />
 <polygon points="28,5 35,0 65,0 72,5 50,10" />
 <polygon points="50,10 30,30 50,35 70,30" />
 <polygon points="72,5 70,30 100,25" />
 </g>
 <g stroke="white" stroke-opacity="0.5"
 fill-opacity="0.5">
 <polygon points="100,25 70,30 50,100" />
 <polygon points="28,5 30,30 0,25" />
 </g>

The Big Event | 709

 </svg>
</defs>

The x, y, width, and height attributes on the gem <svg> set it to be
approximately the same size as our confetti circles, and similarly
centered on our reference point. That way, gems will never be more
than half-outside our gameboard, in either direction.

In the script, we switch the code for creating circles to instead create
<use> elements. The only extra hassle is having to use namespace-
sensitive methods for setting xlink:href:

for (var i=0; i<nShapes; i++) {
 var use = document.createElementNS(svgNS, "use");
 use.setAttribute("class", "clickable");
 use.setAttributeNS("http://www.w3.org/1999/xlink",
 "href", "#gem");
 use.setAttribute("fill", randomColor());
 use.setAttribute("x", Math.random()*width);
 use.setAttribute("y", Math.random()*height);
 gameboard.appendChild(use);
}

The randomColor() method could be tweaked slightly to create
brighter fill colors, since the gemstone drawing adds white tints
anyway. The x and y attributes on the <use> are directly equivalent
to the cx and cy attributes on the circles.

For most browsers, that’s all you have to change.

But not for all browsers.

What’s the confusion? The problem is that a <use> element doesn’t
receive click events directly. Instead, the cloned <polygon> shapes
that draw the graphic receive the clicks. The SVG 1 specs defined a
special DOM object for these cloned shapes, SVGElementInstance.
An SVGElementInstance wasn’t a full DOM Element, but it was a
valid EventTarget object in the DOM event model.

In browsers that implement the SVG 1 model for the <use> element
DOM, therefore, when we access the event.target object in our
checkClick() event listener, we won’t get the <use> element that we
need to modify. Instead, we’ll get one of these SVGElementInstance
objects for the cloned polygons.

710 | Chapter 18: Drawing on Demand

In Internet Explorer, MS Edge up to EdgeHTML
14, and older versions of Blink and WebKit, the
event.target of click events on <use> elements
is an SVGElementInstance object in the <use>
element’s shadow DOM.
Firefox never implemented the SVG 1 <use> ele‐
ment shadow DOM; the target is always the
<use>.
Blink, WebKit, and MS Edge 15+ have switched
to a model where event listeners in the main
document receive a modified Event object,
where the target has been switched to point to
the <use> element.

In the newer browsers (and in the SVG 2 specs), when the click
event “bubbles” out of the shadow DOM and into the regular DOM,
it is retargeted, so that all events that start in the shadow DOM
instead appear to come from the <use> element directly. This is part
of the encapsulation model of web components’ shadow DOM, but
it also makes SVG event handling easier for most cases.

The implementation details aren’t entirely consistent between the
different browsers and the spec yet, but the main result is the same:
in an event listener attached to the <use> element or one of its
ancestors, event.target points to the <use> element, not to the
shadow DOM.

But what can we do about the older browsers? We can make use of
the fact that the SVGElementInstance interface includes a property
that points to its host <use> element. If the event target has a value
for that property, it will point to the <use> element. Otherwise, the
event target is already a real-DOM element, and we can use it
directly.

The Boolean OR (||) operator in JavaScript can be used to collapse
the two options. The result of an OR operation between two Java‐
Script objects is the first object if it exists or the second object
otherwise:

function checkClick(event) {
 var element = event.target.correspondingUseElement
 || event.target;
 if (element.getAttribute("class")=="clickable") {
 element.setAttribute("class", "clicked");

The Big Event | 711

 score++;
 updateScore();
 }
}

This works in all the browsers—but Firefox is a little flaky about
whether it registers a click event at all. The problem seems to be that
if the mouse pointer shifts from one polygon to another between
mouse-down and mouse-up, it does not register as a “click” on
either element. Changing the event listeners to use mouseup (instead
of click) solves that problem.

A tap on a touchscreen should create mouseup
and click events. However, there may be a
slight delay (as the browser waits to see if you’re
doing a complex touch gesture).
You can listen explicitly for the touchend event
instead—but then be sure to call prevent

Default() on the touch event, so you don’t get a
mouse event as well.

Doing anything more complicated with <use> element shadow
DOM—actually trying to detect which shadow element was clicked,
for example—cannot currently be done in a cross-browser way. If
you need to make the individual elements within a clone interactive,
use the Element.cloneNode(true) DOM method to create the
clones, instead of cloning with <use> elements.

Measuring Mouse Positions
A nice feature about the code in Example 18-5 is that we never have
to worry about where the user’s mouse—or finger—is on the screen.
All we need to focus on is which element was underneath it. The
browser takes care of converting from (x,y) locations to element
positions.

But often, when handling pointer events in a graphical interface, you
do need to know exactly where the pointer is. And that requires
some extra work.

The MouseEvent interface used for click and mouseup events
(including those created by touch taps) has properties to help you
figure out pointer coordinates. In fact, they have multiple different

712 | Chapter 18: Drawing on Demand

versions. In modern browsers, mouse events can give you screenX
and screenY coordinates, clientX/Y, offsetX/Y, or pageX/Y. Each
pair is calculated relative to a different reference frame.

What we want for SVG is usually SVG user-space coordinates, for
however the coordinate system is scaled and transformed for the
current element. For example, for our clicking game we might want
to draw a symbol at the location of each “miss”: places where the
user clicked, but not on a clickable element. In order to position the
symbols correctly, we need to know the (x,y) position of that click
within the SVG viewBox.

Unfortunately, none of the MouseEvent options currently serve that
purpose.

For offsetX and offsetY, you don’t even get
consistent results cross-browser for SVG ele‐
ments.

So we’re going to need a little math, to convert mouse coordinates
into SVG coordinates. Luckily, the SVG DOM has some helper func‐
tions for us.

Every SVG element that can take a transform (basically, all the
graphical elements except <textPath> and <tspan>) has a
getScreenCTM() method. The CTM stands for cumulative transfor‐
mation matrix. It’s a matrix in the sense of a matrix transformation
function. We mentioned cumulative matrices in Chapter 11 when
discussing how the many transformation functions in a list can be
compiled into a single matrix.

The screen CTM is that and more. It defines how you can convert
points in that element’s coordinate system back into the original,
unscaled, untransformed coordinate system of the document win‐
dow. It includes transformations on this element and its ancestors,
plus viewBox scaling.

The Big Event | 713

Internet Explorer 9 also included the transfor‐
mation from browser zoom in the CTM—which
breaks the mouse-conversion method in IE9 if
the user has their browser set to anything other
than 100% zoom.

Here’s the confusing part: the coordinate system of the document
window is not the coordinate system used to measure the screenX/Y
mouse positions. But it is the coordinate system used to measure the
clientX/Y mouse positions. So getScreenCTM() should really be
called getClientCTM(). But it isn’t.

Using the getScreenCTM() transformation
matrix, we can convert between our local SVG
coordinate system and the client coordinate
system used by mouse events.

How do we convert the coordinates? Do we need to do the matrix
math ourselves? Thankfully, no.

There is an SVGPoint object (now renamed DOMPoint in the latest
browsers) that can do the math for us. Here’s how it works:

1. Create an SVG/DOMPoint object with the createSVGPoint()
method of any <svg> element. (The name of the method doesn’t
change, even if the object is now called DOMPoint.)

2. Set the x and y properties on the point object to the values of the
x,y position you want to convert.

3. Call the point object’s matrixTransform(matrix) method,
where matrix is a transformation matrix object like the one
returned by getScreenCTM() (an SVGMatrix or DOMMatrix,
depending on the browser).
The resulting value is a new point object, whose x and y proper‐
ties represent the transformed position of your point.

There’s just one more complication. The transformation matrix
returned by getScreenCTM() is the matrix for converting from SVG
coordinates to mouse-client coordinates. We want to do the reverse
transformation.

714 | Chapter 18: Drawing on Demand

Or more precisely, we want to do the inverse transformation. Invert‐
ing a matrix reverses its effect. And luckily for us, the transforma‐
tion matrix object has an inverse() method that does just the job.

So, let’s put it all together to add the “miss” shapes to our game.

First, we’ll edit our markup to add an extra group to hold these
shapes:

<g id="misses"></g>

The group should be layered above (meaning, after in the DOM)
any backdrop elements and optionally the text, but below (before)
our gemstones, which will be added by the script at the end of the
gameboard SVG.

In the constants section of the script, we’ll grab that element by its
ID for easy reference:

var misses = document.getElementById("misses");

And then we’ll modify our checkClick() event listener to react to
both hits and misses. Example 18-6 provides the new function code.

Example 18-6. Creating new elements when click events do not hit a
target

function checkClick(event) {
 var element = event.target.correspondingUseElement
 || event.target;
 if (element.getAttribute("class")=="clickable") {
 element.setAttribute("class", "clicked");
 score++;
 updateScore();
 }
 else {
 /* create a point for the click location */
 var clickPoint = gameboard.createSVGPoint();
 clickPoint.x = event.clientX;
 clickPoint.y = event.clientY;

 /* convert it to the coordinate system
 of the `misses` group element */
 var missPoint = clickPoint.matrixTransform(
 misses.getScreenCTM().inverse());

 /* add a circle element centered at that point */
 var circle = document.createElementNS(svgNS, "circle");
 circle.setAttribute("class", "miss");
 circle.setAttribute("r", 4);

The Big Event | 715

 circle.setAttribute("cx", missPoint.x);
 circle.setAttribute("cy", missPoint.y);
 misses.appendChild(circle);
 }
}

You’ll also want to add some styles for elements with the miss class.
For our demo, we used a thick semitransparent stroke to create a
bull’s-eye effect, and added CSS animations that cause the elements
to fade away (to zero opacity) a few seconds after they are added to
the document. The animation code—and the rest of the CSS for this
example—is included as Example 19-1 in Chapter 19.

The end result (for a player with rather poor aim) looks like
Figure 18-9.

Figure 18-9. A game with additional elements added based on mouse-
click positions

You could, of course, also keep count of the number of misses, or
generate a net score of some sort. It’s a game—get creative. And be
glad that the DOM handles so much of the math for you.

716 | Chapter 18: Drawing on Demand

Capturing the Keyboard with JavaScript-Enhanced
Links
For the click-counter games, we have been ignoring keyboard acces‐
sibility. For certain gameplay structures, keyboards just don’t make
sense. But for general website interactivity, keyboard input is
essential.

SVG 1 had no ability to handle keyboard controls—none. OK, well,
there was an access key feature for the animation elements, but none
of the browsers implemented that.

Because SVG 1 had full DOM support, you could react to keypress
events, just like you could react to any other event. But you couldn’t
control keyboard focus so that those key strokes were directed at a
particular element.

The browsers, or most of them, at least added basic keyboard access
to links. Keyboard users could tab to the link and activate it with the
Enter key.

Safari, by default, does not make links keyboard
accessible—in SVG or HTML. The user needs to
turn on an accessibility setting to allow tabbing
to links. Most users who prefer keyboard access
will know about this, but not all.

Because links can receive focus, and scripts can receive keyboard
events from the focused element, you can turn any valid link into a
widget that listens for particular keyboard inputs. Just be sure to
update the role and any other ARIA attributes so that all users
clearly understand how the element functions, and make sure that
you’re listening for the correct keyboard actions for that role.

We can therefore adapt Example 18-4 (the interactive stroke-
linejoin demo) to reflect that the interactive links used to set
the :target styles were really behaving more like buttons (changing
the current document) instead of like links (moving to a different
location).

The Big Event | 717

The normal keyboard behavior of a button is as follows:

• You can reach each button by pressing the Tab key.
• You can activate each button by pressing either the space bar or

Enter.

The links have the Tab behavior (in every browser except Safari),
and can be activated with Enter. So all we need to add (for most
browsers) is space-bar activation.

To get the correct behavior in Safari, you also
need to add the tabindex="0" attribute, which
we’ll discuss in the next section.

If the script runs, making the links behave like buttons, it should
also add the corresponding ARIA role, so assistive tech will know to
call them a button. Example 18-7 provides the additional JavaScript
for the demo.

Example 18-7. Making links behave like buttons, with JavaScript event
handlers

var xlinkNS = "http://www.w3.org/1999/xlink";

var options = document.getElementsByClassName("option");
for (var i=0, n=options.length; i<n; i++){
 options[i].addEventListener("keypress", spaceActivation);
 options[i].setAttribute("role", "button");
}

function spaceActivation(event) {
 if (event.charCode == 32) { //spacebar
 var option = event.currentTarget;
 var href = option.getAttribute("href")
 || option.getAttributeNS(xlinkNS, "href");
 if (href) {
 location.assign(href);

 event.preventDefault();
 return false;
 }
 }
}

718 | Chapter 18: Drawing on Demand

The elements with class option are the links that we are going
to turn into buttons.

Each is assigned the same event listener to detect space-bar key‐
presses; the listener function will check the event object each
time to determine which link received the event.

Once the listener is assigned, we can update the role of the ele‐
ments to button.

The spaceActivation() function gets called for any keypress,
but only does anything for space bars. The script doesn’t need to
respond to the Enter key (or, for that matter, to mouse clicks or
touch taps) because the regular link behavior already works in
that case.

The currentTarget of the event is the element that had the
event listener added to it; in other words, the option link that
received the keyboard event.

The function looks up the href value for that link, checking first
the default-namespace version of the attribute (in case we
switch to SVG 2–style links), and then the xlink version.

If either attribute returned a valid reference, we update the
location object (part of the global scope for the window)
accordingly.

Finally, because we’ve successfully handled the space-bar press,
we cancel the browser’s normal space-bar behavior (scrolling
the web page), using both the modern standard method
(preventDefault()) and the older compatibility approach
(return false).

Of course, now that you have the keypress-capturing script ready,
you could do whatever you want with it, not just activate a link. This
means you could create general-purpose link buttons that create
interactive effects directly, instead of using :target styles to react to
the click. Just remember to still give the <a> element a valid target
(even if it is just xlink:href="#") so that it is recognized as a func‐
tional, focusable link.

The Big Event | 719

You could extend the same method to other types of inputs.

For example, you could create a range slider by listening for arrow
keys instead of the space bar. Of course, the ARIA role would be
different (slider), and you would probably want to add other ARIA
attributes to explain the possible values. And of course you’d also
want the slider to be accessible to mouse and touchscreen users,
which means more event listeners and JavaScript to detect drag
actions.

So, it would be considerably more code. But the basic idea is the
same: a dummy link element grabs the keyboard focus, so that you
can listen for keyboard inputs.

One limitation, however, is that we are still relying on the links and
tab order to control focus in the first place. That means we can’t cre‐
ate proper radio buttons, which is what the buttons in Example 18-4
really should be: a set of choices in a group. But the proper behavior
of radio buttons is to use Tab to move focus in and out of the group
as a whole, and use arrow keys to switch focus between the individ‐
ual options. Links cannot (by default) do that.

Controlling the Keyboard with tabindex and focus()
Using links as buttons, with a bit of JavaScript help, solves many use
cases—but it is a bit of a hack, and it doesn’t support more complex
keyboard-focus control options. Proper control of keyboard focus
has long been a requested feature for SVG.

The aborted SVG 1.2 spec added a focusable attribute, with three
values: true, false, and auto (the default), meaning do what the
browser normally does. However, focusable was only ever imple‐
mented in Internet Explorer (and later MS Edge).

Currently, the main use of focusable is to turn off focusability on
inline <svg> elements. In Internet Explorer, every <svg> is focusable
by default, which can be annoying when that SVG is a noninterac‐
tive graphic, and can be really problematic when it is a hidden ele‐
ment used for definitions of symbols, gradients, and so on.

To fix keyboard focusability in Internet
Explorer, add focusable="false" to noninter‐
active inline <svg> elements, especially hidden
SVGs.

720 | Chapter 18: Drawing on Demand

SVG 2 deprecates focusable and instead adopts the HTML
tabindex attribute. The behavior is the same as HTML: a value of 0
adds an item to the regular tab order; a positive integer value puts it
in a priority tab order (not recommended); and a value of -1 makes
it focusable by scripts but not by tabbing.

You focus an element from scripts by calling the element’s focus()
method (also added to SVG 2). Scripted focus control is used for
creating widgets where focus is controlled by the arrow keys, similar
to the native behavior of radio button groups or drop-down lists. A
tabindex of -1 is also used to deactivate normally focusable ele‐
ments (links, in SVG) to create a disabled state.

Where supported, these features all work in SVG the same as
HTML. So if you want to create custom interactive widgets (such as
radio buttons) within a graphic, look up design pattern guidelines
for creating keyboard-accessible widgets in HTML, and work from
there.

But remember: support is not yet universal, so even well-coded SVG
widgets will not be keyboard-accessible everywhere.

Internet Explorer and other older browsers do
not support tabindex and focus() for SVG
elements.
MS Edge supports tabindex in inline SVG but
not in embedded or standalone SVG files (as of
EdgeHTML version 15), and doesn’t yet support
focus().

If you do look up recommendations for making accessible interac‐
tive widgets in HTML, the first advice you will (hopefully) find is to
use native HTML elements whenever possible. HTML <button>,
<input>, and related interactive elements should have keyboard
accessibility built in, making your scripts much simpler.

SVG doesn’t have any native input elements other than <a>. But that
doesn’t mean that you need to always script your own input widgets,
one keypress at a time.

To create the illusion of proper text inputs, drop-down lists, and
other inputs in SVG—without having to code all the interaction

The Big Event | 721

yourself—you can often borrow fully functioning input elements
from HTML and then hide them.

In this approach, the HTML elements are clipped, transparent, or
drawn offscreen, but they still handle keyboard (and screen reader)
accessibility. You then listen for events on the HTML, and update
the SVG display to match. For mouse and touch events, you handle
the events directly on the graphic elements, and then update the cur‐
rent value of the HTML elements, if required.

More Online
The simplest version of using HTML inputs to control SVG doesn’t
even require JavaScript. CSS pseudoclasses can instead be used to
transmit the HTML element’s state to an adjacent SVG element. We
used pseudoclasses like this in Chapter 2 to turn our stoplight
graphic into form-validation feedback.

Read more about using interactive HTML and CSS to control SVG,
including the final radio-button version of our stroke-linejoin
demo, in “Borrowing Ready-Made Widgets from HTML”:

https://oreillymedia.github.io/Using_SVG/extras/ch18-hidden-
input.html

Summary: Interactive SVG
SVG is so much more than an image format. When used on the web,
it can be a fully interactive web document. This means you can use it
to build games, educational demos, or graphics-heavy web applica‐
tions of all types.

Unlike HTML, SVG doesn’t come with built-in form input elements.
But you can do a lot with the one interactive element you do have—
the <a> link—and CSS pseudoclasses. You can do even more by
adding JavaScript or by integrating your SVG with interactive
HTML elements.

There are pitfalls to watch out for. Browser support for full keyboard
focus control is still not great in SVG. The <use> element shadow
DOM is not implemented in a cross-browser-compatible way. And
the coordinates used by mouse and touch events need to be

722 | Chapter 18: Drawing on Demand

https://oreillymedia.github.io/Using_SVG/extras/ch18-hidden-input.html
https://oreillymedia.github.io/Using_SVG/extras/ch18-hidden-input.html

converted into SVG coordinates using extra DOM methods. But you
can work around those obstacles if you plan for them from the
beginning.

More Online
An element and attribute reference for the SVG <a> element is
included in the “Document Structure Elements” section of the
markup guide:

https://oreillymedia.github.io/Using_SVG/guide/
markup.html#structure

A reference for the DOM methods we’ve used is in the “Select SVG
DOM Methods and Objects” guide:

https://oreillymedia.github.io/Using_SVG/guide/DOM.html

Summary: Interactive SVG | 723

https://oreillymedia.github.io/Using_SVG/guide/markup.html#structure
https://oreillymedia.github.io/Using_SVG/guide/markup.html#structure
https://oreillymedia.github.io/Using_SVG/guide/DOM.html

CHAPTER 19

Transitioning in Time
Animation

An interactive web graphic is, by definition, animated, in the sense
that it changes over time. But not all changes are created equal.

The interaction examples in Chapter 18 mostly involved simple
switches between different states: one moment, the graphic was in
one state, and the next moment, it had changed. Although this is
technically animation, it skips the most interesting aspects of anima‐
ted SVG graphics: the ability to show a transition between two states.
This transition (also known as tweening or interpolation) can
greatly enhance the user’s understanding of a change, making it eas‐
ier to comprehend a new state or fresh information.

Even without interaction, animation can enhance many graphical
elements, focusing the user on one area of the screen, or emphasiz‐
ing the relationships between different components. Extend those
little animated moments and connect multiple animations together,
and you can create a complete animated short film in SVG.

We’ve used animation in a few examples so far, but have not really
discussed what it means to animate a vector graphic, or how to plan
a project that involves animation.

This chapter runs through your options for creating animated SVG.
It is neither a detailed look at designing dynamic graphics, nor a
comprehensive introduction to any of the animation techniques.
Instead, it tries to lay out the options so you can decide which
approach is appropriate for the project at hand.

725

Even more than any other aspect of web design, planning for perfor‐
mance becomes particularly important in animation. If a browser
takes too long to update a graphic, the transition between states can
stutter and jerk, exhibiting jank, to use the animator’s term. Rather
than enhancing your website, a janky animation can make it look
broken—distracting and irritating your users instead of captivating
them.

To avoid the dreaded jank, you’ll need to plan—and test—your ani‐
mations carefully. There are often many ways to code a given effect,
but browsers can optimize certain operations better than others.

Scalable Vector Animations
Animation adds a new dimension to web design: time. Not only do
you need to know where to draw a given shape or piece of text, you
need to know when to draw it.

Traditional film animation—the type pioneered by Walt Disney and
other fledgling animation studios in the 1920s—involves drawing
individual pictures (stills, or frames) for each moment in the anima‐
tion. When the film roll switches from one frame to the next in
quick sequence, you create the illusion of life and movement.

Animation frames are to time what pixels are to space: the smallest
units of the graphic. Traditional animation and film are the time
equivalents of a raster image. They divide up continuous time into a
fixed number of intervals, and specify exactly what the image should
look like at each point. Just like raster graphics have a fixed spatial
resolution, so frame-based animation has a predefined temporal res‐
olution, known as the frame rate.

You know by now that vector graphics are different from raster. Vec‐
tor graphics specify paths in a theoretical mathematical coordinate
space, and let the rendering engine (the web browser) convert that
into pixels at whatever resolution they need.

Vector graphics define a path through space; it was only a short step
to apply the same concept to describe a path through time. Specify
the points—in space and time—that a graphic should pass through,
and let the rendering engine calculate the individual frames.

The vector approach to animation on the web was first used success‐
fully by Jonathon Gay in the mid-1990s for FutureSplash, which

726 | Chapter 19: Transitioning in Time

later became Flash. Taking a series of PostScript (vector) drawings,
FutureSplash would calculate the transitional stages between the
graphics, and render the interpolated states quickly via an animation
engine.

Although it was a controversial decision at the time, the original
SVG specs adopted vector animation principles in the form of dedi‐
cated animation elements. This set up SVG as an interactive,
dynamic graphics language—and a competitor to Flash—rather
than the static visual description it was originally conceived to be.

This “vector animation” approach is more commonly known as
declarative animation. You declare in your code what you want the
browser to do, and let it figure out how to make it so.

Declarative animation provides information on where and how an
animated element should appear, but does not define every step. The
code usually specifies the start and end points of an animation, and
may set some rules for how to get from one to the other, but it relies
on the browser to calculate the individual frames in between. For
that reason, this approach is also known as tweening.

The concept is similar to the assembly-line approach Disney took
later in his animation career, where keyframes—frames containing
major poses—were drawn by lead animators. When the keyframes
were complete, the work of drawing the remaining, in-between
frames was handed off to apprentices. In declarative animation, the
values you set in your code are the keyframes, and the computer is
the apprentice.

There are now two distinct syntaxes for declara‐
tive web animation: the SVG/SMIL animation
elements, and CSS animations and transitions.
We’ll review the main pros and cons of both in
this chapter, but with a focus on the CSS
approach, which has better browser support.
The supplementary material has additional
information about SVG/SMIL.

Within computer graphics, the opposite of declarative animation is
often known as procedural animation. Procedural animation pro‐
vides explicit, step-by-step instructions for how an animated graphic
should look at each point in time.

Scalable Vector Animations | 727

That doesn’t mean that you need to draw every frame ahead of time,
like in a film or video. Procedural animation computer programs
usually condense the drawing instructions by creating animation
loops. An animation loop is any function that runs at regular inter‐
vals and updates the graphic to create an animated effect. For exam‐
ple, the function might add 1px to the x-position of a graphic every
few microseconds. All the positions aren’t saved ahead of time, but
the code still provides an explicit instruction to the graphic at every
step.

SVG has also always had procedural animation, in the form of Java‐
Script loops and callbacks that can modify the document at regular
intervals. However, it’s no coincidence that many JavaScript anima‐
tion libraries abstract away the procedural details, allowing you to
declare your animations in parameters to the library’s methods. The
library code becomes your apprentice, drawing the in-between
frames and updating the DOM accordingly.

Similarly, the new Web Animations API is a declarative animation
language that you can access from JavaScript. In addition to being
built in to the browser, the API will have the benefit that it is the
browser—not someone else’s JavaScript code—that calculates the
individual frames. That means that the frames can be updated inde‐
pendently from other JavaScript code and event-handling processes.

Smoothly Switching Styles
A few examples so far have included animation, in the form of CSS
animations or transitions. The CSS syntax is easy to add as an
enhancement, with just a few lines of code—perfect for when the
animations were secondary to the main topic of an example. The
CSS animation properties are also now familiar to many web devel‐
opers, and they are fairly well supported in browsers.

Fairly well supported, but not universally. Particularly not for SVG.

CSS animations and transitions aren’t supported
for SVG-specific properties in Internet Explorer
(and aren’t supported at all prior to IE10).
Pre-2017 versions of MS Edge and Firefox did
not support them in SVG embedded as images.
Older versions of Blink and WebKit browsers
(up to Safari 8) required a -webkit- prefix.

728 | Chapter 19: Transitioning in Time

For detailed discussions of all the CSS animation and transition
options, you’ll need a dedicated book on the topic. Sarah Drasner’s
SVG Animations and Kirupa Chinnathambi’s Creating Web Anima‐
tions (both from O’Reilly) are good places to start. There’s also good
documentation on MDN.

This section will be a quick overview, and then a discussion of the
pros and cons for animating SVG, compared to the other animation
methods we’ll be discussing in this chapter.

CSS animations come in two varieties, transitions and keyframe ani‐
mations. Transitions are the simpler version, so we’ll start with
them.

CSS Transitions
CSS transitions tell the browser to apply any changes to specified
style properties progressively, over a set period of time. The transi‐
tion only applies if some other factor causes the style to change.
Transitions don’t change the styles themselves.

CSS transitions are applied to an element with the transition
shorthand property or by longhand properties of the form
transition-*:

• transition-property sets the name of the style property to
transition, if its value is changed. It can be all for transitioning
every property (but be careful of this getting out of hand), or
none (the default) to not apply any transitions.
The transition-property can also be a comma-separated list
of property names. All the other transition properties can either
be given in matching lists, or as a single value that will apply to
all properties.

• transition-duration sets the length of time over which each
property will be changed, in seconds (s) or milliseconds (ms).
It’s 0s by default, so no visible transition will be applied.

• transition-delay specifies an amount of time the browser
should wait after the time when a new style value applies (for
example, a :hover rule is triggered by a mouse-over), before
starting the transition duration. It is useful for staggering
changes to multiple properties, especially if one property cannot
be smoothly transitioned.

Smoothly Switching Styles | 729

• transition-timing-function describes the rate of change of
the property value over the transition duration. There are vari‐
ous keyword values (including the default ease) and a cubic-
bezier() function that allows you to specify the control points
for a curve from (0,0) to (1,1).
If none of the keywords create the effect you want, there are a
number of websites that have copy-and-paste cubic Bézier func‐
tions, and Chrome and Firefox now both have visual timing-
function editors in the dev tools.

The shorthand transition property sets all the values at once. For
the timing values, the delay is always specified after a duration; other
values can be set in any order, or omitted (which sets it to the default
value). For a list of different transitions, each item in the list sets all
the values for a particular transition property.

There are no SVG presentation attributes for
any of these properties, or for the animation
properties described in the next section. None of
them are inherited by default.

In Chapter 7, we used transitions to smooth out font-size change
for text labels that were resized based on media queries (Figure 7-4):

svg text { transition: font-size 0.5s; }

Not all properties can be smoothly transitioned through a set of
continuous values, like font-size can. There is no halfway point
between font-family: Arial and font-family: Times. Keyword
values and other properties with no valid mid-point will flip from
the old to the new value when the transition timing function passes
the midway position.

Originally, the CSS Transitions spec had a limited list of transitiona‐
ble properties, and font-family was not on it. The spec has since
been updated so that nearly all properties can be animated, using the
midway “flip” rule.

In browsers that don’t support transitioning a
given property, the change will apply immedi‐
ately, instead of at the mid-point of the transi‐
tion duration.

730 | Chapter 19: Transitioning in Time

At the time of writing (mid-2017), Chrome and
Firefox support the new rules, but Safari and MS
Edge do not. Also beware: most resources on the
web still refer to the old rules when discussing
“animatable” CSS properties.

Even in the browsers that have updated, transitioning the
transition-* properties doesn’t work, and you can’t transition the
display property, either. Animations and transitions are only calcu‐
lated for elements that are currently being displayed.

You can’t transition to display: none, but you can transition to
visibility: hidden. In SVG, the two are mostly equivalent, so
visibility should be used if you want to add a transition effect
before hiding an element. It works even in browsers that haven’t
been updated to the latest spec—visibility was always a transitiona‐
ble property.

For example, to fade out an element, you could transition opacity
to 0 over a 0.5s duration, and transition visibility to hidden with
a 0s duration but 0.5s delay. That way, you get the accessibility bene‐
fits of properly hiding the element—so it can’t receive keyboard and
pointer events—but still have a smooth fade-out transition.

You can’t use 0 without units for duration and
delay times; the CSS parser won’t accept it as a
valid declaration. Instead, always specify 0s or
0ms.

The following CSS would create that transition to apply whenever
you added the aria-hidden="true" attribute to an element with
JavaScript:

.may-be-hidden {
 transition-property: opacity, visibility;
 transition-duration: 0.5s, 0s;
}
.may-be-hidden[aria-hidden="true"] {
 opacity: 0;
 visibility: hidden;
 transition-delay: 0s, 0.5s;
}

Smoothly Switching Styles | 731

The transition-delay for visibility is only applied when the ele‐
ment is in its hidden state. That means, when we unhide the element
(remove the aria-hidden attribute), the delay won’t apply anymore.
The visibility will immediately turn back on, so that you can
actually see the opacity transition.

In general, if you want a different transition—or no transition at all
—for different directions of a state change, you change the transi‐
tion properties as part of the same style rule that changes the values.

CSS Keyframe Animations
CSS animations are applied to an element with the animation short‐
hand property or by longhand properties of the form animation-*.

CSS animations are more specifically known as CSS keyframe ani‐
mations, and also require an @keyframes rule. Animations apply a
series of new property values to an element. The timing of the ani‐
mation cycle is set in the animation properties on the element, but
the new style values are defined in the @keyframes rule set.

The @keyframes rule set is identified by a custom name, which is
followed by curly braces ({}) containing CSS rules. So the following
defines an animation effect named flicker:

@keyframes flicker { /* keyframe rules go here */ }

You have a lot of flexibility in the names you can use (only CSS-wide
keywords like inherit and initial are forbidden). However, try to
avoid picking a name that could be confused for an animation-
related keyword (like alternate or backwards), or your shorthand
animation declarations might not work as expected.

Inside an @keyframes rule set, the individual rules mostly look like
normal CSS style rules, but with one key (ahem) difference: key‐
frame selectors don’t identify elements in the DOM, they identify
positions in the animation cycle, as percentages of the animation
duration time.

The keywords from and to are also valid
keyframe-rule selectors, where from equals 0%
and to equals 100%.

732 | Chapter 19: Transitioning in Time

To set the same style properties to apply at multiple points in the
cycle, you can use a comma-separated selector list. This means that
these rules define the flicker effect as one that starts and ends at full
opacity but applies zero opacity at the halfway point:

@keyframes flicker {
 from, to { opacity: 1; }
 50% { opacity: 0; }
}

If you don’t specify the 0%/from or the 100%/to keyframe, both
default to the current values on the element. So if your elements
start at full opacity, this @keyframes rule is equivalent to the last one:

@keyframes flicker2 { 50% { opacity: 0; } }

In the original CSS animation draft—where only certain properties
were animatable—nonanimatable properties specified in
@keyframes rules were ignored completely. Under the latest spec,
these properties “flip” from one value to the next when the timing
function crosses the mid-point value, the same as for transitions.

The latest Chrome and Firefox support the new
rules; other browsers ignore keyframe declara‐
tions for many properties that only have key‐
word values.

However, animation properties and display still can’t be animated.
If you use a CSS variable in an animation property, you also cannot
animate that CSS variable. Otherwise, CSS variables are animated
using the mid-point flip rule, since the browser doesn’t know what
the intermediate values should be.

Declaring @keyframes does not have any effect on its own. To
actually make an element flicker with that animation, you would
need to reference the name of that keyframe set in the element’s ani‐
mation properties.

There are eight longhand properties for animations:

• animation-name is the name you specified in the @keyframes
rule (e.g., flicker), or a comma-separated list of multiple key‐
frame rules to apply. If it is a list, then you can give each anima‐
tion its own distinct timing values, by giving the other
properties as matching lists.

Smoothly Switching Styles | 733

• animation-duration is the total time for one run of the key‐
frame cycle, from 0% to 100%.

• animation-delay is a wait time to apply from the time the ani‐
mation rule applies to an element or the time the element is dis‐
played in the document until the start of the first duration.
The delay can be negative, which causes the animation to begin
right away, partway through the animation cycle. We used nega‐
tive animation delays for the stoplights in Example 1-8, so that
the lights would be staggered, turning on at different times.

• animation-direction sets whether to apply the keyframes in
normal order (0% to 100%), reverse order (100% to 0%), or to
alternate back and forth in each iteration.

• animation-timing-function sets the transition timing func‐
tion to be used between each keyframe value (that is, each rule
in the @keyframes block). It defaults to ease.
This is the only animation property that can be set within the
keyframes rules, to give a unique timing function for the transi‐
tion from that keyframe to the following one (in normal direc‐
tion). So the following code creates alternating “in” and “out”
eases between each keyframe:

.ball {
 animation-name: bounce;
 animation-duration: 5s;
 animation-timing-function: ease-in;
 /* default for each keyframe transition */
}
@keyframes bounce {
 /* start high, then each bounce is smaller */
 0% { transform: translateY(-50px); }
 20% { transform: translateY(-40px); }
 40% { transform: translateY(-30px); }
 60% { transform: translateY(-20px); }
 80% { transform: translateY(-10px); }
 10%, 30%, 50%, 70%, 90%, 100% {
 /* the bottom of each bounce */
 transform: translateY(0px);
 animation-timing-function: ease-out;
 /* applies to transition _after_ this state,
 i.e., for the upwards bounces */
 }
}

734 | Chapter 19: Transitioning in Time

• animation-iteration-count is a number for how many times
to repeat the keyframes cycle (default 1), or the keyword
infinite.

• animation-fill-mode allows you to extend the final values of
an animation after the animation is complete (forwards), to
apply the initial values during the delay period before the ani‐
mation starts (backwards), both, or none (the default).

• animation-play-state allows you to pause and restart an ani‐
mation without resetting the values; the value is either running
(the default) or paused.

You can also set all of the longhands using the animation shorthand,
which takes a comma-separated list of complete animation descrip‐
tions. Just like with transitions, the duration time must always be
given before the delay time, but otherwise the values can be given in
any order. Any of the subproperties can also be omitted from any
animation in the list, which sets it to the default value.

The stoplight animation from Chapter 1 (Example 1-8) used the fol‐
lowing code to define the keyframes, the shared animation proper‐
ties, and then the negative delays that cause each light to start at a
different point in the cycle:

@keyframes cycle {
 33.3% { visibility: visible; }
 100% { visibility: hidden; }
}
.lit {
 animation: cycle 9s step-start infinite;
}
.red .lit { animation-delay: -3s; }
.yellow .lit { animation-delay: -6s; }
.green .lit { animation-delay: 0s; }

That animation shorthand is equivalent to the following long-
hands:

.lit {
 animation-name: cycle;
 animation-duration: 9s;
 animation-timing-function: step-start;
 animation-iteration-count: infinite;
 animation-delay: 0s; /* re-set to initial */
 animation-direction: normal; /* re-set */
 animation-fill-mode: none; /* re-set */

Smoothly Switching Styles | 735

 animation-play-state: running; /* re-set */
}

The step-start timing function forces all frame changes to be dis‐
crete switches from one value to the next. For visibility, that
would happen anyway—since it can only take discrete values—but
step-start forces the switch to happen at the beginning of each
transition period instead of at the mid-point.

We also used CSS animations for some of the stroking examples in
Chapter 13 and its supplementary material. In Example 13-8 (which
cycled chain-link dashes around the shape) we used the following
code:

animation: cycle 0.5s 20 linear;

The linear timing function was essential to create the appearance
of continuous movement, without any speeding up or slowing down
during the 20 iterations.

In contrast, in the supplementary line-drawing example, we used an
ease-in timing function, which caused the transitions (drawing the
path and fading in the fill color) to start slowly but end sharply.

Although we didn’t include the CSS code in Chapter 18, we also
used CSS animations and transitions to enhance the confetti and
gem collection games. Example 19-1 provides the CSS used in the
final version of the figures (Figure 18-9). It assumes SVG text ele‐
ments, but could easily be adapted for HTML elements.

Example 19-1. Enhancing a scripted SVG game with CSS animations
and transitions

#gameboard {
 max-height: 100vh;
 max-width: 100%;
 background: #224;
}
.count { /* class for all the text elements */
 fill: lightYellow; /* or use `color` if using HTML text */
 font: 20px Consolas, monospace;
}
#timer, #scoreboard { /* the specific numbers being updated */
 font-size: 300%;
}
#scoreboard {
 transition: font-size 1s;
}

736 | Chapter 19: Transitioning in Time

.clicked {
 opacity: 0.1;
 pointer-events: none;
}
.miss {
 color: #88f;
 stroke: currentColor;
 stroke-width: 4px;
 stroke-opacity: 0.5;
 fill: currentColor;
 fill-opacity: 0.5;
 animation: flicker-fade ease-in-out 3s forwards;
}
@keyframes flicker-fade {
 from { opacity: 1;
 animation-timing-function: ease-out;
 }
 60% { opacity: 0.2; }
 70% { opacity: 0.3; }
 80% { opacity: 0.1; }
 90% { opacity: 0.2; }
 to { opacity: 0.0; visibility: hidden; }
}
#timer[aria-live] {
 animation: flash-color 0.3s alternate infinite;
}
@keyframes flash-color { /* again, use `color` for HTML text */
 to { fill: tomato; }
}

.game-over #scoreboard {
 font-size: 800%;
 animation: flash-color 0.5s 16 alternate;
}
.game-over .clickable { fill: black; }
.game-over .clicked {
 opacity: 1;
 filter: drop-shadow(0 0 3px gold);
}

The first animation effect is a transition on font-size applied
to the scoreboard. The transition kicks in when we later change
the font-size is by adding the game-over class to the document.

The elements with class miss were the circles adding to mark a
click that missed the game pieces. The animation (flicker-
fade) makes them fade to transparent a few seconds later, but
with a little bit of flickering before they disappear completely.

Smoothly Switching Styles | 737

The forwards fill mode ensures that after the animation is com‐
plete they stay hidden indefinitely.

Most of the keyframes in the flicker-fade set use the ease-
in-out timing function set on the circles, but the first transition
uses ease-out so that the very beginning of the animation
sequence starts without any easing.

In the JavaScript, during the last five seconds of the countdown
we add the aria-live attribute to the timer. An attribute selec‐
tor is used to add a matching visible flash-color effect, which
alternates for as long as the [aria-live] selector matches the
#timer element.

Because we use alternate in the animation property, the key‐
frame effect itself is very simple, only setting the to frame. The
animation therefore starts from the element’s original fill
color, transitions to tomato fill, and then transitions back in the
next iteration.

The same flash-color keyframe set is used to flash the score‐
board color after the game is over (starting while the scoreboard
font-size is transitioning to 800%). This time, the flashes are a
little slower (each on-off cycle taking 1s total, 0.5s in each direc‐
tion), and there are a finite number of flashes (16 iterations).

By defining all the animation effects in the game using CSS, the
JavaScript code was able to focus on the game logic and event han‐
dling. The classes and attributes set by the script are meaningful
(semantic), not specific to particular styles. The entire game could
be restyled, including the animation effects, without the JavaScript
being changed.

Benefits and Limits of Animating SVG with CSS
Animating SVG—or any other web content—with CSS has a num‐
ber of benefits. CSS transitions, in particular, are wonderful in their
simplicity, often only requiring a single line of code to enhance an
existing interactive project. Keyframe animations have a slightly
more complicated syntax, but they are still fairly simple to write
compared to the complexity of the effects you can create.

738 | Chapter 19: Transitioning in Time

CSS animation effects also have performance benefits. Because the
effects are declarative, the browser knows what future changes will
be required, and can optimize rendering calculations to avoid
repeating all the work every time it repaints the screen. It can also
skip calculations entirely if it knows that an element is currently off-
screen. And it can adjust the repaint frequency to prioritize other
processing tasks, such as event handling. In many cases, the anima‐
tion updates can run on a separate processor thread than JavaScript
and events—or even on a separate processor, the GPU instead of the
CPU.

You can usually create acceptable unanimated fallback in browsers
that don’t support CSS animations. If transitions are not supported,
you just have instantaneous value changes. If keyframe animations
are not supported, you get whatever base value you set on the ele‐
ment, with the keyframe declarations ignored. So the only extra
effort is to ensure that those base values create an acceptable appear‐
ance and a functional website.

But CSS animations and transitions have their limitations. Limita‐
tions that are important for animated SVG include:

• They can only animate CSS properties. For SVG, that leaves out
many attributes that you often want to animate. The possibili‐
ties will improve once there is better browser support for SVG
geometry and transforms in CSS, but there is no spec yet for
converting many SVG attributes to CSS properties.
SVG features you can’t animate with CSS, even in SVG 2,
include viewBox, polygon/polyline points, filter parameters,
and geometric attributes on text and graphical effects elements.

• Although an element can have multiple animations, you must
set all animations (or all transitions) in the same property decla‐
ration. If you apply a different animation (or transition)
property to the same element with a different CSS selector, one
replaces the other. If you have two classes that apply independ‐
ent animation effects, you’ll need a separate rule for the combi‐
nation of both classes:

Smoothly Switching Styles | 739

.flicker { animation: flicker 0.3s infinite alternate; }

.grow { animation: grow 5s forwards; }

.flicker.grow {
 animation: flicker 0.3s infinite alternate,
 grow 5s forwards;
}

If you do create a graphic with multiple interactive animations
being set and removed by different classes, be sure to test care‐
fully. There are now rules in the spec for how it should behave,
but browsers may not have caught up.

• Similarly, there is no way for changes made by one animation
effect to add to changes from another animation. If both anima‐
tions are changing the opacity or the transform property on
the same element, CSS cascade rules apply, and the last anima‐
tion (in the animation-name list) wins out.
To create a cumulative effect, you often need to add extra nested
elements (e.g., <g> groups) to your DOM, one for each anima‐
tion effect.

• You can’t easily coordinate one animation effect to start after
another animation finishes. You either need to string them all
together in a single @keyframes rule set, or adjust the
animation-delay on the second effect to always match the
duration on the first effect—and then adjust the delay on a third
effect to match the sum of durations of the first two effects, and
so on.
CSS variables and calc() will make this easier, but it can still be
fussy for long animation sequences.

• You cannot set an animation to repeat at regular intervals with a
delay between repeats; you need to incorporate the delay into
the percentage values used in the @keyframes rule set.

• You cannot precisely coordinate animations on different ele‐
ments. The animation timeline for each element starts (or re-
starts) when that element is added to the DOM, when it is given
a display other than none, or when the animation effect is
applied. If anything delays DOM or CSS parsing (or scripted
execution), some elements will get a head start compared to
others.

740 | Chapter 19: Transitioning in Time

• You can pause animations easily, but trying to fast-forward or
rewind animations by adjusting CSS properties is fussy and
awkward.

In other words: CSS animations and transitions are wonderful for
many effects, but they are not the solution for all your animation
needs on the web.

Future Focus
Additive CSS Declarations

There are new proposals for creating a CSS syntax that would allow one decla-
ration (such as in an animation) to add on to, or otherwise modify an underly-
ing value. If implemented this would address some of the limitations
mentioned in this section. However, this is still tentative, and it’s not yet clear
what this might look like, if it ever gets adopted.

Animations as Document Elements
The original syntax for declarative animation in SVG didn’t use style
properties to describe animations. Instead, each animation effect
was an XML element of its own; the element’s attributes define what
should happen and when.

The SVG animation elements have features that solve some of CSS
animation’s limitations—but, of course, they also have limitations of
their own.

SVG animation elements are based on SMIL, the Synchronized
Multimedia Integration Language. SMIL was part of the flurry of
XML language proposals from the late 1990s. It was orginally con‐
ceieved as a way to coordinate on-screen events with music (thus the
name), but evolved over time to become a declarative way to indi‐
cate when specific animation events should occur.

You don’t need to worry about a new XML
namespace to use the SVG/SMIL animation ele‐
ments. The relevant elements were all redefined
in the SVG namespace.

Animations as Document Elements | 741

The SVG version of SMIL provides a somewhat more limited subset
of the full specification, but it provides enough for handling reason‐
ably simple animation and even a certain degree of interactivity.

The biggest limitation for SVG animation elements is browser sup‐
port. Internet Explorer and MS Edge have never supported them.
The wider, non-SVG version of SMIL never caught on. And as CSS
animations become popular, the Chrome team announced that they
would be deprecating SVG/SMIL. Starting in Chrome 45, web pages
using the elements showed warnings in the Chrome developer’s
console.

The Chrome team have since put deprecation on hold, and the
browser still runs the animations without complaint. But the tempo‐
rary deprecation was enough to ruin any chance (for now) to get
SVG/SMIL support in MS Edge. Optimizations and improvements
in existing browser implentations are also low priority, as are any
new spec proposals.

This doesn’t mean that an SVG element that incorprates SMIL ani‐
mation won’t show in IE or Edge: only that the animation won’t be
shown. The initial, default state of the SVG will still be seen in
Microsoft browsers.

SMIL is very powerful, but its lack of support relegates it to the
“interesting, useful, but probably not for production in most web‐
sites” category. There are JavaScript polyfills, but none that can com‐
pare to the performance of the best JavaScript animation libraries.

For the web, only use SVG/SMIL animation ele‐
ments for nonessential enhancements to your
graphics. In particular, use it when CSS anima‐
tions cannot create your desired effect, and
when scripting isn’t a practical option (such as
for SVG used as an image).

The following sections, and the online supplementary material, pro‐
vide a basic introduction to the syntax, with a focus on features that
can’t be achieved with CSS animations and transitions.

742 | Chapter 19: Transitioning in Time

Animating Attributes, Declaratively
The primary SMIL animation element, conveniently named
<animate>, can modify nearly any attribute or style property on
another SVG element. It can switch instantly between values or
transition smoothly between them, and can do it at a fixed time, in
response to a DOM event, or chained after another animation.

In the simplest case, <animate> provides an interpolation service.
You specify the attribute or style property you want to change, the
value you want to change it to, and the duration (length of time) it
should take to get there.

The browser determines in-between values between the “base” value
set on the shape and the to value set in the animation, and updates
the attribute for every frame as the animation proceeds. This is the
same as CSS transitions, except that the attribute you’re changing
does not need to have a CSS equivalent.

For instance, suppose that you wanted to show a circle that grows
from a dot to a certain size. That would be animating the r attribute
from 0 to the full size. The code for defining that animation with
<animate> is given in Example 19-2.

Example 19-2. Simple animation using <animate>

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="100%" height="100%" viewBox="-200 -200 400 400">
 <title>Animated Circle</title>
 <circle r="0"
 fill="darkOrchid" stroke="plum" stroke-width="16">
 <animate attributeName="r" to="190"
 dur="5s" fill="freeze" end="10s"/>
 </circle>
</svg>

The <animate> element, by default, animates its parent element. So
we include it as a child of the <circle> element.

Alternatively, you can give an explicit target ele‐
ment for the animation by using an xlink:href
attribute to cross-reference the target’s id. The
examples in the supplementary material include
this approach.

Animations as Document Elements | 743

Most of the attributes on the <animate> in Example 19-2 are mostly
self-explanatory:

• attributeName specifies the name of the attribute we want to
change (here, r, the circle’s radius). The “attribute” can also be a
style property.

• to specifies the new value that we want to transition the
attribute to.

• dur defines the duration of the animation (here, 5 seconds).
Durations are by default infinite, which means that if you don’t
specify a duration, nothing will change in your lifetime. Dura‐
tions can be in seconds (s), milliseconds (ms), or even minutes
(min) or hours (h), or a combination like 03:30 (3 minutes, 30
seconds).

The confusing attribute in Example 19-2 is probably
fill="freeze".

This fill attribute comes from SMIL, not SVG, and has nothing to
do with the fill color of the circle. Instead, it tells the browser how to
“fill up” any extra time after the duration of the animation com‐
pletes. The freeze value says to keep the last value of the animation
“frozen in time” indefinitely, unless another animation replaces the
value.

The SMIL fill is therefore the equivalent of the
CSS animation-fill-mode property, although
the allowed values are different.

The default for SMIL’s fill is remove, which means that once the
animation is over, the animated effect is removed. The attribute
reverts to the base value set on the element. Here, that would revert
our circle down to nothing.

And that’s a problem. Freezing the value is all very well for browsers
that applied the animation, but without SVG/SMIL support
Example 19-2 is a picture of an empty screen.

744 | Chapter 19: Transitioning in Time

To design animations with acceptable fallback, you need the base
values to create an acceptable static graphic. This usually means set‐
ting the base value to whatever value you were going to “freeze” in
place anyway.

Then, how do you create an entry or reveal animation? With the
from attribute, which gives an explicit starting value for the
animation:

<circle r="190"
 fill="darkOrchid" stroke="plum" stroke-width="16">
 <animate attributeName="r" from="0" to="190"
 dur="5s" />
</circle>

Note that the to attribute on <animate> is still required. Unlike in
CSS, to in SVG/SMIL does not default to the base value.

Complex Animations
A single from-to <animate> effect isn’t terribly impressive. But you
can create complex combinations of different animation elements,
animating the same or different properties, on the same or different
elements, simultaneously or in sequence. An individual <animate>
element can also have multiple values (similar to CSS keyframes)
and repeats.

More Online
The wide variety of SVG/SMIL animation options are controlled by
interacting sets of attributes, which offer numerous ways to define
the timing and progression of each animation effect.

Read more, including examples of building complex animations
from multiple interacting animation elements, in “Using SVG/SMIL
Animation Elements”:

https://oreillymedia.github.io/Using_SVG/extras/ch19-SMIL.html

Animations as Document Elements | 745

https://oreillymedia.github.io/Using_SVG/extras/ch19-SMIL.html

In addition to <animate>, there are three other SVG/SMIL anima‐
tion elements:

• <set> applies a discrete change, setting an attribute to a different
value for a specified duration.

• <animateTransform> applies a specific transformation function
(translate, rotate, scale, skew, or matrix).

• <animateMotion> applies a complex transformation, defined
not with transformation functions but by the route, or motion
path, that you want the element to follow as it moves. The
motion path can reference an existing SVG <path> element, by
using a child <mpath> element to create the cross-reference.

The <animateMotion> effect is one of the highlights of SVG/SMIL,
allowing the creation of elegant effects with a simple, declarative
format.

Example 19-3 uses <animateMotion> to create an infinitely repeat‐
ing animation, such as you might use for a loader image (a place‐
holder image for when you are loading other content). It also
demonstrates a few more of the SVG/SMIL animation timing
attributes. Figure 19-1 shows three different stages of the animation
—but you’ll need to run the code to get the full effect.

746 | Chapter 19: Transitioning in Time

Figure 19-1. Three stages of an infinite animation of shapes moving
around a path

Example 19-3. Animating motion along a path

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 viewBox="0 0 400 160" width="4in" height="1.6in">
 <title>Motion on a Path, with <animateMotion></title>
 <defs>
 <polygon id="bead" points="-8,0 0,-8 8,0 0,8"
 stroke-width="2" />
 </defs>
 <path id="track" fill="none" stroke="dimGray"

Animations as Document Elements | 747

 d="M200,80 C-50,280 -50,-120 200,80
 C450,280 450,-120 200,80Z" />
 <use xlink:href="#bead" fill="orchid" stroke="indigo">
 <animateMotion dur="5s" repeatDur="indefinite"
 rotate="auto">
 <mpath xlink:href="#track"/>
 </animateMotion>
 </use>
 <use xlink:href="#bead" fill="gold" stroke="tomato">
 <animateMotion dur="5s" repeatDur="indefinite"
 rotate="auto" begin="-1s">
 <mpath xlink:href="#track"/>
 </animateMotion>
 </use>
 <use xlink:href="#bead" fill="springGreen" stroke="seaGreen">
 <animateMotion dur="5s" repeatDur="indefinite"
 rotate="auto" begin="-2s">
 <mpath xlink:href="#track"/>
 </animateMotion>
 </use>
 <use xlink:href="#bead" fill="skyBlue" stroke="mediumBlue">
 <animateMotion dur="5s" repeatDur="indefinite"
 rotate="auto" begin="-3s">
 <mpath xlink:href="#track"/>
 </animateMotion>
 </use>
 <use xlink:href="#bead" fill="indianRed" stroke="firebrick">
 <animateMotion dur="5s" repeatDur="indefinite"
 rotate="auto" begin="-4s">
 <mpath xlink:href="#track"/>
 </animateMotion>
 </use>
</svg>

The objects that we’re going to move along the path will be
<use> copies of a predefined <polygon> “beads.” The polygon is
a square centered on the origin and rotated so that the corners
of the square are positioned on the x- and y-axes.

The path (which we’ll move the beads along) consists of two
teardrop-shaped cubic Bézier curve segments on either side of
the center point. The result is a sideways figure 8, otherwise
known as an infinity symbol. The path is drawn visibly in the
SVG, with a thin gray stroke.

Each <use> copy of the bead contains an <animateMotion> ele‐
ment that defines a 5-second animation that loops indefinitely.
By default, the animation duration will be the time it takes to

748 | Chapter 19: Transitioning in Time

complete a full loop of the path. The rotate attribute tells our
beads to rotate to match the path.

The <path> element is referenced from the <mpath> element
within the <animateMotion>.

The subsequent beads are similar, except for different colors on
the <use>, and a different begin value on the animation ele‐
ment. Just like with CSS animations, negative start times can be
used to start an animation partway through its cycle.

The code for Example 19-3 amply demonstrates a significant limita‐
tion of the SVG/SMIL syntax: it is not DRY at all. Each
<animateMotion> element is almost identical, but the attributes and
child <mpath> element all need to be repeated. There is no equiva‐
lent to the cross-references used in SVG patterns and gradients to
make one effect a template for another.

OK, theoretically there’s a way to reduce repeti‐
tion, by using custom XML DOCTYPE declara‐
tions to set default attribute values for elements
of a given tag name. But if you don’t already
know what that means, you probably don’t
want to.

For <animateMotion> in particular, an important limitation is that
you can’t easily include a fallback static position for unsupporting
browsers. The extra transformation from the motion effect is added
to whatever position or transformation the element already had; it
doesn’t replace a base attribute. Without SMIL support, all the beads
are drawn centered over the origin of the SVG.

We’ll consider another—cross-browser compatible—way to create
this effect in the section on scripted animations.

Animations as Document Elements | 749

CSS Versus SVG
Motion Paths in CSS

Motion along a path is one of the most popular features of SVG/SMIL. In order
for CSS animations to compete, there needed to be a way to do the same with
CSS.

The CSS Motion Path module defines a series of properties:

• offset-path and offset-position define the path to use as the
motion path, and position it within the parent container or SVG coordi-
nate system.

• offset-distance specifies how far along the path the current element
should be positioned.

• offset-anchor defines the position in the current element that should
be positioned exactly on the path (similar to transform-origin, or the
refX and refY attributes of markers).

• offset-rotate sets whether to autorotate the element to match the
angle of the path.

• offset is a shorthand that sets all of the above.

The actual motion would come from animating the offset-distance prop-
erty, using the regular CSS animation or transition syntax. However, the same
offset properties could be used to create static layouts of elements posi-
tioned along a path.

The original draft of the spec used property names
starting with motion-*. They were changed to offset-
* to reflect the fact that the properties themselves
describe static positions, not motion.

Drawing shapes at offset distances along a path is also included in the new
SVG Markers proposals. The difference with offset-path is that the posi-
tioned objects would be fully accessible and interactive elements, not decora-
tions on the path. For example, you could position highway-sign labels on a
map, and still have the highway number be accessible text.

At the time of writing, there is an experimental implementation of the offset
properties in Chrome, although it does not support the full spec.

750 | Chapter 19: Transitioning in Time

Benefits and Limits of SVG/SMIL Animation Elements
The SVG/SMIL animation elements have a number of capabilities
that CSS animations and transitions don’t, some of which we’ve cov‐
ered here and some of which we describe in the supplementary
material:

• They can animate attributes, not only styles.
• Many independent animations can be set on the same element,

and animations of the same property can be additive.
• Progressive animations can be defined as accumulative repeats.
• Animations on the same or different elements can be synchron‐

ized or chained together, optionally with time offsets.
• By tying an element’s begin time to its own end time, plus an

offset, you can create animations that repeat after a delay.
• You can specify the number of repeats in terms of the total ani‐

mation time instead of as a repeat count.
• Animation times are coordinated for the entire document; with

JavaScript, you can pause or reset all animations in sync.
• Animations (or <set> changes to any value) can be triggered by

any DOM event, not only the ones that create CSS pseudo‐
classes.

• You can animate the display property (although, for SVG,
display is only a benefit relative to visibility if you are hid‐
ing and showing text spans).

However, the syntax also has some limitations compared to CSS:

• Each animation element can only animate a single target ele‐
ment, and there’s no easy way to copy attributes from one ani‐
mation to another. This means a lot of repeated code for many
designs.

• There is no shorthand way to create alternating animations, or
animations from a specified value to the base value specified on
the element, so you end up repeating values.

• There are no keyword easing (timing) functions, there’s no way
to create bounce/overshoot easings without adding extra
values, and there is no way to specify that the same easing

Animations as Document Elements | 751

should apply for multiple transitions in a values list. Overall,
the easing syntax is just painful to use compared to CSS.

• Applying a backward fill to a delayed animation requires a sepa‐
rate <set> element.

• You cannot easily pause individual animation effects in process.
• Transitions to and from a state that can last an indefinite

amount of time (e.g., a hover effect, or a toggle button) are very
difficult to coordinate using the event-triggered timing model.

But of course the biggest limitation of the animation elements is the
lack of support in Microsoft browsers. This limits their practical use
on the web, which means that other browsers don’t have a strong
incentive to improve their implementations. Bugs accumulate and
performance is ignored.

The solution in most cases is JavaScript, which we’ll discuss in the
next section.

But JavaScript does not work in SVG used as images, or in some
non-web SVG applications. And it is often overkill for simple deco‐
rative animations that can be defined in a few lines of SVG/SMIL
code.

That means there is still a use for SVG/SMIL on the web, but not as
the centerpiece of an animated web interface.

Scripting Every Frame
Anything you can do with SVG/SMIL and CSS animations you can
do with JavaScript, because JavaScript can modify every attribute
and style property on any element. JavaScript can also animate text
content, not only its visibility. Scripts can create or delete elements,
and can rearrange the order of elements in the DOM, which is
needed—for now—to simulate z-index changes in SVG.

The downside—for now—is that your script needs to tell the
browser what to draw at every single frame of the animation, not
only at the keyframes. And those calculations normally run in the
main JavaScript thread, which can conflict with other code that you
have running.

At its most basic, animating your document with JavaScript is just
updating attributes or style properties to new values. We’ve already

752 | Chapter 19: Transitioning in Time

done that in many different examples. But in order to transition
those changes, like you can with CSS and SMIL animations, you
don’t want the full change to happen all at once. Instead, you need to
spread out those updates over the duration of the animation.

To create the appearance of continuous change, the updates need to
be made faster than the human eye can detect the individual
changes. Just like the difference between a slideshow and a film, the
secret to creating moving pictures is to change the graphic fre‐
quently, but only a little bit each time.

The accepted standard for “continuous” anima‐
tion on the web is 60 frames per second (fps), or
about 16ms betweeen updates. But this is only a
rough approximation.
If the updates from one frame to the next are
subtle, you can get away with a lower frame rate
(that is, longer time between updates) and it will
still look continuous. However, if the updates
involve significant changes—like moving long
distances across the screen—even 60fps can look
jumpy. You may need to soften the change with
a motion blur effect, to create the appearance of
smooth motion.

Continuous scripted animations therefore require repeated code
that runs at regular intervals, updating values a little bit at each iter‐
ation. That means we need two things:

• an animation update function that will keep track of all the in-
progress animations, and calculate and apply the current values
based on the current time

• a timer function that will call our update function at regular
intervals

Together, these create our animation loop.

The animation update functions can be as simple or as creative as
you like. We’ll give some basic examples, but we can’t cover all the
possibilities. But the timer functions are what drive your custom
JavaScript animation, and there are only a few options for them.

Scripting Every Frame | 753

Future Focus
Declarative Scripted Animations

The Web Animations API aims to address some of the main limitations of Java-
Script animation. It allows you to create animation effects in JavaScript, with a
declarative syntax that is logically similar to CSS and SMIL animations. The
browser would then calculate the individual frames on its own, the same as it
does for declarative animation. Your JavaScript code would have full control
over when the animations run, but the API includes chaining options and uni-
versal timeline control, similar to SMIL.

The Web Animations API was inspired by the syntax of existing JavaScript ani-
mation libraries, which nearly all provide declarative API methods. Those ani-
mation libraries also do their best to optimize the frame-by-frame code for you
—some more successfully than others.

But even the best JS libraries have limitations compared to a native browser
API. They don’t have access to the dedicated browser-rendering threads, and
the library code requires extra resources to download and process.

The Web Animations API is part of a larger Web Animations specification,
which aims to provide a consistent underlying model for all the native web-
browser animation options: CSS, SMIL, and JavaScript.

At the time of writing, the Web Animations API only includes animation of CSS
style properties. An earlier syntax for animating attribute values was dropped
from the level 1 spec (but might be reintroduced later). Future levels of Web
Animations are also expected to include ways to link animation progression to
scroll or touch-gesture events, instead of requiring fixed time durations.

As of mid-2017, the core animate() method has been implemented in
Chrome/Blink and in Firefox. You currently need a polyfill for support in WebKit
and IE/Edge, and for more advanced methods.

Triggering Regular Updates
In Chapter 2, we used JavaScript to animate our stoplight graphic. It
wasn’t a continuous animation, but it was an animation. The update
function (cycle() in Example 2-2) changed which versions of the
lights were visible to create the effect of one light switching off and
another light switching on.

754 | Chapter 19: Transitioning in Time

https://w3c.github.io/web-animations/
https://github.com/web-animations/web-animations-js

To trigger our cycle updates once every 3 seconds, we used the
setInterval() JavaScript function. We also used setInterval()
in Chapter 18, to update the countdown timer in our game.

The setInterval() function is a core JavaScript function. It takes
two parameters: a function object and a time in milliseconds. The
browser will then run that function repeatedly until the interval is
cancelled, with a delay between runs of approximately the number
of milliseconds you specify.

You cancel a previously set interval with the
clearInterval() method, passing it the token
that was returned when you initially called
setInterval(). Example 18-5 includes a
clearInterval() after the timer is complete.

setInterval() and the similar, but nonrepeating setTimeout()
used to be the only options available for regularly updating Java‐
Script animations.

If you’re creating a discrete animation that only updates every few
seconds—like the stoplight—then setInterval() is still a great
choice.

The problem comes when you want to update your animation fre‐
quently, like every 16ms for a 60fps continuous animation.
setInterval() is a little too bossy. The browser will try to keep up
with that interval even if it has other code to run, and even if the
web page is currently in a nonactive browser tab (although browsers
are changing both behaviors, to keep interval-based code from lock‐
ing up your computer completely).

Even the every-100ms update we used for the timer in Example 18-5
(10fps) is getting a little too frequent for setInterval().

If the timer code were more complicated, and the game were inline
in a web page with a lot else going on, there could be noticeable lags.
If the timer ran indefinitely—instead of for max 15 seconds—it
could slow down your browser if you left it open in a background
tab.

Modern browsers have a better solution for triggering animation
updates: requestAnimationFrame().

Scripting Every Frame | 755

The requestAnimationFrame() method asks the browser to run a
function—which you specify as a parameter—the next time the
browser is ready to update the visual rendering of this web page.

If the web page is currently in a nonactive browser tab, the function
won’t run until the user switches back to view the page. When the
page is visible, the browser will adjust how frequently it updates, to
provide a balance between animation smoothness and overall
performance.

requestAnimationFrame() is supported in most
browsers you need to worry about, but you may
want to add a polyfill script for Internet
Explorer 9 and Android 4.3 and under—for
example, Paul Irish’s version.
A polyfill converts your modern code into
setTimeout() loops for the older browsers.

The behavior of requestAnimationFrame() is closer to
setTimeout() than setInterval(): by default, it runs the function
only once. If you want the animation to continue, your update func‐
tion itself needs to request another frame.

Because you don’t know exactly when your function will run, or how
frequently, you’ll need to check the current time in your update
code. You could do this by grabbing the Date.now() system time‐
stamp, but the browser passes a dedicated animation timestamp as a
parameter to your update function.

The timestamps passed to animation functions
are not interchangeable with the system time
used in Date.now() timestamps. Instead, they
are measured since the document was loaded or
refreshed.

If you have multiple animation functions, they’ll all get the exact
same timestamp value for the same animation frame.

The following code adapts our timer code in Example 18-5 to use
animation frames instead of fixed intervals, and to use the anima‐
tion timestamp instead of Date.now():

756 | Chapter 19: Transitioning in Time

https://gist.github.com/paulirish/1579671

var endTime;
requestAnimationFrame(updateTime);
function updateTime(t) {
 if (!endTime) {
 endTime = t + timeLimit*1000;
 }
 var timeLeft = endTime - t;
 if (timeLeft <= 0) {
 endGame();
 timeLeft = 0;
 }
 else {
 requestAnimationFrame(updateTime);
 }
 timer.textContent = (timeLeft/1000).toFixed(1);
}

The initial request (outside of the update function) starts the anima‐
tion running. The function then requests additional animation
frames until the time expires.

The timer won’t run in the background if you switch to a different
browser tab, but the time will be correct if you switch back to this
tab.

However, because we are now relying on the animation loop itself
for the timestamps, our timer only starts when the first frame of the
animation is painted, not when the initial request was made. If you
need an independent start time, you can use the performance.now()
method to get a compatible timestamp outside of the animation
loop.

Browser support for the performance object isn’t
quite as good as for requestAnimationFrame().
If you use it, you may need to polyfill it as well.

As before, the updateTime() function checks whether the time has
run out. The request for the new animation frame only runs if that
isn’t true, so the loop will stop automatically when the timer reaches
0. Note also that the new request isn’t the last line of the function. It
doesn’t need to be; it is only queuing the request to run later.

There is also a cancelAnimationFrame() method, which you can
use instead of adding an if test in your animation loop. Similar to

Scripting Every Frame | 757

clearInterval(), it requires a token value that is returned when
you call requestAnimationFrame():

/* in the updateTime() function... */
frame = requestAnimationFrame(updateTime);

/* separately */
function stopTimer() {
 if (frame) { cancelAnimationFrame(frame); }
}

requestAnimationFrame() isn’t perfect. It only runs if the browser
is repainting the web page, but it doesn’t include a check for whether
the part of the web page you’re updating is currently visible. If
you’ve got many inline SVGs within a large web page, you’ll want to
add your own check to determine which ones are onscreen and
therefore need updating.

Beyond that, the main limitation of requestAnimationFrame() ani‐
mations—compared to CSS, SMIL, most JS animation libraries, or
the future Web Animations API—is that you need to write your own
code to calculate the updated graphic at each frame. That makes it
incredibly flexible. But it can be easy to get tangled up in all that
flexibility.

Calculating the Current Value
Broadly speaking, there are two main approaches to calculating ani‐
mation progression:

Interpolation
Interpolation animation is the type of tweening animation used
by CSS animations and transitions, SVG/SMIL, and the Web
Animations API (level 1, anyway). The animation is defined by
the amount of change that you want to apply, and the amount of
time that it should take.

To create your own interpolation function, you convert the cur‐
rent time into a proportion of the animation duration, and then
convert that into a proportion of the distance between your ini‐
tial and final values. The conversion from time percentage to
value percentage can be linear (one-to-one, the easiest choice),
or it can use an easing function, equivalent to the timing func‐
tions used in CSS animations and transitions.

758 | Chapter 19: Transitioning in Time

Physics-based animation
Used primarily for motion, physics-based animation defines the
properties of the moving objects (particularly their speed and
acceleration), and calculates their motion from that. The “phys‐
ics” used in the animation calculation can be as realistic or as
simplistic as you want. How long it takes the objects to reach a
given position is determined entirely from the calculations you
use.

Physics-based motion is preferred in games, where you don’t
want everything to be predetermined. In games, you will often
change the properties of the objects—such as their speed or
their direction—based on user interaction or randomization.

There is really no end to the possible calculations you could inte‐
grate into an animation loop. So we’re not going to try to discuss
them here. There are plenty of other good resources on game and
animation design if you are interested.

Instead, as a simple example of a JavaScript animation loop, we’re
going to recreate our motion-along-a-path graphic from
Example 19-3.

This is an interpolated animation, since we know exactly how we
want the “bead” elements to move, and how long they should take.
Specifically, we are interpolating the distance along the path. Each
bead should move the same distance along the path in the same time
period, completing a full loop every 5 seconds (which was the dur in
our <animateMotion> elements).

To transform our beads into the correct position, we therefore need
to figure out the (x,y) position of a point that is a certain distance
along the path. That sounds like a lot of math, but luckily the
browser does it for us.

The <path> element has a method called getPointAtLength(). (In
SVG 2, all the other basic shape elements will have the method, too.)
You pass in a distance in user units (px), and you get back a point
object with x and y properties for the coordinates of that point on
the path.

Scripting Every Frame | 759

The point object is the same as the ones we used
in Chapter 18 to calculate transformations on
mouse-click points. Depending on the browser,
the object will either be called SVGPoint or
DOMPoint.

We also want to rotate our beads to match the angle of the path.
Unfortunately, there is no getAngleAtLength() method for paths.
So we need to do a little bit of math ourselves.

By getting two different points from the path—close to each other
but not identical—we can calculate the approximate rate of change
of the curve at that point. The relative x and y change can then be
converted to a tangent angle, using a little bit of trigonometry (an
arc-tangent function, to be precise).

Example 19-4 provides the code. The visual result is the same as
Figure 19-1.

Example 19-4. Animating motion along a path, with JavaScript

<svg xmlns="http://www.w3.org/2000/svg" xml:lang="en"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 viewBox="0 0 400 160" width="4in" height="1.6in">
 <title>Motion on a Path, with JavaScript</title>
 <defs>
 <polygon id="bead" points="-8,0 0,-8 8,0 0,8"
 stroke-width="2" />
 </defs>
 <path id="track" fill="none" stroke="dimGray"
 d="M200,80 C-50,280 -50,-120 200,80
 C450,280 450,-120 200,80Z" />
 <use xlink:href="#bead" fill="orchid" stroke="indigo" />
 <use xlink:href="#bead" fill="gold" stroke="tomato" />
 <use xlink:href="#bead" fill="springGreen" stroke="seaGreen" />
 <use xlink:href="#bead" fill="skyBlue" stroke="mediumBlue" />
 <use xlink:href="#bead" fill="indianRed" stroke="firebrick" />
 <script><![CDATA[
(function(){
var track = document.getElementById("track"),
 trackLength = track.getTotalLength(),
 beads = document.querySelectorAll("[*|href='#bead']"),
 nBeads = beads.length,
 dur = 5000; //duration of one loop of track, in ms

function update(time) {
 var t = (time % dur)/dur, /* position in repeat cycle */

760 | Chapter 19: Transitioning in Time

 distance, /* distance along the path for this bead */
 point, /* SVGPoint for that distance */
 point2; /* SVGPoint for a slightly different distance */
 for (var i=0; i<nBeads; i++) {
 distance = trackLength * ((t + i/nBeads) % 1);
 point = track.getPointAtLength(distance);
 point2 = track.getPointAtLength((distance+2)%trackLength);
 angle = Math.atan2((point2.y - point.y),
 (point2.x - point.x));
 beads[i].setAttribute("transform",
 "translate(" + [point.x, point.y] + ")"
 + "rotate(" + angle*180/Math.PI + ")");

 }
 requestAnimationFrame(update);
}
requestAnimationFrame(update);
})();
]]> </script>
</svg>

The markup is the same as Example 19-3, except that we’ve
removed all the animation elements. The <use> elements are by
default all drawn centered on the origin; we will be transform‐
ing them into place.

We save the track path in a variable, since we’ll need it for the
distance calculations, but we also save its total length in a vari‐
able, since the path itself isn’t changing. The getTotalLength()
method is the same one we used in Chapter 13 for calculating
dash lengths.

We also select the bead elements ahead of time, using the
namespace-insensitive version of a CSS attribute selector. Since
the number of beads isn’t changing, we save that to a variable,
too, to save us one more step in each loop of our update
function.

The first step of each update() is to convert the timestamp into
a value between 0 and 1, representing the proportion of the ani‐
mation cycle. Because it’s an infinitely repeating animation, we
don’t have to worry about exact start times. Instead, the modu‐
lus (%) operator finds the amount by which the timestamp
exceeds an even number of dur cycles. Division converts that to
a proportion.

Scripting Every Frame | 761

The remainder of the calculations are done separately for each
bead. The beads are evenly staggered along the track, so that
bead number 4 out of 5 is 4/5 farther along the path than the
first bead. The modulus operator again comes in handy to han‐
dle wraparounds, for beads that are so far ahead they are behind
again. The saved trackLength scales up the proportions of the
path to actual px distances.

Once we have the calculated distance, we can get the point
object from the <path> element—and then we get the point 2px
farther ahead (with modulus for the wraparound), so we can
calculate the tangent angle.

The Math.atan2() function calculates a tangent angle (in radi‐
ans) from two parameters: the change in y-value and the change
in x-value (in that order).

Using our primary point and our calculated angle, we can there‐
fore set the transform attribute on our bead: first a translation
to the correct point, then a rotation to the correct angle.
Because the transform attribute needs angles in degrees (but
the JavaScript trigonometry functions use radians), we need a
little more math to do the conversion: 180° equals π radians.

At the end of the update() function, we request that the
browser do it all again at the next frame.

Finally (and most importantly), we start the loop running by
requesting the first animation frame, from our main procedure
function.

This version of the animation runs in every browser, including MS
Edge and Internet Explorer. But if you want to use it as a loader,
remember to embed it with <object>, not , or copy it as inline
SVG: the script won’t run at all in SVG used as an image.

More Online
There are many different ways to approach the same animation—
how do you choose? Browser support is one factor, but browser
performance is equally important. Just because the browser under-

762 | Chapter 19: Transitioning in Time

stands your animation instructions does not mean that it will render
the animated effect smoothly.

Read more about performance considerations, and planning your
animation, in “Planning for Performance”:

https://oreillymedia.github.io/Using_SVG/extras/ch19-
performance.html

It includes an introduction to the will-change property and a prac-
tical example of redesigning an animation to create smoother
transitions.

Summary: Animation
SVG used in web browsers is dynamic, able to change over time.
Animated SVG can consist of predetermined, noninteractive loops
—the vector equivalent of animated GIFs. But animated SVG can
also be part of complex interactive games and documents, giving
feedback to user actions and providing continuity through content
changes.

CSS animations and transitions are now the first choice for many
simple animations. They have an easy-to-use syntax and are fairly
well supported in browsers—and familiar to many web developers.
However, they cannot be used to animate many SVG attributes, or
for complex animation sequences.

The SVG/SMIL animation elements are incredibly flexible for defin‐
ing animations, including attribute animations, synchronized
sequences of animations, and complex motion animations.
However, they have never reached full cross-browser support, and
can be buggy even where supported.

For complex interactive animations, and for anything where
browser support is essential, you can animate your SVG document
with JavaScript. If you’re adding a lot of animation, there are dedica‐
ted JavaScript libraries to help you do so efficiently. The Web Ani‐
mations API also makes simple animations easier, although it still
requires a polyfill library for complete browser support.

However you choose to animate your document, you’ll need to con‐
sider the design of your animation carefully to ensure good perfor‐
mance.

Summary: Animation | 763

https://oreillymedia.github.io/Using_SVG/extras/ch19-performance.html
https://oreillymedia.github.io/Using_SVG/extras/ch19-performance.html

You also need to design your animations carefully to consider usa‐
bility. We haven’t discussed design and usability in this chapter, but
we cover a few points as part of our best practice guidelines in
Chapter 20.

More Online
The SVG/SMIL animation elements and their attributes are summar-
ized in the “Animation Elements” section of the markup guide:

https://oreillymedia.github.io/Using_SVG/guide/
markup.html#animation

The DOM methods used in this chapter are included in the “Select
SVG DOM Methods and Objects” guide:

https://oreillymedia.github.io/Using_SVG/guide/DOM.html

For CSS animations, refer back to “Smoothly Switching Styles” on
page 728, or consult the CSS specifications or MDN.

764 | Chapter 19: Transitioning in Time

https://oreillymedia.github.io/Using_SVG/guide/markup.html#animation
https://oreillymedia.github.io/Using_SVG/guide/markup.html#animation
https://oreillymedia.github.io/Using_SVG/guide/DOM.html
https://drafts.csswg.org/
https://developer.mozilla.org/en-US/docs/Web/CSS

CHAPTER 20

Good Manners
Best Practices for SVG

An image is more than just a collection of details, and a complex
SVG document is more than just a series of independent elements
and styles. When you are starting a project, it is worthwhile to take
some time to plan your approach.

This chapter summarizes some of our best advice for managing SVG
on the web. If you are building an important website component
using SVG, a little bit of up-front strategy and analysis can help save
time and frustration later.

Planning Your Project
Got a great idea for a design, a game, an unusual interface widget?
Wonderful! Time to bring it to life!

But before you start writing code—even before you start drawing in
Illustrator or Sketch—make a plan. You aren’t just creating a picture,
you’re building a product. It needs to work for your end users, and it
needs to be maintainable and adaptable for future design changes.

Does Your Project Need SVG at All?
It may seem strange to ask this question in a book devoted to SVG,
but, as much as we love vector graphics, we also understand that it
isn’t applicable to absolutely everything in web design and develop‐
ment.

765

If your diagram can be represented as colored squares on a web
page, it’s usually easier to create it using HTML elements with a little
CSS, rather than using an inline SVG. You can even make the ele‐
ments quickly scalable by using % or vw units for width and height.

When SVG first became available in web browsers, it replaced 1px-
wide repeating raster images as the best solution for background
gradients. It was also the easiest solution for rounded rectangles and
circles. But CSS gradients and border-radius have rightly replaced
both use cases.

Throughout the book, we’ve been comparing SVG and CSS-only
solutions so you can make better decisions about which tool to use.
If your all-CSS approach involves multiple nested elements, trans‐
forms, and hidden overflow to draw a shape that could be defined
with a simple SVG <polygon>, this is a good time for SVG.

But if you can create the effect with well-supported CSS properties
on the elements you’ve got, you can skip the SVG. We won’t be
offended.

While SVG’s abilities extend well beyond those of CSS-only graph‐
ics, SVG must be considered as part of the continuum of web tech‐
nologies, never as a sole answer.

Similarly, once an SVG drawing is started, there’s a tendency to cre‐
ate everything inside it. But the best solution may sometimes be a
hybrid one. Create a graph in SVG, but add text labels as HTML ele‐
ments. Or use multiple separate <svg> elements and then combine
them with CSS layout so they can be easily rearranged. You’ve now
got a firm handle on a new tool for your toolbox, but that doesn’t
mean it should be the only tool you use.

Identify Your Browser Support Requirements
When building for the web, you are designing for an uncertain envi‐
ronment. The code you generate will be rendered differently
depending on which web browser views it, in which device.

Throughout the book, we’ve warned you about browser quirks and
support limitations. And while those warnings can be discouraging,
they should have also clarified that things are getting better. Newer
browsers have better support and fewer SVG bugs.

766 | Chapter 20: Good Manners

But not everyone who visits your website will be on the newest
browser. You need to decide early on which older browsers you will
be trying to support. There’s little point in developing a site heavily
infused wih SVG only to learn later that the client wants it to work
in Internet Explorer 6.

If you have analytics data for the website you’re working on, won‐
derful. But even if you don’t, you can find general data about
browser usage for your country, and adjust it based on your web‐
site’s audience. If you’re only interested in tech-savvy users with
plenty of spending cash, you might only code for fairly recent soft‐
ware. But for many businesses, and especially for public services or
health care, you need to consider a much broader audience who
might be using much older computers or phones.

Once you’ve identified the browsers and devices you need to sup‐
port, ask: does your graphic need to look the same in every browser?
Or are some graphical effects optional enhancements, for which fall‐
backs are acceptable? If you are willing to accept compromises on
older browsers, you can use more of the new features and shorthand
options that simplify your code—and reduce file sizes—for the
browsers that do support them.

For supporting really old browsers (Internet
Explorer 8 or under, and Android versions
under 4), you have to accept that some users
won’t have SVG at all. That means planning for
plain-text fallbacks or alternative image formats.

A related decision is the performance budget for your site and for
the graphics in particular. How many kilobytes are acceptable? How
much battery power is that animated effect worth? How many sec‐
onds will users wait for this graphic to load? A good starting point
might be “three seconds on 3G”: every page should be ready to read
and use in less than three seconds on a third-generation mobile data
connection.

There are no hard-and-fast rules for how fast and lean a website has
to be, or for how to make it so. Your standard should be negotiated
to balance the needs of the web development team, your client or
boss, the expected audience, and other stakeholders. But by having
standards—based on real user data whenever possible—you have

Planning Your Project | 767

benchmarks against which you can test your work, and make adjust‐
ments as you go.

SVG often means a smaller file size than alternative graphics for‐
mats, but not always. SVG can also mean more processing on the
end device. Some features, like filters and animation (and especially
animated filters), use much more processing power than others. By
testing your works-in-progress against preset performance budgets,
you can identify when you need to change strategies.

Decide How SVG Will Integrate in Your Website
SVG on the web doesn’t exist in isolation; it nearly always will be
integrated in a larger website. We’ve discussed, in many chapters, the
differences in SVG behavior that relate to how the SVG is integrated
with HTML. Inline SVG has different requirements and possibilities
than SVG as an image.

For this reason, it helps to plan early on for the embedding method.
To recap, the three options and their key differences are as follows:

SVG as an image
SVG embedded with or as a CSS background image will
be limited in its animation and interactivity. CSS inside the SVG
document will be used for styling vector elements in the docu‐
ment itself, but these styles cannot be read or manipulated from
the outside. Scripts, interactivity, and alternative text written
inside the SVG will be ignored. There are also currently limita‐
tions in browser support for declarative animation.

The primary advantage of SVG-as-image is its encapsulation:
just like a bitmap image, the SVG is contained in a single file
that will behave predictably when it is embedded across multi‐
ple pages.

SVG as an embedded object
SVG embedded with <object> or <iframe> also has encapsula‐
tion and reusability, but it can have interactivity and scripting. It
is often a good compromise solution, but it isn’t used as much
these days, which means it isn’t tested as thoroughly. New bugs
in scaling, sizing, and accessibility sometimes pop up in
browsers.

768 | Chapter 20: Good Manners

Inline SVG
Inline SVG is also fully interactive and scriptable, but as part of
the larger document. One of the biggest benefits is that SVG ele‐
ments can be dynamically styled as part of the main document’s
stylesheets. One of the biggest limitations is that those styles can
cross over even when you don’t want them to. Inline SVG also
currently has the best browser support for keyboard and screen-
reader accessibility.

All other factors being equal, inline SVG will usually load faster
than a separate file reference, but at the cost of more compli‐
cated maintainability. For most websites, you will need content
management systems and/or build tools that can integrate the
SVG markup in your HTML. If the same SVG code needs to be
reused across pages, you’ll usually require server-side includes
or similar technologies to share the same source file between
them. The repeated code also needs to be downloaded for each
page, slowing down subsequent page loads compared to cached
image files.

Sometimes you’ll be able to decide on the embed method that best
suits your project, while other times you’ll be restricted by the struc‐
ture of your existing codebase. Whichever approach you use, devel‐
opment of the SVG code will be easier if you know up front what the
final capabilities will be.

Design for All Users
Very few graphics are purely decorative. They exist as part of the
content of your website, to communicate meaning or mood. SVG
content is often also a functional, interactive part of the website.

It is therefore essential that the meaning and the function is available
to all users, even those who experience the web quite differently
from how you do.

We’ve discussed SVG accessibility in Chapter 17 with regards to
alternative text and ARIA roles, in Chapter 18 with regards to key‐
board controls, and in scattered other locations with warnings and
suggestions.

The best approach to creating an accessible website is to design it
that way from the beginning. Extra code added at the last minute

Planning Your Project | 769

will always be awkwardly trying to patch holes, when those holes
maybe could have been avoided altogether.

Designing for accessibility also means designing for performance.
Large downloads and high CPU requirements are other ways in
which users can be blocked from accessing your content or using its
function. Similarly, building in solid fallbacks for older devices, and
considering a diversity of screen sizes and input methods, both help
increase the number of people who can use your website. But some
users have requirements that go beyond the experience of switching
to an older or smaller device.

As you’re (literally or figuratively) sketching out your design, here
are a few situations to keep in mind:

Color blindness
Color blindness is the most common visual limitation that can‐
not be corrected with eyeglasses. Frequently, it means an inabil‐
ity to distinguish red from green, but other versions of the
disorder cause difficulties with different colors.

Use color to enhance meaning conveyed by shapes, text, or
luminance changes, but never use color as the only source of
meaning.

Not sure if your design works without color? Apply a
grayscale(100%) filter on the root element and show it to a
colleague. If they can’t figure it out, you’ve got more work to do.

Limited contrast sensitivity
Viewing computer screens in bright sunlight makes it difficult
to distinguish subtle changes in brightness in the image. Various
eyesight conditions, often exacerbated by age, have the same
effect.

The Web Content Accessibility Guidelines (WCAG) include
minimum standards for the contrast of text against their back‐
ground. Apply the same standards for important graphical
details that affect the meaning of the content.

Extreme zoom
Small screen sizes don’t leave a lot of room to draw text-heavy
graphics, so users may need to zoom in and pan around a
diagram. Even on larger screens, some users will need to zoom

770 | Chapter 20: Good Manners

https://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-contrast.html
https://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-contrast.html

in considerably (using browser zoom tools or dedicated screen
magnification software) to be able to read it clearly.

The scalability of SVG only applies to the resolution of the
zoomed graphics, not to their content. The two-dimensional
nature of SVG—and of graphics in general—does not make it
easy to reformat content for smaller viewports. Create respon‐
sive versions if you are able, but recognize that some users will
only be seeing part of your graphic at a time.

Whenever possible, position labels in a diagram close to the
graphic, so that users don’t have to scroll back and forth. Label
individual data points in a chart if you have the room, instead of
requiring users to scan across to measure the value on an axis.

Style overrides
As an alternative to zooming in the entire graphical layout,
some browsers allow users to override the font-size setting.
Similarly, some users will override font-family choices to force
the use of a font that is easier to read. Browsers and operating
systems also have options that allow users to force the use of
certain color schemes, usually in the context of creating better
contrast.

You can’t anticipate every possible style variation that might be
applied to your website. But you can try to build more robust
content that will be functional in a variety of situations.

Be especially careful of minimum font-size settings in browsers,
as these can break SVG even when it isn’t an accessibility issue.
Scaling may mean that font-size: 4px will be drawn in 1-
inch-tall letters, but it might still get adjusted to 16px or 20px.
Consider this when deciding on your viewBox for a graphic
with text; pick a scale that is close to the size it will be displayed
(and yes, we know there are examples in this book that don’t fol‐
low that guideline). If possible, make sure the layout won’t break
completely if text doubles in size.

To create graphics that automatically adapt to color overrides,
consider using currentColor to inherit the text color instead of
assuming that it will be black (or whatever value you set in the
design). Internet Explorer, MS Edge, and Firefox on Windows
also all support a limited subset of the CSS system color key‐
words to allow you to access the modified values of other colors

Planning Your Project | 771

https://www.w3.org/TR/2010/PR-css3-color-20101028/#css2-system

from Windows High Contrast Mode. The Microsoft browsers
(although not Firefox) also support a media query to detect if
custom colors are being applied.

No sound
Although SVG is a visual format, it is often used in the context
of audiovisual applications. Remember that many users will
have sound turned off, and some users don’t have the option of
turning sound on—because they could not hear it anyway.
Warning or notification sounds need visual equivalents; video
and audio need captions or transcripts.

Missing context for symbols
SVG is often used for iconography. But icons are a language
unto themselves, and not everyone speaks it. Unlabeled icons
assume that your user shares a certain cultural training into
what the symbols mean. People from a different background (or
age range) than you may interpret them differently. Neurologi‐
cal differences, including autism, can also change how someone
interprets the visual metaphors inherent in icons. Include text
labels for icons whenever you can.

Confusing text
Don’t go overboard with text instructions, however. Too much
text is another usability problem. Long text is an obstacle for
users working in a second language, for users with reading diffi‐
culties such as dyslexia, and for anyone who is too tired, busy, or
distracted to read every word.

Distracting animation
An even worse culprit for distraction is animation or video that
plays when the user is trying to focus on something else. For
some users, animation goes beyond a distraction to become a
health risk, triggering nauseating vertigo or even epileptic
seizures.

Whenever you’re using extreme graphical effects, such as
strobes or immersive 3D animation, give users a warning before
it starts. For all animations and sound, give users a way to pause
or control the effect. Consider also using new features like the

772 | Chapter 20: Good Manners

1 prefers-reduced-motion is discussed in the online supplementary example “Clipping
on the Outside, with a Mask”.

prefers-reduced-motion media query1 to adjust your defaults.
And provide a way to bypass the animation to get straight to the
main function of the website.

Alternative inputs
With the wide adoption of touchscreens, more developers have
become aware of alternative inputs. But creating larger buttons
for finger-sized touch taps is only the start. Any interactive con‐
tent needs to work with touchscreens, mouse, or keyboard.
Other input devices usually mimic one of these controls in the
events they pass to the browser—but they may not allow fine or
fast control. In addition, screen readers and voice controls rely
on having clear and consistent names for all interactive
elements.

If the meaning and function of your design can survive all these
conditions, you’re doing better than many. But a checklist will only
get you so far: the real measure of your site’s accessibility will come
from testing with real users.

Working with Graphical Editors
Graphical editors, such as Adobe Illustrator and Inkscape, are a
huge part of creating SVG for the web. But these tools were built pri‐
marily with print design in mind. Certain defaults and settings need
to be tweaked for better code output. Creating a graphic that is opti‐
mized for animation, interactivity, and dynamic styling requires a
little bit of planning ahead.

In Chapter 4, we gave some application-specific tips for a few of the
most common programs, particularly regarding SVG export set‐
tings. This section outlines some general tips, applicable to most
drawing tools.

Regardless of which software suite you use, there are some common
steps that should be part of your project to help you get the result
you want. Be aware that the terms used for specific features (such as
Adobe Illustrator referring to the drawing space as the “Artboard”)
will change from one application to the other.

Working with Graphical Editors | 773

https://oreillymedia.github.io/Using_SVG/extras/ch15-video-mask.html
https://oreillymedia.github.io/Using_SVG/extras/ch15-video-mask.html

Some of these strategies, like creating carefully structured groups,
also make it much easier to work with the drawing while it is still in
the graphical editor. They’re also good ideas if you’re creating a
graphic by writing code yourself.

Most of the items in this section, in contrast, are more about
changes you can make in the visual editor to help with later coding.
They may be less obvious to designers who only work with the vis‐
ual graphic—but they will make a huge difference to developers
working with the exported code.

In addition, as we discussed in Chapter 4, you will often want to run
your exported code through a dedicated optimization tool (although
graphics software is getting better at optimizing code on export).

Define Your Artboard or Drawing Size
The first step of creating a graphic should be to choose the right ref‐
erence system for your work in your application of choice. While
vector shapes are indifferent to size and scale, it’s logical to use
measurements that mirror the purpose of your SVG file. For the
web, this usually means pixels.

Although SVG is scalable, it helps to start with an idea of how large
the graphic will be displayed. That way, you can make sure that text
and stroke sizes are appropriate.

Using pixels is particularly important for small SVG icons, where
the pixelation of the display becomes more obvious. If curves and
lines do not neatly line up with screen pixels, the end result can have
a blurred effect (as we discussed in “Anti-Anti-Aliasing for Crisp
Lines” on page 492 in Chapter 13).

Snapping path points to the pixel grid can also
help in larger graphics, by ensuring that coordi‐
nates can be represented by integers—and there‐
fore with fewer characters in the code.

Of course, if your work is a precise illustration of a real-life object,
you might prefer inches, centimeters, or millimeters, to match your
source data. Just beware that many SVG export settings convert
these to px, anyway. And even if they don’t, a browser rendering
won’t necessarily be true to the real-life scale.

774 | Chapter 20: Good Manners

For most software and export options, the size you choose for your
drawing region (artboard) will be reflected in the final SVG
viewBox, width, and height. (Double-check your export options to
make sure you get all three attributes in the final code!) An over‐
sized artboard may be convenient in the editor, but it will leave
whitespace around the final graphic, potentially ruining the layout.
You can always change the artboard size after initially setting it.

Many programs allow you to crop the view on export to just fit the
current selection or visible drawing. This can cause its own prob‐
lems. Curved shapes that touch the very edges of the SVG image
may appear to be trimmed in the final display, because anti-aliasing
effects (which help “smooth” curves on raster screens) get cropped
off. Leaving one or two pixels from the edge of the viewBox to any
nonrectangular SVG elements is usually a good idea.

Of course, if the SVG export results in incorrect cropping, you can
always manually adjust the viewBox in the exported code.

Structure Your Graphic
When you draw in SVG you’re not just making images: you’re creat‐
ing data. A well-organized design file will create a well-organized
SVG.

Whether you’re creating your graphic with code or in a visual editor,
you’ll want to create meaningful groups that make it easier to trans‐
form substructures as a unit, and which can be given meaningful
alternative text or ARIA roles.

In many graphical editors, you can have both groups and layers, but
they are just groups inside groups within the final SVG. Use both
features wisely. You don’t want too many extra <g> elements in the
final code, but you do need structured groups for applying transfor‐
mations and effects like filters and masking. If you decide to reposi‐
tion part of a diagram later, you want to be able to move the entire
logical section with a single attribute or style property.

The most extreme version of grouping is merging multiple subpaths
into a single <path> element. That ensures that all the parts will
always stay together and be styled together—but at the expense of
not being able to easily separate them later.

Working with Graphical Editors | 775

If you are going to animate your design, or reorganize it for different
screen sizes, it helps to sketch out the possibilities before you start
drawing. That way, you’ll know which parts need to be grouped and
which parts need to be separate elements.

You will sometimes have to break logical groups across layers to
accommodate the lack of z-index support to alter the layering
between groups. For example, text labels often need to be in a sepa‐
rate layer group (to prevent other shapes from overlapping the text)
instead of being grouped with the shapes they label. But make sure
you have a clear reason for these compromises.

Name Things
It’s a well-worn joke that “naming things” is one of the hardest prob‐
lems in computer science. It’s still worth the effort.

Give elements names—in the form of class or id values—that will
mean something to you later. For classes, focus on the common con‐
nections: why are these elements styled the same way?

If you are drawing shapes in a visual editor, name elements (shapes,
groups, and layers) as you draw, using the software’s object proper‐
ties. Most applications export these layer or group names as the id
attribute of SVG elements. But double-check your export and opti‐
mization settings: id values that aren’t used in cross-references are
sometimes removed during export.

For best results, avoid using any spaces (separate
words with - hyphens), so the name can be
directly converted into a valid id attribute.
Avoiding uppercase letters can also help prevent
case-sensitivity issues when you’re switching
between SVG, HTML, and JavaScript.

It’s much easier to create these references during visual editing,
rather than later. When you’re working with the markup code, one
<path> looks much like another. Names can make it much easier to
find the one you need.

776 | Chapter 20: Good Manners

Set Up Color Preferences for Web Use
Many vector illustration applications were originally designed for
print, and therefore have their color space set to CMYK. In contrast,
computer displays use RGB (specifically sRGB). RGB has a wider
gamut (range of colors) than CMYK, so converting colors at the end
of the design process is suboptimal; set the color mode before you
begin drawing.

Of course, if your SVG is also expected to be used in print, the
reverse is true: if you use RGB colors, some colors may not be accu‐
rately represented in the final printing. However, even if you are
designing with CMYK palette, be aware that tools will usually remap
your color selections into equivalent RGB or hexadecimal values
during SVG export.

As mentioned in Chapter 12, there are old and
new proposals for alternative color profile sup‐
port in SVG. CSS Color Module Level 4 also
includes a cmyk() color function. However, as of
this writing, no web browser yet supports these
options.

Simplify Paths
In most SVG drawings, the largest contribution to file size is the
path data or polygon points that describe complex drawing shapes.

You can significantly reduce the file size by using a reasonable
viewBox scale and snapping points to exact pixel values (so that it
takes fewer digits to specify each coordinate), and by reducing the
total number of points in each path.

You can make both changes after the fact, by rounding down deci‐
mal precision on export, and by “smoothing” or simplifying paths
using your editor’s commands. However, you can often get better
results by planning for simple paths from the beginning.

Drawing with the least possible number of points for each shape
means fighting against the common instinct to add points to a curve
whenever you need to tweak the shape. Instead, try to get as far as
you can by adjusting the points and control points on the curve sec‐
tions you already have.

Working with Graphical Editors | 777

Working with control points takes some practice. But it can make
shapes easier to control in the end, particularly if you’re trying to
create symmetrical shapes.

As an illustration, let’s consider drawing a simple heart shape. The
heart icon that we’ve been using throughout the book was created
(in Chapter 6) by carefully calculating coordinates and path data.
But most designers prefer to work with a visual editor when drawing
icons.

A first sketch at the path might use eight points, as in Figure 20-1.
The shape is shown as it appears when selected in Adobe Illustrator,
showing the on-path points (but not control points) and the bound‐
ing box.

Figure 20-1. A heart drawn in Illustrator using eight curve segments

To make this heart symmetrical, you need to adjust three pairs of
points (and their control points) to be perfect matches on either side
of the center axis. Remove extra points, and you have fewer points
that you need to synchronize.

At its most extreme, you can create a heart shape with only two ver‐
tex points and two symmetrical cubic curves connecting them, as
shown in Figure 20-2, which now shows the control points that cre‐
ate the shape.

778 | Chapter 20: Good Manners

Figure 20-2. A heart drawn using two cubic Bézier segments

This may be too extreme, and may limit your ability to create just
the right curve you want. But until you try it, you won’t know how
much nuance you can create just by adjusting those control-point
handles.

Another way to keep your path data compact is to make use of
strokes, instead of drawing both the inside and outside outlines of
shapes. For example, a circular donut shape could be drawn as a path
with a cutout subpath. But it can also be drawn as a thick stroke
around a much simpler path (or around a <circle>).

If you start by drawing a shape with stroke out‐
lines, and later decide that you need it as an
independent fill region, most graphical editors
have a single-click option to convert the current
stroke region into its own path definition.

Remember that thick strokes can have significantly different appear‐
ances depending on the stroke-linecap and stroke-linejoin
options. With a little creativity and careful planning, you can use
strokes to create clean geometric shapes that don’t appear at first
glance to be an outline at all.

Working with Graphical Editors | 779

Figure 20-3 shows a very different way of drawing a heart shape, as a
thick stroke with round line caps on a three-point polyline.

Figure 20-3. A heart drawn as a round-capped stroke on a V-shape
open-ended path

The blue rectangle in Figure 20-3 is the bounding-box outline that
highlights the shape in Illustrator. Note that it is now much smaller
than the visible shape, and remember that this can cause problems
with objectBoundingBox graphical effects. Also beware of inconsis‐
tent browser rendering when a stroke curves in on itself.

A final path simplification option is to merge shapes that will always
be styled and transformed as a whole. The more advanced graphical
editors have multiple merge options. The simplest version concate‐
nates all the shapes into a multipart path, keeping all the data. Other
options recalculate the path data to represent the merged outline of
overlapping (or intersecting, or cutout) shapes.

For example, you might draw a cloud shape as a series of overlap‐
ping circles, but then merge them into a single path representing the
united outline. With a solid fill, the result looks the same, but with
much less data required to define it. And now you can also switch to
semitransparent fill or stroke, without the appearance breaking
apart into individual circles.

780 | Chapter 20: Good Manners

Test Text Fallbacks, or Convert to Paths
Within your graphical editor, you have full control of the fonts used
for your SVG text. Out on the web, less so. Try out your design with
reasonable fallback fonts, and make adjustments to the text-anchor
and other text layout properties to ensure that a font substitution
doesn’t completely break your layout.

You’ll also need to add the fallback font-family lists and/or @font-
face rules. Currently, the main SVG editors don’t have tools to do
this; you’ll need to edit the CSS yourself, as described in Chapter 7.

If precise text rendering is more important than editability—for
example, in a logo—many programs allow you to convert styled text
elements into graphical shapes for each letter. Adobe Illustrator will
also provide you with the option to convert type to shapes when you
export the SVG file.

It’s a bit more work, but a compromise option is to duplicate the text
elements, convert the lower layer into paths, and then make the
upper text layer transparent (but still accessible to search and to
screen readers).

Of course, the approach you choose should depend on how you will
be embedding the SVG. Text inside SVG used as an image isn’t
accessible in the first place, so might as well be converted to paths.

Consider the Backdrop
An SVG image only covers up the sections on which you explicitly
draw elements. By default, the background is transparent. Graphical
editors may allow you to change the background color in the dis‐
play, but it is usually not automatically included in the export.

To add a background color to an SVG, you have three choices:

• Apply a background style to the element (, <object>, or
inline <svg>) that you use to embed the SVG in the web page.

• Add a background-color to the root <svg> element in the SVG
file (that you’ll be including as an image or embedded object).
This is supported in all web browsers, although the background
color is not used by most graphical editors.

Working with Graphical Editors | 781

• Include a colored backdrop shape as the rearmost layer in the
SVG itself, usually a <rect> that covers the entire viewBox.

Many of the examples in this book use a <rect> backdrop, because it
guarantees a consistent rendering when the SVG is viewed on its
own. However, you get much greater flexibility by leaving the back‐
drop transparent and styling it when you embed it. Solid or see-
through, consistent or flexible: you need to decide based on the
needs of your website.

“Unset” Styles
If you’re creating icons or other symbols that should inherit styles
when they are used, try to remove style settings from the individual
elements before export.

Inkscape has an “unset” option for both fill and stroke (repre‐
sented as a question-mark icon), so that the shape will inherit styles
wherever it is used. Illustrator has export options that will treat
black fill as equivalent to inherit.

The SVG export options of the main software tools are also getting
better at not including unnecessary style declarations for every ele‐
ment. However, if you do end up with SVG code that has dozens of
inline styles for each element, an SVG optimizer can usually remove
a lot of it.

Learn the Limits of Your Tool’s SVG Output
One common theme of this book is that there is often more than
one way to create a certain visual result with SVG. Different code
structures may appear to have the same effect, but they create differ‐
ent possibilities for animation, scripting, and restyling.

If you’re working with a graphical editor, take some time to look at
the code it produces, so that you know when you need to intervene
to get the result you want.

Many editors use <path> elements even when they could use one of
the basic shapes. When you copy graphics, the default is usually to
copy them as independent elements, not as <use> clones. Gradients
might be always defined as independent user-space effects, instead
of references to a shared bounding-box gradient that stretches to fit
each shape.

782 | Chapter 20: Good Manners

This doesn’t make their SVG export “wrong” or “bad” neccessarily.
So long as the SVG visually renders correctly, it’s good enough for
most use cases.

The important thing is that you understand these limitations if you
are going to be using the exported code in more complex projects. If
the precise appearence is “baked” into the SVG, you’ll often need to
make changes in the original file in the original editor, and re-export
the result, rather than being able to change things easily at the code
level.

Many of these choices are defaults only, and can be changed if you
fully investigate the software’s options. For example, both Illustrator
and Inkscape can use symbols and <use> if that’s what you need.

Alternatively, you can take the approach of using the SVG output of
the drawing tool as a starting point for your work, enhancing and
modifying the code by hand to take advantage of features that the
tool is not yet aware of. Draw individual bits and pieces in the edi‐
tor, then copy and paste them into a separate file in your code editor,
where you have full control of the document structure. In this way
you can build up <symbol> and <pattern> elements from simple
drawings, and use them in turn to create more complex work.

Learn the Limits of SVG, Compared to Your Tool
On the other side, a big problem with exporting SVG from graphical
editors is that some editor features cannot be directly represented in
standard, well-supported SVG. Each of the editors has different
ways of handling SVG’s limitations in its export.

For example, many editors support inset/outset strokes, instead of
strokes centered over the edge of the path. SVG can’t (yet) draw
them directly. So there are a few possible outcomes of export:

• The inset/outset stroke feature is ignored, and the end result is
an SVG that doesn’t quite match the design.

• The stroke is converted to a separate path that draws the outline
of the stroke shape.

• The path dimensions are adjusted slightly so that the centered
SVG stroke matches the inset/outset stroke on the original
shape.

Working with Graphical Editors | 783

Every option has pros and cons. But your preference might not
match your editor’s default.

If you know you are creating designs for use as SVG on the web, the
best solution is to avoid using unsupported features in the first
place. But if you’ve already got a design ready to go, the next step is
to understand the export and whether you can control it.

For some effects that can’t be represented in compatible SVG code,
the result of export is a raster image of the editor’s current render‐
ing. For example, if you create a mesh gradient in Adobe Illustrator
and then export as SVG, you will currently get a JPEG image, con‐
verted to a base-64 data URI, and then embedded in an SVG file. If
the mesh gradient was the primary content of your graphic, it will be
much easier—and a smaller file size—to just export it as JPEG
directly.

Rasterized images are also used by Adobe Illustrator for many of its
non-SVG-compatible filter effects. If you never look at the generated
SVG markup, the only clue that you’ve got a raster image—and not a
vector filter effect—will be the surprisingly large exported SVG file
size.

Adobe Illustrator has two types of filter effects.
Only the “SVG filters” get exported as SVG fil‐
ters; other effects are rasterized.

Figure 20-4 is an example that Dudley recently came across in a stu‐
dent’s work. The vector diagram included a drop shadow created
with one of Illustrator’s default effects. The export had turned the
shadow into its own data URI image layer.

Now, as we discussed in Chapter 16, a drop shadow does not need
fancy graphics software. It can be created with SVG filter effects, or
with shorthand filter functions in the latest browsers.

784 | Chapter 20: Good Manners

Figure 20-4. An SVG illustration with CSS drop-shadow filter

For this project, recreating the drop shadow involved applying CSS
shorthands to the elements that embedded the SVG, as it ren‐
dered faster than the equivalent longhand SVG filter effect. Since the
affected images always had a filename that ended with product.svg,
an attribute selector could be used to apply the drop shadow from
the HTML file:

img[src$="product.svg"] {
 filter: drop-shadow(12px 12px 7px rgba(0,0,0,0.5));
}

This change helped to reduce the file size of the image from hun‐
dreds of kilobytes to a little over 4KB, after the base-64 image was
removed and the remaining code was optimized.

Working with Graphical Editors | 785

Coordinating Code
Some parts of SVG development can’t be completed in a graphical
editor. When you switch to working with the code itself, you open
up much more flexibility in what you create—which means many
more opportunities to create confusing, difficult-to-maintain code.

In large projects with many developers, consider using style guides
and pattern libraries to ensure consistency in the final product and
efficiency in your workflow. SVG components should be integrated
in those guidelines along with your HTML, CSS, and JS.

In addition, here are a few SVG-specific considerations for code
organization.

Structuring Styles
SVG style properties can be set as presentation attributes, as inline
styles, as CSS rules in a <style> section, or (except for SVG-as-
image) as linked stylesheets. Which should you use?

If you’re creating SVG in a graphical editor, it will usually give you
the option of using presentation attributes or inline styles for export.
In addition, recent versions of Adobe Illustrator can also create
styles assigned by classes and rules in a <style> section.

At the time of writing, you have no control over the class names that
Illustrator generates. The names it picks, such as .cls-6, aren’t terri‐
bly imaginative. The result looks fine, but reading through the CSS
later doesn’t make it clear which styles refer to what. This can be
improved with a little find-and-replace in your code editor, but it
does mean extra work.

For other software—or for more complex CSS—you’re going to
need to edit the styles yourself to create a <style> section. Export‐
ing your SVG with inline styles may be a useful first step, since at
least it means you can cut and paste the property: value pairs as
is.

Other than cut and paste, there are few benefits of inline styles over
presentation attributes. As the examples in this book demonstrate,
the style attribute is mostly only useful for new CSS properties that
don’t have presentation attribute versions, or for setting CSS
variables.

786 | Chapter 20: Good Manners

So the main question is: should you use presentation attributes
mixed in the markup, or CSS rules organized separately? The usual
HTML/CSS rules about separating markup and styles rarely apply to
SVG, where markup and styles are intertwined to create the graphi‐
cal content.

Instead, here are some practical considerations when deciding how
to organize your styles:

Preprocessors and build systems
If you’re working within a larger project with CSS preproces‐
sors, linters, and other build tools, you may prefer linked (exter‐
nal) stylesheets for your SVG code, so you can use those tools.
However, remember that linked stylesheets don’t work in SVG-
as-image, and that same-document url() references won’t work
cross-browser if the styles are set in an external stylesheet.

Loading time
Linked stylesheets can be cached and reused by many pages, but
they are slower; you’ll sometimes see a “flash of unstyled SVG”
(large, black SVG icons) while waiting for the stylesheet to be
downloaded and parsed. At the very least, add width and
height presentation attributes if you’re using linked stylesheets.

Even inline <style> blocks can be slowed down by an @import
rule at the top of the block, which is why we often used a sepa‐
rate <style> block later in the document to import Google font
declarations.

Style computation time
If a document does not have any stylesheets or <style> sec‐
tions, the browser can skip a lot of the style computation (selec‐
tor matching and cascading different values from different
rules). This means that presentation attributes and inline styles
can be faster. But this only applies for independent SVG files;
for inline SVG, the browser still needs to parse and scan all the
stylesheets from your HTML, so using presentation attributes in
the SVG won’t save any style computation time.

Authoring convenience
For many authors, presentation attributes are simply easier,
meaning no headaches about CSS selector specificity, with one
value overriding another. This is a valid reason to stick with
attributes. (Of course, if you really want to avoid unintentional

Coordinating Code | 787

overrides from your document stylesheet, you would use inline
style attributes.)

For many SVG drawings, each shape is uniquely styled, or
shared styles can be applied by inheritance from a group. In
those cases, classes and style rules add complexity without
reducing the total amount of code.

But be careful not to get so stuck in the habit that you use pre‐
sentation attributes even when they cease to be practical. If you
do have multiple elements that should be styled the same, and
which can’t be easily grouped, repeating the style values as
attributes on each element ruins the DRY-ness of your code,
making it difficult to maintain.

Scripting efficiency
Presentation attributes are easy to read and modify from Java‐
Script with getAttribute() and setAttribute(). Inline styles
are even easier (using the element.style object). In contrast,
reading CSS set with stylesheets requires the (slower)
getComputedStyle() approach; modifying CSS stylesheet rules
means working with the CSS OM, and there’s currently no easy
way to access all the rule objects that apply to a given element.

But the computed style is more comprehensive, covering styles
set in any method, including inherited styles, so use it whenever
you really need to find out the current style value (like the actual
width and height of an <svg>), especially if styles may come
from a mix of sources.

DOM performance
CSS rules can reduce the total amount of style data the browser
needs to keep in memory, even separate from the size of file
downloads. Setting attributes or inline styles on each element,
whether from markup or from script, means that the CSS text
string has to be parsed and stored for each. When you have
large numbers of elements (hundreds or more), this can be an
important performance hit compared to creating shared style
rules and setting classes on the elements.

There’s no hard-and-fast answer, and you might choose to use a
combination of different methods. Presentation attributes can be
used as defaults that can be reset by CSS, or they can be used for

788 | Chapter 20: Good Manners

unique features of a given element while shared styles are set with
classes.

Sharing SVG Assets
When you have inline SVG components shared across multiple web
pages, you need to think about the most practical way to manage
shared SVG assets, so that everything stays coordinated.

In an ideal world, you’d create shared asset files and access each
symbol or graphical effect as you need it. But if you’ve read the rest
of the book, you know that SVG on the web is far from an ideal
world. So: do you use server-side includes or build tools to add the
same SVG markup to every page, or do you use a client-side AJAX
(asynchronous JavaScript and XMLHttpRequest) solution to import
them?

For simple cross-file <use> references, where the referenced element
is a symbol that will be styled entirely by inheritance, browser sup‐
port is getting to be pretty good. Add an AJAX solution like
SVG4Everybody to cover older browsers, and you’re good to go.

But for more complex cross-references, the browser support isn’t
there (and can’t easily be detected by the SVG4Everybody script).
This includes <use> references to files with <style> sections, as well
as references to patterns, gradients, masks, clipping paths, filters,
and markers. For all of these cases, you currently need the elements
to be in the same document for decent browser support.

The one exception: if you’re using SVG masks,
clipping paths, and filters applied to non-SVG
elements, then the browser support for external
file references is pretty close to the browser sup‐
port for using the effect in the first place. So you
might as well directly reference the separate
asset file from your style declaration.
Just be sure to have fallback plans for the brows‐
ers that don’t support either feature.

So how do you get the SVG into the HTML?

If you’re already using a markup templating system—whether a
static-site generator, server-side scripting, or a client-side framework

Coordinating Code | 789

https://github.com/jonathantneal/svg4everybody

—it is often easiest to use it to include your SVG markup as well.
However, a custom AJAX solution may sometimes make sense as an
enhancement to a server-side build routine, if the shared SVG files
are very large, and you’re confident most users will visit multiple
pages. In those cases, adding the SVG markup to every page can
slow down every download compared to AJAX-ing a cached asset
file.

At this point—once you are using templating tools to copy your
code into each HTML file—you’ll also want to consider if it still
makes sense to use <use>.

The <use> element is mostly an authoring convenience to keep your
code DRY—but a templating system does the same thing. A <use>
also reduces file size—but the difference is small if you’re compress‐
ing your files with Gzip or Brotli (as you should). As currently
implemented in most browsers, <use> shadow-DOM trees require
as much or more memory and processing as the graphics they rep‐
resent. So unless you need the live copies in the browser to all stay in
sync as they are modified, it may make sense to just copy the raw
markup where you need it, instead of creating symbol definitions
and reusing them.

Selecting a JavaScript Library
The JavaScript examples in this book have all been of the “vanilla”
variety, using standard JS methods and the DOM APIs available
directly in the browser. However, we recognize that most complex
scripted SVG on the web is built on one JavaScript library or
another.

There are three reasons we chose the vanilla approach:

• We wanted to emphasize that you can script SVG directly, so
long as you watch out for XML namespaces.

• We didn’t want to get too distracted discussing the specifics of
any particular library. SVG JavaScript libraries are huge topics
unto themselves, and deserve books devoted to the subject.

• All our examples were fairly simple anyway.

If you’re creating an interactive SVG that goes beyond what CSS
pseudoclasses can do, or if you’re building complex maps and charts

790 | Chapter 20: Good Manners

from data files, it is worth taking a moment to assess whether using
someone else’s ready-made code will make your job easier.

That’s not to say you always need to use a JS library. Library code is
most often useful in four situations:

• You prefer a declarative interface for describing animations
(that is, describing animations based on the desired outcome,
instead of frame-by-frame calculations), but need better cross-
browser support or performance than is currently available with
CSS and SMIL animation.

• You want to create abstract drawing code that could be rendered
using either SVG or the HTML Canvas2D API.

• You need your SVG code to play nicely with a JavaScript frame‐
work used for the rest of your website.

• You are building a complex—but not unique—data visualization
and don’t want to waste time reinventing the wheel…or the pie
chart…or the radial-tree organizational diagram.

Some things to consider when selecting a library:

• How large a file size is the library code? Can you easily create a
subset of only the methods you are using? Large libraries slow
down your website both for the time to download and for the
time and memory required to parse the JavaScript.

• Is the library API intuitive to use for what you want to use it
for? If you have to hack around the API’s limitations to create
the desired effect, you’re probably better off just hacking it
together from vanilla JS.

• Is it optimized for your use case, particularly when it comes to
tricky aspects like animation performance or asynchronous
event handling?

• Does it include extra functions, such as complex mathematical
or text-parsing methods, which you’d have to recreate anyway?

• Does it handle cross-browser compatibility issues for you?

If you do choose to use a JavaScript library, make sure it is designed
to work with SVG, so that it uses the correct XML-namespaced
DOM methods “under the hood.” We listed a few common SVG-
related libraries in Chapter 4.

Coordinating Code | 791

Test, Test, Test!
Planning ahead for browser support issues is important, and the
warnings in the book should help with that. Build in compatibility
as you go by working around known support limitations, or by inte‐
grating fallbacks.

But nothing replaces thorough testing of your own code.

You will often encounter “gotchas” or bugs that you did not expect
or plan for. This is particularly true when your work is shown on
mobile plaforms, where browsers become even more fragmented.
But it is true of the major desktop browsers as well. We’ve filed doz‐
ens of browser bug reports while working on this book. Many of
those were for weird intersections of multiple features, where the
bug wouldn’t show up in unit tests for support of one feature or the
other.

For this reason, cross-browser and cross-platform testing is particu‐
larly important. You can develop your SVG-infused site using any
browser you wish, but before publishing the work you need to check
that it works.

And don’t wait until you’re done before testing. Regularly check
your assumptions.

It’s much easier to address problems as they occur, rather than hav‐
ing to go back and fix things after the work is otherwise complete.
For this reason, it’s important to check your work as you go: if possi‐
ble, test in all the major rendering engines, meaning Chrome, Fire‐
fox, Safari, Edge, and Internet Explorer. If you can, test different
operating systems as well: Windows, macOS, iOS, Android, and
Linux.

That’s quite a bit of ground to cover. Broadly speaking, there are
three ways of dealing with it, from best to worst:

Test each browser in its native operating system
The ideal testing situation is to test real browsers running on
real devices. This will mean multiple machines and multiple dis‐
plays, all connected to your testing server.

To avoid having to manually refresh each browser to visually
check the results of code changes, you can use a tool like Brows‐
erSync or CodeKit; many integrated development environments

792 | Chapter 20: Good Manners

https://www.browsersync.io/
https://www.browsersync.io/

(IDEs) now have similar capabilities. All of them work on simi‐
lar principles, running a server in the background that pushes
refresh requests to browsers looking at a particular URL, when‐
ever the code is updated.

Use emulators and virtual machines
You may not have access to an extensive device lab of different
phones and computer operating systems. Even if you have the
correct OS, some browsers are tied to operating system
upgrades, so you can’t run multiple versions of the same
browser on the same device.

Virtual machines can help. That means loading an entire oper‐
ating system in a separate application window, sandboxed from
the main system in which it is running. Using this approach,
you can (in theory) run as many instances as you wish, each
with its own browser version. The most common virtualization
software is VirtualBox, and Microsoft offers virtual machines
for all versions of Internet Explorer and MS Edge, starting with
IE8.

There are also virtual machines (emulators) for the major
mobile operating systems, in which you can run the preinstalled
stock browsers and compatible versions of other major brows‐
ers. Emulation is never quite the same as having a real device,
but it can identify major support issues.

A slightly less ideal option is software emulation without recre‐
ating the full operating system. Most browser developer tools
can now recreate different screen sizes and resolutions, and
many can simulate touch support on a desktop. But this isn’t the
same as recreating the full mobile versions of those browsers. In
addition, Internet Explorer 11 dev tools can emulate earlier IE
versions, turning off features that weren’t supported in earlier
versions and recreating many (but not all) of their quirks.

Use online multibrowser testing services
The final option is to mostly rely on online testing and emula‐
tion services like CrossBrowserTesting, BrowserStack, and
BrowserLing. Microsoft also offers free online access to its IE
and Edge virtual machines, via BrowserStack. Being online, they
tend to be slower in response, and take more time to update, but
they are still very useful. (The browser support warnings in this
book owe quite a lot to CrossBrowserTesting.)

Test, Test, Test! | 793

https://www.virtualbox.org/wiki/VirtualBox
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://crossbrowsertesting.com/
https://www.browserstack.com/
https://www.browserling.com/

Depending on your subscription option, you may be able to
automate the testing process, running your site on many brows‐
ers and screen size, retrieving screenshots, and comparing them
against reference images to see if anything is broken. However,
remember that screenshots only capture some of the possible
ways a browser can break your website: interactive features still
need to be tested directly.

Don’t assume that the same version of a browser is equivalent across
platforms. While features are usually the same for a browser release
across different platforms, there can be surprising support gaps or
rendering inconsistencies.

Many browsers (particularly Firefox and
Chrome) will use different low-level graphics
rendering libraries depending on the operating
system and the type of GPU available.
Also remember that all browsers on iOS devices
use WebKit code for rendering web page con‐
tent, including SVG.

Just because your graphic looks perfect in a specific version of a
browser on Windows does not mean it will yield the same result in
the same browser version on macOS or Android. Trust us—we’ve
been caught by this exact problem when building demos for this
book!

Final Thoughts
This book has been a fairly major undertaking, passing from one
author to the next and filling up free time over many years.

When Kurt first began the book in 2011, SVG was just beginning to
achieve practical browser support. Many things were simply not
possible with SVG on the web. Since then, support for core SVG 1
features has improved incredibly—but numerous new features have
also been added, with their own support issues.

The final book is the result of various tradeoffs between wanting to
be exhaustive and wanting to be instructive, between wanting to
make examples clear and simple and wanting to make them realistic
and interesting.

794 | Chapter 20: Good Manners

Scalable Vector Graphics is a powerful document language, but its
flexibility creates great complexity. Until SVG, there was generally a
clear division between word and picture on the web, and the web
consequently was very rectilinear: always divided into boxes. With
SVG, that division breaks down. SVG has helped usher in a new era
in which web interfaces have become more gamelike, immersive,
and adaptive, where graphics can be interactive and dynamic, and
therefore much more informative.

The final book is much more exhaustive than originally planned, but
cannot hope to cover all possible quirks and complications you will
discover when working with SVG. We hope that the explanations
and the examples have inspired you to imagine new possibilities. We
encourage you to make use of the online reference sections, as you
continue to learn through experimentation.

Most of all, have fun, and don’t be afraid to play.

Final Thoughts | 795

Index

Symbols
% (modulus) operator, 54, 152, 761
* (in CSS selectors)

universal element selector, 81
wildcard CSS namespace selector,

78
|| (Boolean OR) operator, 711

A
a element, 680-692

buttons vs links, 717
in defs, browser bugs, 685
graphical links, 685
HTML vs SVG, 680, 683
keyboard accessibility, 717, 719
same-page links, 698-701
in text, 681
for views, 301, 310

absolute vs relative
path commands, 171, 370
text positioning, 234

accessibility
animation, 772
design considerations, 769-773
keyboard access, 664, 684-685,

717-722, 773
focus styles, 683, 691

(see also focus selector)
same-page links, 699
text selection, 213
tooltips, 654

screen readers
alternative text, 58, 66, 685

alternative text, id=accessibil‐
ity_screen_readers,
range=startofrange, 653

decorative text, 213, 376, 583,
622, 781

interactivity, 722, 773
language, 652
semantics, 290, 683, 707

(see also ARIA)
touch input, 684

Acessible Rich Internet Applications
(see ARIA)

:active selector, 684
(see also selectors)

addEventListener DOM method, 702
Adobe CSS Shapes Editor library, 572
Adobe Illustrator, 114, 778

(see also graphical editors)
background filters, 610, 645
converting text to paths, 214, 781
copying elements as code, 4
fill rule defaults, 181
mesh gradients, 432
non-SVG effects, 784
styles and classes, 786
tracing shapes vs Photoshop selec‐

tions, 687
Adobe Photoshop, 115

(see also graphical editors)
blend modes, 641
fill rule defaults, 181
masks vs clipping paths, 573
paths from selections, 687

797

Adobe SVG viewer, 37, 126
affine transformations, 399
::after CSS pseudoelement, 89, 104
AI (Adobe Illustrator) file format, 114
AJAX, 350
aliasing, 492
alpha

blending (normal blend mode),
634

color functions, 423
filters

channel calculations, 612
input layers, 610
luminanceToAlpha operation,

608
masks, 576, 590

alt attribute, on img, 58, 653
anchor, for text layout, 34, 228

(see also text-anchor style prop‐
erty)

animate DOM method, 754
animate element, 743
animateMotion element, 746-749

vs offset-* properties, 750
animateTransform element, 746
animation, 28-33, 725-764

accessibility concerns, 772
CSS, 29, 728-741

keyframe, 732-738
limitations, 739
vs SVG/SMIL, 751
transitionable properties, 730,

733
transitions, 729-732

declarative vs procedural, 727
film techniques and terms, 726
frame rate, 726, 753
loop functions, 728, 753, 759
performance, 739, 752, 758, 762
scripted, 752-762
SVG/SMIL elements, 28, 741-752

vs CSS, 751
timing functions, 730, 734, 736,

758
Web Animations API, 728, 754

animation-* style properties, 514
animation shorthand, 735
animation-delay, 734

animation-direction, 734, 738
animation-duration, 734
animation-fill-mode, 735
animation-iteration-count, 735
animation-name, 733, 740
animation-play-state, 735
animation-timing-function, 734,

736
anti-aliasing, 492
Apache Batik, 37, 45, 78, 126

Squiggle viewer, 126
area element, in HTML, 686
ARIA, 663

browser support, in SVG, 665
new roles for graphics, 666

aria-atomic attribute, 708
aria-current attribute, 683
aria-describedby attribute, 668, 673
aria-hidden attribute, 657

for decorative text, 376, 399
aria-label attribute, 66, 319, 345, 654,

656, 685
on elements with children presen‐

tational roles, 686
aria-labelledby attribute, 660-663

for title element, 655
spelling, 656

aria-level attribute, 665
aria-live attribute, 708
aspect ratio, 281

(see also preserveAspectRatio)
Atom code editor, 127
attributeName attribute, 744
audio element, in SVG 2, 360
axis, 256

(see also coordinate systems)

B
B or b bearing command, in SVG 2,

208, 312
backdrop, vs background, 639
backdrop-filter style property, 645
background-* style properties, 93,

781
aspect ratio control, 279
background-blend-mode, 633
background-image, 88
for icon sprites, 328

798 | Index

SVG root element, 141
BackgroundImage and Background

Alpha filter inputs, 610, 633, 639
base element, in HTML, 97
base-64 encoding, 96

(see also data URI)
baseline (of text), 217
baseline-shift style property, 236
::before CSS pseudoelement, 89, 104
Bézier curves, 188-202

approximating arcs, 206
cubic, 198
graphical editors, 777
in mesh gradients, 432
quadratic, 189
smooth splines, 188, 193, 200
timing functions, 730

bgcolor attribute, 411
bitmap images (see raster images)
blend modes, 633-645

browser support, 637, 640
rendering order, 640, 642

Blink rendering engine, 123
(see also web browsers)

blur effect, 598-603
(see also filters)
edge blurring, 615-618
Gaussian statistics, 601
shadow effects, 603
trimming

with feComposite and Source
Alpha, 616

with filter region attributes,
628

uniform vs directional, 599, 603
blur filter function, 603, 606, 616

(see also blur effect)
Boolean OR operator, 711
border-image style property, 89
border-radius style property, 158-160

with border images, 93
vs clip-path, 569
CSS vector graphics, 103

bounding box, 438-441
(see also objectBoundingBox)
of grouping elements, 565
hidden overflow and, 582
of text elements, 440, 582

of transformed elements, 439
box-shadow style property, 603
Boxy SVG, 120
Brackets code editor, 128
BrowserLing, 793
browsers (see web browsers)
BrowserStack, 793
browsing context, 301
btoa JS function, 96
bugs (see web browsers, bugs)
button role, 717

children presentational, 686
vs radiobutton, 720

C
C or c cubic-curve-to command, 200
calc CSS function, 148, 192

for SVG attributes, in SVG 2, 626
cancelAnimationFrame DOM func‐

tion, 757
canvas element and Canvas2D API,

171, 360
Cartesian coordinates, 256-258
cascade, in CSS, 80
Catmull-Rom spline curve, 208
CDATA block, 51, 143, 673

hiding with JS comments, 52
in a style element, 78

centered coordinates (see coordinate
systems)

centered text, 228
(see also text-anchor style prop‐

erty)
on textPath, 248

character data, in XML (see CDATA
block)

checkbox role, 664
child CSS function or keyword, in

SVG 2, 432, 545
Chrome, 123

(see also web browsers)
SMIL deprecation, 742

circle CSS function, 165
circle element, 10, 161

start of stroke, 510
class attribute, 18, 455, 776
classList DOM property, 144, 706
className DOM property, 50

Index | 799

clearInterval JS function, 755
click DOM event, 712
clientX and clientY DOM properties,

713
clip art, sources, 108-113
clip style property, 356, 572
clip-path style property, 187, 356, 552

(see also clipping)
vs clip, 572
on clipPath element, 562
composite clips, 562
for CSS layout boxes, 552, 565
reference box, 570
shape functions, 569

graphical editors, 572
vs shape-outside, 572

clip-rule style property, 554
clipPath element, 553-555

(see also clipping)
allowed contents, 553, 557, 564
applicable styles, 554

clipPathUnits attribute, 553, 556, 564
clipping, 547, 550-573

vs border-radius, for CSS boxes,
569

for interactive elements, 564, 688
vs masking, 547, 573
vs overflow, 550
rendering order, 607

Clippy, 572
cloneNode DOM method, 712
CMYK color, vs sRGB, 777
code editors, 5, 127
CodePen, 130
color, 410-428

graphical editors, 777
hex codes, 412
keywords, 410
profiles, 413
semitransparent, 423

vs *-opacity properties, 425
system color keywords, 771

color hints, in CSS gradients, 461
Color module (see CSS3 modules)
color style property, 220, 414

(see also currentColor)
color-interpolation-filters style prop‐

erty, 609, 637

compositing
blend modes, 639, 641
feComposite, 614

Compositing and Blending module
(see CSS3 modules)

conditional CSS rules, 84, 86
conic gradients

CSS functions, 461
using mesh gradients, 432

constructor property, of a JS object,
49

content style property, 89
contenteditable attribute, 632
contentinfo role, 666
context-fill and context-stroke key‐

words, in SVG 2, 539
coordinate systems, 255-272

centered, 264, 368, 381, 627
origin, 368
transformations (see transforma‐

tions)
createElement and createElementNS

DOM methods, 48, 144, 705
Creative Commons, 109, 676
crispEdges keyword, for shape-

rendering, 493
cross-file references (see external

asset files)
cross-origin (CORS) files, 348

for clipping and masking, 553,
592

crossorigin attribute, 351
HTTP CORS headers, 348
for paint servers, 434
in style properties, 351
in use references, 348, 351

CrossBrowserTesting, 231, 793
crossorigin attribute, 351
CSS

animation (see animation)
as attributes, 76

(see also presentation
attributes)

box layout vs SVG, 98
cascade and inheritance, 80

in animations, 740
user styles, 771

conditional rules, 84

800 | Index

fallback declarations, 84
filters (see filters)
media rules (see media queries)
selectors (see selectors)
style rules, 77
styling methods compared, 786
timeline, 45
transitionable properties, 730, 733
transitions (see animation)
variables, 420-423, 644, 740

animated, 733
limitations, 423

as a vector graphics language,
99-104

CSS Shapes Editor Chrome exten‐
sion, 572

CSS3 modules, 43, 70, 105
browser support (see web brows‐

ers, support)
Color level 3, 412, 424
Color level 4, 413, 423, 428, 777
Compositing and Blending, 633,

639
Fill and Stroke, 221, 434, 467, 483,

496, 500, 503, 509, 521
Filter Effects, 596, 611, 616
Filter Effects level 2, 645
Images level 3, 279
Images level 4, 461
Masking, 552, 569, 576, 589
Motion Path, 750
Selectors, 77
Shapes, 165, 186, 198, 569

graphical editors, 572
Transforms, 364, 377, 383, 391
Transforms level 2, 400
Values and Units, 148
Writing Modes, 240

CTM (cumulative transformation
matrix), 404, 713
(see also getScreenCTM)

currentColor keyword, 220, 414-420
adapting to accessibility settings,

771
filter flood colors, 623
and style inheritance, 415

cursor style property, 90

custom properties, in CSS (see CSS,
variables)

cx and cy attributes
on circle, 10, 161
on ellipse, 161
geometry properties, in SVG 2,

154
on radialGradient, 452

D
d attribute, 170

converting from points attribute,
185

geometry property, in SVG 2, 154
D3.js, 132
darken blend mode, 635
data attribute, on object element, 60
data URI, 95

base-64 encoding, 96
for fonts, 216
URL-encoding SVG files, 95

Date JS object, 705, 756
declarative animation, defined, 727

(see also animation)
default size

of embedded SVG, 282
of HTML objects and images, 283
of inline SVG, 284

default SVG coordinate system, 258,
260

defer keyword, for preserveAspect
Ratio, 359

defs element, 22, 332
bugs with a links, 685
removing automatically added

elements in Inkscape, 118
degrees (deg unit), 391

converting to radians, 388
desc element, 667-673

HTML content, 668
display style property

clipping paths, 554
CSS animations, 731
interactivity, 695

document DOM object, 142
document object model (see DOM)
documentElement DOM property,

142

Index | 801

DOM, 17, 43
(see also JavaScript)
namespaces, 48, 63

(see also XML namespaces)
shadow (see shadow DOM)
SVG vs HTML, 48-50
text methods, 250
timeline, 45

DOMMatrix object, 714
DOMPoint object, 714, 760
Don’t Repeat Yourself (see DRY code)
download attribute, 681
Draw SVG, 119
drop-shadow filter function, 603,

615, 784
DRY code, 17, 153, 360, 632, 749, 790
Dublin Core, 674
dur attribute, 744
dx and dy attributes

on feOffset, 615, 626
text layout

multiple values, 239
negative kerning, 621
on text element, 238
and text length, 250
within textPath layouts, 244
on tspan, 234

E
easing functions (see animation, tim‐

ing functions)
ECMAScript, 45, 48

(see also JavaScript)
EdgeHTML, 125

(see also web browsers)
edgeMode attribute, 616, 618
editor software

code, 5, 127
graphical (see graphical editors)

Element DOM object, 48
ellipse CSS function, 165
ellipse element, 160-164

start of stroke, 510
embed element, 61
embedded object (see objects, SVG

embedded as)
emulators, for testing, 793

enable-background style property, in
SVG 1, 644

encodeURIComponent JS function,
95

equivalent path, for shapes, 510, 545
evenodd keyword, 179

(see also fill-rule style property)
in CSS shapes functions, 186

Event DOM object, 701
EventTarget DOM object, 710
external asset files, 341-351, 789

for clipping and masking, 553,
592

cross-origin (see cross-origin
(CORS) files)

CSS within, 347
for filters, 605
for paint servers, 25, 66, 69, 434,

449
for use references, 348, 419, 469
workarounds for poor browser

support, 349
external stylesheets, 79

compared with other styling
methods, 786

stylesheet order, for cascade, 84

F
fallback fonts (see web fonts)
fallbacks, for SVG, 767

within background images, 88
browser support for SVG, 47
using markup in desc, 668
using picture element, 58
using SVG4Everybody, 350

feBlend element, 611, 634
(see also blend modes)

feColorMatrix element, 607-609, 690
feComposite element, 612, 621, 623

for trimming blur, 616
operators, 614

feDisplacementMap element, 612
feDropShadow element, 603, 615
feFlood element, 613, 622
feGaussianBlur element, 599, 607

(see also blur effect)
feImage element, 613, 638

802 | Index

feMerge and feMergeNode elements,
612, 626

feMorphology element, 617-621
operators, 618
stroke-like effects, 620

feOffset element, 615, 626
as a no-operation filter, for primi‐

tive region clipping, 631
Fetch API, 349
feTurbulence element, 613
figure element, 293
file type, 5
file: URLS, 341
Fill and Stroke module (see CSS3

modules)
fill attribute, on animation elements,

744
fill style property, 10, 409-434, 706

child syntax in SVG 2, 432
CSS3 changes, 434
fallback colors, 66, 433
on line element, 140
and pointer-events, 693
reused icons and inheritance, 346
for text, 220
url values, 28, 66, 433

fill-box keyword, for transform-box,
384

fill-opacity style property, 158,
424-428
with gradient or pattern fill, 429
vs opacity, 548
and pointer-events, 695

fill-rule style property, 179-182
vs clip-rule, 554
for polygon and polyline, 185

FillPaint filter input, 610, 623
filter CSS function, 605
Filter Effects module (see CSS3 mod‐

ules)
filter element, 596

(see also filters)
filter style property, 596

(see also filters)
obsolete Internet Explorer ver‐

sion, 605
filters, 595-646

chaining primitives

with markup elements, 607
with shorthand functions, 609

CSS transitions, 604
error handling, 605, 610, 623
filter region, 613, 624-633

primitive region, 628
for CSS layout boxes, 622

browser support, 597
inputs, 610
merging primitives, 611
on tspan and textPath elements,

browser support, 622
performance, 596, 604, 627, 641,

646
primitive elements, 597

primitive region, 628
rendering order, 607, 640
shorthand functions

browser support, 597
filterUnits attribute, 624
Firefox, 122

(see also web browsers)
flags

in arc path segments, 205
for experimental browser features,

121
Flaming Text ImageBot, 111, 120
Flash, 37, 727
flash of unstyled SVG (FOUS), 7, 346,

787
flattening effects (see layer effects)
flood-color and flood-opacity style

properties, 424, 613, 623
focal point, of radial gradients, 452,

455
simulating in CSS, 459

focus DOM method, 50, 721
focus order (see accessibility, key‐

board)
:focus selector, 604, 684

(see also selectors)
focusable attribute, in SVG 1.2, 720
font-* style properties, 218

font shorthand, 219
font-family, 230

in animation, 730
font-size, 218, 771
font-size-adjust, 231

Index | 803

font-stretch, 230
@font-face CSS rule, 215, 227

(see also web fonts)
foreignObject element, 63, 669, 673

vs HTML elements directly
embedded, in SVG 2, 360

fps (frames per second), 753
frames, in an animation, 726

(see also keyframes rule)
per second frame rate, 726, 753

from attribute, 745
from keyframes selector, 732
fx and fy attributes, 455

(see also focal point)

G
g element, 17

layer effects, 548
(see also layer effects)

layers in graphical editors, 18, 775
logical structure, 775
in mask vs clipPath contents, 564,

580
nesting transforms, 382, 740
reusing, vs symbol, 327, 332, 427
roles, for accessibility, 656, 666
styling child elements that will be

re-used, 376, 399
Gaussian blur, 598

(see also blur effect)
statistical basis, 601

Gaussian distribution, 598, 602
Gecko, 122

(see also web browsers)
getAttribute and getAttributeNS

DOM methods, 719
getBBox DOM method, 439

(see also bounding box)
changes in SVG 2, 521

getComputedStyle DOM method,
788

getComputedTextLength DOM
method, 250

getPointAtLength DOM method, 759
getScreenCTM DOM method, 713
getSubStringLength DOM method,

250

getTotalLength DOM method, 251,
506, 512, 515, 761

GIMP, 116
masks vs clipping paths, 573
paths from selections, 687

global URL, 88
GPU, 596, 794

blend modes in compositing, 641
optimized filters, 603

gradians (grad unit), 391
gradients, 25-28, 441-461

(see also paint servers)
CSS functions, 457-461

for forcing fallback in CSS
backgrounds, 89

gradientTransform attribute, 443,
450-452

gradientUnits attribute, 443, 444
userSpaceOnUse vs objectBoun‐

dingBox, 437
graphical editors, 113-120, 773-785

background colors, 781
converting text to paths, 214, 781
fill rule defaults, 181
layers, 18, 633, 775

(see also g element)
non-SVG effects, 607, 783
paths from selections, 687
stroke alignment, 496, 783

graphical processing unit (see GPU)
graphics-* roles, 656, 667
grayscale filter function, 608

for color/contrast testing, 770
GreenSock Animation Platform, 133
group role, 656, 665
Grunt, SVGStore for, 134
GSAP (Greensock Animation Plat‐

form), 133
Gzip compression, 112, 313

H
H or h horizontal-line-to command,

182
hatch elements, 431
heading role, 665
height and width attributes or style

properties
autosizing SVG, 280-295, 323

804 | Index

coordinate system dimensions,
259

on filter, 624
on filter primitives, 628
geometry properties, in SVG 2,

154
in graphical editors, 284, 775
on img, 321
on mask, 578
on pattern, 462, 467, 470
on rect, 149
on svg element, 7, 283, 710
on symbol, in SVG 2, 341
on use, 333

hexadecimal color values, 412
:hover selector, 604, 684, 692

(see also selectors)
href attribute

a element in SVG vs HTML, 680
CSS selectors for, 78
on marker, proposal, 545
vs xlink:href, 21, 249, 337, 449,

680, 719
hreflang attribute, 681
hsl color function, 412, 705
hsla color function, 423
HTML

elements in SVG
alternative text, 668
foreignObject, 63, 669
link and meta, 80, 676
media embeds in SVG 2, 360

embedding SVG in, 56-69
HTML5, 43, 61
parser, 5-7, 10, 63, 247, 669, 674

bugs, 673
creating elements with

innerHTML, 49
element depends on context,

51
XML namespaces and inline

SVG, 63, 66
vs SVG, 43
timeline, 45
WHATWG vs W3C, 62

HTMLUnknownElement DOM
object, 48

HTTP headers

for cross-origin files, 348
for file types, 5
for SVGZ files, 112

HTTP/2, and multiple file requests,
94

HTTPS, 300, 348, 350
hue-rotate filter function, 608
hyperlinks (see a element)

I
Iconic library, 112
id attribute, 22, 97, 776

ARIA attributes, 655, 660
URL targets, 299, 698

iframe element, 61
(see also objects, SVG embedded

as)
browsing contexts and SVG views,

301
sandboxing, 305
scaling SVG in, 304, 309
in SVG 2, 360

image element, 221, 351-359
alternative text, 359
autosizing, in SVG 2, 352
cropping, 356, 582
fallback behavior and src, 354
image maps, 687
in a pattern, 467, 518, 630

image maps, HTML vs SVG, 686-692
Images module (see CSS3 modules)
images, SVG embedded as, 56-60,

679, 768
autosizing, 59, 281
backgrounds and borders on root

element, 141
embedding with CSS, 87-93
icons sprites with views, 316
limitations, 60, 79, 213, 223, 312
media queries, 86
vs use elements, 346, 350

img element, 56
(see also images, SVG embedded

as)
alternative text, 653
fallback for object, 61
image as synonym, for fallback,

354

Index | 805

image maps, 686
picture and srcset, 58
presentation attributes, 321
scaling SVG in, 280-284
styling the box, 159, 317, 781
SVG views within, 301, 316

img role, 58, 66, 345, 656, 665
children presentational, 657

immediately-invoked function, for
scoping JavaScript variables, 54

@import CSS rule, 79, 787
!important CSS modifier, 76, 77
in attribute, 610

filters that ignore in, 613
in2 attribute, 611
inherit keyword, 20, 497

to reset styles, 83
unsetting styles in editors, 782

Inkscape, 117, 327
(see also graphical editors)
background filters, 610
converting text to paths, 214
CSS support, 78, 455
desc descriptions, 668
fill rule defaults, 181
mesh gradients, 431
SVG 1.2 wrapping text, 212
symbol libraries, 339
unset styles, 782

inline styles, 18, 77, 293, 782
compared with other styling

methods, 786
DOM property, 54

inline SVG, 5, 61-69, 680, 769
autosizing, 284-295
CSS styling and inheritance, 64,

77
media queries, 86
use elements for icons, 345

inline-size style property, in SVG 2,
237

innerHTML DOM property, 49
on SVG elements, 49

inset CSS function, 165
internal stylesheet (see style element)
Internet Explorer, 124

(see also web browsers)
virtual machines, 793

interpolation, 725, 758
(see also animation)

intrinsic aspect ratio, 281
intrinsic size, 282, 320

(see also default size)
inverse DOM method, 715
isolation style property, 642

vs enable-background, 644
isolation, for blend modes, 642-645

J
jank, defined, 726

(see also animation, performance)
JavaScript, 48-56

(see also DOM)
for animation, 752-762
drawing SVG elements with, 142,

151
event model, 701
for interactivity, 701-722
libraries, 131-133, 145, 790-791
on* attributes, 53
script element, 51
string length counting, 239
timeline, 45

JSFiddle, 130

K
keyboard access (see accessibility)
@keyframes rule, 30, 514, 732
keyframes, defined, 727
keypress DOM event, 719

L
L or l line-to command, 173

multiple coordinate pairs, 179,
184

vs horizontal and vertical short‐
hands, 182

lang attribute, 15
(see also xml:lang attribute)
for multilingual title and desc, in

SVG 2, 658
language, of text, 652

(see also xml:lang attribute)
:last-of-type selector, 387

806 | Index

layer effects, 547-550, 568, 577, 613,
640
create isolation, 642

layers, in design (see graphical edi‐
tors)

lengthAdjust attribute, 248
letter-spacing style property, 240
libRSVG, 45
ligatures (in text), 239
lighten blend mode, 635
line element, 140-148

start of stroke, 510
line markers (see marker element)
line-height style property, 237
linearGradient element, 27, 429, 441,

444-451, 516
(see also gradients)
attributes, 443

linearRGB, keyword for color inter‐
polation, 609

link element, 80
in an SVG file, 80

:link selector, 683
(see also selectors)

links (see a element)
list and listitem roles, 666
list-style-image style property, 89
local URL, 88
location DOM object, 719
luminance

filters, 608
masks, 574, 584, 590

luminanceToAlpha, type in feColor‐
Matrix filter, 608

M
M or m move-to command, 173

creating subpaths, 178
multiple coordinate pairs are

lines, 184
map element, in HTML, 686
marker element, 523-546

attributes, 531, 541
dimensions, 525, 540
paint-order control, 494

marker-* style properties, 524
markable shape elements, 524
marker shorthand, 525

markerHeight and markerWidth
attributes, 541

markerUnits attribute, 531, 538, 541
markup, defined, 5
mask element, 577, 587

(see also masking)
contents, 578

mask style property, 577
(see also masking)
changes in CSS3, 576, 589
for CSS layout boxes, 576, 590
on mask element, 587

mask-* style properties, in CSS3, 589
mask-composite, 591
mask-image, 90
mask-mode, 590

mask-border style property, in CSS3,
592

mask-type style property, on mask
element, 591

maskContentUnits attribute, 578
masking, 547, 573-592

vs clipping, 547, 573
luminance vs alpha, 574, 590
rendering order, 607

Masking module (see CSS3 modules)
maskUnits attribute, 578
Math JS object

random method, 705
trigonometric functions and con‐

stants, 388, 762
matrix

transform function, 401
transformation calculations,

399-404
DOM methods, 713-715
inverting, 715

type in feColorMatrix filter, 608
matrixTransform DOM method, 714
media attribute, 79, 86

(see also media queries)
@media CSS rule, 86

(see also media queries)
Media Fragments URI, 309
media queries, 86

for external stylesheets, 79
media types vs features, 86
prefers-reduced-motion, 772

Index | 807

print styles, 81
SVG scaling, 86
vs views, 312

meet keyword, for preserveAspect
Ratio, 276, 322

mesh gradients, 431-432
meta element, 676
metadata element, 109, 674-676
Microsoft Edge, 125

(see also web browsers)
mix-blend-mode style property, 633,

639
(see also blend modes)

mode attribute, on feBlend, 634
modulus operator, 54, 152, 761
motion blur, 601

(see also blur effect)
motion path, 746, 750

(see also animateMotion)
Motion Path module (see CSS3 mod‐

ules)
MouseEvent DOM interface, 712
mouseup DOM event, 712
mpath element, 746
MS Edge, 125

(see also web browsers)
virtual machines, 793

multiline text
in SVG 2, 237
with textPath, 244
with x and dy in SVG 1, 236

multiply blend mode, 634, 643

N
name attribute

on iframe element, 304
on object element, 305

name property, of a JS function, 49
namespace (see XML namespaces)
namespaceURI DOM property, 144,

705
nested coordinate systems, 300, 314,

327, 333, 338, 472
for cropping embedded images,

356
reused shapes and percentages,

334
vs transformations, 363

non-scaling-stroke keyword, 496
(see also vector-effect)

nonuniform scale, 371
(see also scale transform)

nonzero keyword, 179
(see also fill-rule style property)
in CSS shapes functions, 186

normal blend mode, 633
normal distribution, 598, 602
:not selector, 327

(see also selectors)
Noun Project, 112
:nth-of-type selector, 93, 366

O
object element, 60

(see also objects, SVG embedded
as)

accessibility, 214
as a link target, 305
plug-in for older browsers, 126
scaling SVG in, 280-284, 305, 309
SVG views within, 316

object-fit and object-position style
properties, 279, 355

objectBoundingBox keyword, 438
(see also bounding box)
for clipping and masking, 553,

564, 579, 584
distorting effect visualized, 445
vs fill-box in CSS, 384
for filters, 624, 628
for gradients, 443
for patterns, 462, 464
for stroke paint, 516-520
zero-width or -height boxes, 520

objects, SVG embedded as, 60-61,
680, 768
and CSS media queries, 223
autosizing, 281, 282
backgrounds and borders on root

element, 141
interactive views, 312
media queries, 86
same-file links, 310
scaling with object vs iframe, 304,

309

808 | Index

offset attribute, on stop element, 442,
446, 448
creating sharp color changes, 453

offset-* style properties, 750
offsetX and offsetY DOM properties,

713
on* attributes, 53, 702
opacity filter function, 606
opacity style property, 424, 548, 688

and pointer-events, 695
with visibility, for CSS animations,

731
Open Clip Art Library (OCAL), 110,

668
operator attribute

on feComposite, 614
on feMorphology, 618

optimizers, for SVG code, 134
path data, 184

OR operator, 711
orient attribute, on marker element,

535
origin

of coordinates, 256, 368
(see also coordinate systems)

of web pages, 348
(see also cross-origin (CORS)

files)
orthographic projection, 397
outline style property, 684, 691
outline-offset style property, 692
overflow style property, 81

avoiding clipped strokes, 69, 278
bounding boxes, 582
vs clip-path, 550
interactivity, 695
on marker, 525, 540
on pattern, 464
on svg element

nested SVG, 315
slice scaling, 276, 291

on symbol, 340
Oxygen XML editor, 129

P
padding style property

for aspect-ratio control, 287
avoiding clipped strokes, 278

pageX and pageY DOM properties,
713

paint servers, 25, 409, 429-474
concepts, 435
error states, 433
for markers, 538
scaling, 437
for strokes, 515
SVG 2, 431

paint-order style property, 494, 533
limitations for text, 620

painted keyword, for pointer-events,
694

parser, 5
(see also HTML and XML)
CSS error-checking, 84, 423, 548

path attribute, on textPath in SVG 2,
249

path CSS function, 198
path element, 7, 169-208

for animateMotion, 746, 746
creating from images, 687
length of a path, 251, 506
merging paths, in editors, 775, 780
vs polygon and polyline, 185
repositioning with transforms,

381
start of stroke, 510
for textPath, 241

pathLength attribute, 507
pattern element, 429, 461-474, 630

(see also paint servers)
vs repeated shapes, 154
single-tile patterns, 467, 518

patternContentUnits attribute, 462
userSpaceOnUse vs objectBoun‐

dingBox, 437, 464
patternTransform attribute, 473-474
patternUnits attribute, 462, 470

userSpaceOnUse vs objectBoun‐
dingBox, 437

PDF, 39
percentages

for alpha values, 428
for CSS circle function, 165
for dashed strokes, 500, 503
for lengths that are neither hori‐

zontal nor vertical, 164, 479

Index | 809

in markers, 532
in masks, 579
in nested coordinate systems, 314
in patterns, 462
in reused graphics, 267, 334
for rounded rectangles, 156
for transform property, 383
and user-space graphical effects,

438, 627
and views, rescaling, 300

performance budget, 767
performance DOM object, 757
picture element, 58

browser support and PictureFill
polyfill, 59

providing fallbacks for SVG, 58
switching SVG views, 313

pointer-events style property, 691,
693-698, 706
for CSS layout boxes, 697
for image element, 697
stroke styles affecting pointer

region, 478
for text, 697

points attribute, 172, 185
polygon and polyline elements, 172,

185, 512
start of stroke, 510

polygon CSS function, 186, 192, 569
graphical editors, 572

Portable Document Format (PDF),
39

position style property, for CSS vec‐
tor graphics, 99

PostScript, 39, 727
prefers-reduced-motion media

query, 772
presentation attributes, 18, 76, 706

compared with other styling
methods, 786

specificity, 81
presentation role, 657
preserveAspectRatio attribute,

273-278
defer keyword, 359
on image, 355
on nested svg, 314, 333

vs object-fit and object-position,
279

padding hack with slice, 291
in SVG view fragments, 306
on symbol, 333, 338
on view element, 300

Presto, 123
preventDefault DOM method, 712,

719
primitives, for filters (see filters,

primitive elements)
primitiveUnits attribute, 613, 628
print stylesheets, 81

(see also media queries)
procedural animation, defined, 727

(see also animation)
pseudoclasses, 64, 346

(see also selectors)
for interactivity, 684

pseudoelements, 89, 104

Q
Q or q quadratic-curve-to command,

190, 195
converting to cubic, 200

querySelector and querySelectorAll
DOM methods, 55

R
r attribute

on circle, 11, 161
geometry property, in SVG 2, 154
percentages, 164
on radialGradient, 452

radialGradient element, 27, 429, 441,
452-457
(see also gradients)
attributes, 443

radians (rad unit), 391
converting to degrees, 388, 762

Raphaël, 132
raster images

data URIs, 96
embedding with image element,

352
fallback for SVG, 58, 61, 120

810 | Index

vs vector, 36, 37, 43, 110, 215, 225,
280, 621, 679, 768

rasterization, 436
Adobe Illustrator export of non-

SVG effects, 784
aliasing and anti-aliasing, 492, 774
performance, 323, 646
tools, 120

RDF, 674
rect element, 9, 149-158

start of stroke, 510
reference point, of a marker, 542
reflections, 374

(see also scale transform)
impact on rotation direction, 385

refX and refY attributes, 542
on symbol, in SVG 2, 341

region role, 665
rel attribute, 681
relative URL, 88
relative vs absolute

path commands, 171, 370
text positioning, 234

rendering engines, 121
requestAnimationFrame DOM func‐

tion, 755
limitations, 758

resize style property, 270
browser support, 272

Resource Description Framework,
674

result attribute, 611
rgb color function, 412
rgba color function, 423
role attribute, 319, 345, 663

for alternative text in browsers,
655-658

for complex structure, 663-666
for fixing VoiceOver bugs on SVG

in img element, 58
interactive elements, 666
for live regions, 707
new roles for graphics, 666
for noninteractive inline SVG, 66
on svg element, 656

root element, of a document, 12, 144
rotate attribute

on animateMotion, 749

on text or tspan elements, 240
rotate transform, 385-391

as an equation, 388
three-value syntax, 388, 391

rx and ry attributes
auto keyword, 160
on ellipse, 160
geometry properties, in SVG 2,

154, 160
on rect, 155

S
S or s smooth-cubic-curve-to com‐

mand, 200
Safari (browser), 122

(see also web browsers)
sandbox attribute, 305
saturate filter function, 608
scale transform, 366-377

(see also transform attribute)
CSS3 shorthands, 377
effect on strokes, 371
as an equation, 370
negative values (reflections), 374
uniform vs nonuniform, 370

Scour, 134
screen blend mode, 634, 643
screen readers (see accessibility)
screenX and screenY DOM proper‐

ties, 713
script element, 51, 143

(see also JavaScript and DOM)
crossorigin, 351
HTML vs SVG, 51, 52
synchronous behavior, 52

selectors, 77
:active, 684
attribute, 78, 427, 708
:checked, 64
DOM methods, 55
:focus, 684
:hover, 64, 684, 692
for interactivity, 684
keyframe position, 32, 732
:last-of-type, 387
:link and :visited, 683
mixed-case bugs, 55
namespaces in, 78, 683

Index | 811

:not, 327
:nth-of-type, 93, 366
sibling, 324
universal, 81, 498
:valid and :invalid, 64
working around browser inheri‐

tance bugs, 340, 538
Selectors module (see CSS3 modules)
self-closed, XML tag, 10, 52
semantics, 664

(see also role attribute)
Servo (rendering engine), 125

(see also Firefox)
set element, 746
setAttribute and setAttributeNS

DOM methods, 48, 144, 710
setInterval JS function, 755
setTimeout JS function, 755
shadow DOM, 338, 710

retargeting events, 711
shape-inside style property, in SVG 2

and CSS3, 237
shape-outside style property, 90, 165

vs clip-path, 572
visual editors for shape functions,

572
shape-rendering style property, 493
Shapes module (see CSS3 modules)
side attribute, on textPath in SVG 2,

249
Sketch, 116

(see also graphical editors)
skew transform, 393-399

as an equation, 394
slice keyword, for preserveAspectRa‐

tio, 276, 291
slider role, 720
SMIL (Synchronized Multimedia

Integration Language), 28, 741
(see also animation)

Snap.svg, 132
Sodipodi, 117

(see also Inkscape)
solidcolor element, 431
source element, with picture element,

58
SourceAlpha filter input, 610, 621

for trimming blur, 616

SourceGraphic filter input, 610
spacing and spacingAndGlyphs key‐

words, for textLength, 248
specificity, in CSS, 81
spline, of Bézier curves, 188
spreadMethod attribute, 443

on linearGradient element,
446-449

on radialGradient element,
453-457

sprite image files, 94
with CSS background-* proper‐

ties, 328
vs SVG stacks, 327
views and, 313

Squiggle viewer, for Apache Batik,
126

src attribute
on image element, for fallback,

354
on img, 58
on script element in HTML, 51

srcset attribute
on img, 58
on source within picture, 59

sRGB
in color profiles, 413
keyword for color interpolation,

609
vs CMYK, 777

stacks, of SVG icons (see SVG stacks)
standard deviation, 601
startOffset attribute, 246
static SVG, vs interactive, 679
status role, 708
stop element, 441-443

duplicating with gradient cross-
references, 449

within radialGradient, 452
stop-color style property, 442

defining with CSS classes, 455
stop-opacity style property, 424, 442
stroke style property, 10, 220, 478

(see also strokes)
CSS3 changes, 434, 483
and pointer-events, 693

stroke-align style property, in CSS3,
496, 783

812 | Index

stroke-dash-* style properties, in
CSS3, 509

stroke-dasharray style property,
499-515
path-drawing animation, 515

stroke-dashoffset style property, 510
stroke-linecap style property, 488-492

for dashed strokes, 504
stroke-linejoin style property,

483-487
vs line caps, 488
new values in SVG 2, 487

stroke-miterlimit style property, 485
stroke-opacity style property, 163,

424, 479
vs opacity, 548
and pointer-events, 695

stroke-width style property, 10, 146,
478, 482, 518
marker scaling, 530
and pointer-events, 695

StrokePaint filter input, 610, 623
strokes, 477-522

alignment and paint order, 163,
480, 494, 496, 533, 783

cursive text, 684
dashed, 499-515

vs CSS border styles, 505
limitations, vs filter effects, 620
paint servers, 515
replacing filled paths, 779
scaling and nonscaling, 371,

496-499
stroke region for pointer-events,

693
strokeWidth keyword, for marker

Units, 531
style attribute, 18, 77

(see also inline styles)
style DOM property, 54, 673
style element, 19, 77-79

(see also CSS)
Adobe Illustrator export, 786
compared with other styling

methods, 786
in external asset files, 347, 419
for minimizing flash of unstyled

content, 346

@import rules and performance,
787

stylesheet order, for cascade, 84
SVG vs HTML, 77

@supports CSS rule, 85
for CSS variables, 422
limitations, 85, 548, 597

SVG
as images (see images, SVG

embedded as)
as objects (see objects, SVG

embedded as)
browser support, 47, 767
vs HTML, 43
inline (see inline SVG)
namespace, 13

(see also XML namespaces)
standalone files vs inline SVG, 5
timeline, 45
vs raster images, 36, 37, 110, 215,

225, 280
SVG 2

autosizing image elements, 360
bearing path command, 208
child function for cross-

references, 432, 545
crossorigin attribute, 351
DOM compatibility improve‐

ments, 50
geometry properties, 20, 154
href without xlink, 21
HTML embedded content ele‐

ments in SVG, 360
line join alternatives, 487
markers changes, 544
multiline text, 237
paint servers, 431
percentages for alpha, 428
support (see web browsers, sup‐

port)
SVG 1.1 vs 2, 44
symbol changes, 341
textPath changes, 249
vector-effect property, 268

SVG Editor (graphical interface for
SVGO), 134

svg element, 6, 12
attributes, 7, 21, 66, 255, 314

Index | 813

cropping images with, 356
in HTML documents, 62

(see also inline SVG)
nested, 314

(see also nested coordinate
systems)

roles, for accessibility, 656
vs symbol, 339, 709

SVG fonts, 212, 216
SVG Markers module, 545, 750
SVG Paths module, 208
SVG stacks, 94, 324

vs views, 327
SVG view fragments, 299, 306-312

(see also view element)
SVG-in-OpenType fonts, 213

context-* style keywords, 540
SVG.js, 133
SVG4Everybody, 350, 789
SVGElementInstance DOM object,

710
SVGMatrix DOM object, 714
SVGO, 134
SVGOMG, 134
SVGPoint DOM object, 714, 760
SVGStore Grunt plug-in, 134
SVGxUse, 350
SVGZ file extension, 112
switch element, 659
symbol element, 338-351, 472, 482

vs marker, 524
vs reusing nested svg, 339, 709

Synchronized Multimedia Integration
Language (SMIL), 741

synthesized typefaces, 233
system colors, 771
systemLanguage attribute, 659

T
T or t smooth-quadratic-curve-to

command, 193
tabindex attribute, 718, 721

tab order and same-page links,
699

tangent
motion along a path, 760
for smoothly joining curves, 193
in textPath layout, 241

target attribute, 301, 680
target DOM property, of an Event

object, 701, 706
and SVG use shadow DOM, 710

target fragment, 299
(see also URL values)

:target selector, 94
for interactive links, 699
for SVG stacks, 325
with view element, 323

text element, 216-232
bounding box, 440
decorative text and accessibility,

213, 376, 399, 583, 622
DOM methods, 250

text-align style property, 237
text-anchor style property, 228, 236,

250
in textPath layouts, 248, 682

text-shadow style property, 85, 603
textLength attribute, 232, 248, 250
textPath element, 240-248, 681

DOM methods, 250
three-dimensional (3D) transforma‐

tions, 400
(see also transformations)
simulating with skew, 395

tile, for patterns, 461
(see also pattern element)

timer role, 708
timing functions (see animation, tim‐

ing functions)
title attribute, in HTML, 653
title element, 14-16, 419, 529,

651-660, 685
alternative text, 653

improving browser support,
655

limitations, 654
vs aria-label, 359, 655
vs desc, 667
document title, 651
fallbacks in old browsers, 669
HTML content, 668
multilingual, 658
tooltips, 653

to attribute, 744
to keyframes selector, 732

814 | Index

toFixed JS method, 706
toggle CSS function, 148
tooltips, 653

(see also title element)
touch input, 654, 684, 693, 707, 712,

773
transform attribute or style property,

363-405
(see also coordinate systems)
attribute vs style, 364, 377, 383,

391
browser support, 364
vs gradientTransform and pat‐

ternTransform, 451, 473
in SVG view fragments, 307
transform lists, 376, 378

transform-box style property, 384
and transform-origin, 392

transform-origin style property, 391
transformations, 363-405

(see also transform attribute)
3D, 395, 400
affine, 399
vs animateMotion, 749
attributes impacted by, 383
inverse, 715
matrix representation, 399-404
multiple operations, 376, 378, 403
of paint servers, 450
user-space effects, 585
vs viewBox scaling, 256, 364, 367,

385
Transforms module (see CSS3 mod‐

ules)
transition-* style properties, 729

asymetrical transitions, 732
transition shorthand, 604, 730
transition-delay, 729, 732
transition-duration, 729
transition-property, 729
transition-timing-function, 730

translate transform, 378-383
CSS3 shorthands, 385
as an equation, 378
vs use element attributes, 383

Tributary, 130
Trident (rendering engine), 124

(see also Internet Explorer)

tspan element, 232-236
vs a element in text, 681
DOM methods, 250
in textPath, 242, 682

turn unit, 391
tweening, 725, 727, 758

(see also animation)
type attribute

on a element, 681
on feColorMatrix, 608
on object element, 60
on style element, 19, 78

U
uniform scale, 371

(see also scale transform)
units

angles, 391
converting to user coordinates for

paths, 192
CSS3, 148
in graphical editors, 774
scaling effects, 268
supported in SVG 1.1, 142
time, 729, 744
in transform property vs attribute,

383
viewport, 285, 497

url CSS function, 28
URL values

in CSS, 88, 97
file: URLS, 341
global, local, or relative, 88, 97
origin of web pages, 348
SVG view fragments, 306
target fragments, 299, 301

use element, 21, 23, 332-351
changes in SVG 2, 337
vs cloning DOM nodes, 712
duplicating text, 374
nested references, 337, 419
scaling, 472
vs server-side includes, 789
shadow DOM event models, 710

usemap attribute, 686
user coordinates, defined, 140
user space, defined, 437
userSpaceOnUse keyword, 437

Index | 815

for clipping and masking, 553,
556, 579, 584

for filters, 624, 627, 628
for gradients, 443
for markerUnits, 532
for patterns, 462
percentages and multiple svg ele‐

ments, 438, 627
UTF-8, 5, 14
UTF-16, 14

for character counting, 239

V
V or v vertical-line-to command, 182
:valid and :invalid selectors, 64

(see also selectors)
browser support, 67

Values and Units module (see CSS3
modules)

var CSS function, 420, 421
(see also CSS, variables)

Vecteezy, 120
vector drawables (in Android apps),

171
Vector Markup Language (VML),

124, 132
vector-effect style property, 268, 373,

496-499
vertical text layout, 240, 245, 250
video element, 295, 589

in SVG 2, 360
view element, 300-324

and nested svg elements, 315
for sprites, 94
view sprites vs SVG stacks, 327

view-box keyword, for transform-
box, 384

viewBox attribute, 223, 262-272
cropping a nested image, 356
defining intrinsic aspect ratio, 281
in graphical editors, 284, 775
on marker, 541
on nested svg, 314, 333
on pattern, 462, 470
proposal to convert to CSS, 295
setting with a JavaScript array, 705
in SVG view fragments, 306
on symbol, 333, 338

vs transformations, 364, 385
on view element, 300

viewport units, 262, 285, 497
viewport, in SVG scaling, 260

vs CSS viewport units, 262
viewTarget attribute, 307, 324
virtual machines, for testing, 793
visibility style property, 31

and accessibility, 657
clipping paths, 554
CSS animations, 731
vs opacity, 698, 731
and pointer-events, 693

visible* keywords, for pointer-events,
694

:visited selector, 683
(see also selectors)

VML, 124, 132

W
W3C, 62
WAI-ARIA (see ARIA)
WAI-ARIA Graphics module, 667
Web Animations API, 728, 754
web browsers, 121-126

bugs
accessibility, 654, 685, 717
blend modes, 643
clipping paths, 564, 692
CSS animations, 514
CSS transforms, 377, 384, 392
CSS variables, 421
currentColor inheritance, 415
DOM methods, 713-714
filters, 605, 609, 639
font-size, 219
foreignObject element, 63, 673
getBBox, 439, 440
gradients, 424, 442, 447, 454,

455, 460
markers, 530, 532, 535, 538
masks, 577, 580, 590
object embeds, 61, 305, 680
parsing, 673
patterns, 463
querySelector, 55
scaling, 59, 282-285, 304
strokes, 480, 487, 501, 504, 507

816 | Index

text layout, 240, 241, 245, 248,
682

units and calc, 148, 478, 513
URL target fragments, 301
use elements, 267, 334, 340,

347-348, 399, 419, 469
user-space effects, 438
views, 300, 301, 306, 309, 323,

324
support

blend modes, 637, 640
contenteditable in SVG, 632
CSS animations, 32, 60, 514,

728, 730, 733
CSS variables, 420
CSS3 clipping and masking,

552, 568, 570, 576, 590, 592
CSS3 colors, 412, 428
CSS3 filters, 597, 606, 616, 622,

645
CSS3 shape functions, 569
CSS3 transforms, 377, 384,

392, 451
CSS3 units, 148, 286, 520
data URIs, 95
external asset files, 347-348,

351, 419, 434, 449, 469
filter inputs, 610
fonts using SVG glyphs, 212
foreignObject element, 63
form pseudoclass selectors, 67
getBBox options, 521
href without xlink, 22, 449
image autosizing, 353, 360
link element in SVG, 80
masking, 573
multilingual title and desc, 658
object-fit and -position, 280
paint-order, 494, 534
requestAnimationFrame, 756
resize property, 272
SMIL animation elements, 742
@supports, 85
SVG 1, 47, 767
SVG 2 DOM changes, 50
SVG 2 geometry properties,

20, 154

SVG 2 marker options, 524,
544

SVG 2 paint servers, 431
SVG 2 text layout, 237
tabindex and focus, 720
use element shadow DOM,

338, 711
vector-effect, 268, 497
views, 300-301, 306, 313
Web Animations API, 754
-webkit-* properties, 122, 123,

125, 435, 597
testing, 792-794

web fonts, 213, 215
fallbacks, 227-232, 781

web platform, defined, 42
WebKit, 122

(see also web browsers)
-webkit-* style properties, 33, 122,

364, 514, 552, 568, 576, 590, 592,
597, 604, 728

-webkit-text-fill-color and -webkit-
text-stroke-color style properties,
221, 435

WHATWG, 62
white-space style property, 237
whitespace, in text markup, 218
width attribute or style property (see

height and width)
Wikimedia Commons, 111
wildcard CSS namespace selector, 78
will-change style property, 763
winding order, 181

(see also fill-rule style property)
word-spacing style property, 240
Writing Modes module (see CSS3

modules)
writing-mode style property, 240

(see also vertical text layout)

X
x and y attributes

on filter, 624, 627
on filter primitives, 628
geometry properties, in SVG 2,

154, 219
on mask, 578
on pattern, 462, 467

Index | 817

on rect, 9, 149
on svg element, 314, 710
on symbol, in SVG 2, 341
text layout

multiple values, 239
on text element, 34, 216
within textPath, 244
on tspan, 235

on use, 23, 332, 383, 557, 710
x and y DOM properties, of a point

object, 714
x1 and x2 attributes

on line element, 140
on linearGradient element, 444

X11, 410
XLink, 21
xlink:href attribute, 21, 23

on a element in SVG, 310, 680
CSS selectors for, 78
DOM methods for creating, 49
on linearGradient and radialGra‐

dient, 443, 449
on pattern, 470
on script element in SVG, 51
on use, 332

XML
parser, 5, 10, 14, 76, 669

(see also HTML, parser)
timeline, 45

XML namespaces
in CSS, 78

DOM methods, 48-49
with foreignObject, 63
namespaceURI property, 144
with inline SVG and the HTML

parser, 63
xlink, 21

XML prolog, 79
xml-stylesheet instruction, 79
xml:base attribute, 97
xml:lang attribute, 15, 652

vs lang, 658
vs systemLanguage, 660

XMLHttpRequest DOM object, 349
xmlns attribute, 13, 669
xmlns:xlink attribute, 21
XSLT, 130, 131

Y
y attribute (see x and y attributes)
y1 and y2 attributes

on line element, 140
on linearGradient element, 444

Z
Z or z close-path command, 176

closing curves in SVG 2, 203
z-index style property, 12, 85, 568

working around lack of support,
752, 776

zoomAndPan attribute, 307

818 | Index

About the Authors
Amelia Bellamy-Royds is a freelance writer and web developer
whose primary interest is scientific and technical communication—
in words or in graphics. She is best known in web design circles for
her work with SVG. In addition to explaining SVG and related web
standards, she tries to make them better; Amelia is an Invited Expert
on the W3C’s SVG, ARIA, and CSS Working Groups.

Amelia’s interest in SVG stems from work in data visualization, and
builds upon the programming fundamentals she learned while earn‐
ing a B.Sc. in bioinformatics. From there, she moved to work in sci‐
ence, health, and environmental policy research, and then to a
Master’s degree in journalism. Amelia currently lives in Edmonton,
Alberta, Canada. This is the fourth book on SVG she has co-
authored for O’Reilly Media.

Kurt Cagle is the founder of Semantical, LLC, a smart data com‐
pany, and uses SVG for data visualizations and web application
development. He is also author or coauthor of more than twenty
books on web technologies, data modeling, and knowledge manage‐
ment. He lives in Issaquah, WA, with his wife, daughters, and cat,
who helps edit his manuscripts.

Dudley Storey has been making web pages for almost the entire life
of the web. An accomplished teacher, writer, and designer, he is also
the author of Pro CSS Animation (Apress, 2013). Dudley is also a
contributing editor at Smashing Magazine, and writes web develop‐
ment articles on his blog, theNewCode.com.

Colophon
The animal on the cover of Using SVG with CSS3 and HTML5 is a
blue-fronted lorikeet (Charmosyna toxopei). This bird is exclusively
found on the Indonesian island of Buru. Buru was part of the Dutch
East Indies colony from 1658 to 1942, and Lamburtus Johannes
Toxopeus (born in Java, but of Dutch nationality) was the first Euro‐
pean scientist to describe and capture this lorikeet species. His name
thus became part of the bird’s Latin name.

These birds are primarily green in color, with blue heads and bellies.
They are small members of the parrot family, growing to about 6
inches (16 cm) long. Blue-fronted lorikeets live in pairs, occasionally

http://thenewcode.com/

forming small groups up to 10 birds. Their preferred habitat is low‐
land forest with plenty of flowering trees to provide them with their
diet of nectar and soft fruit.

The blue-fronted lorikeet is critically endangered due to logging
activity in its already limited range. Two protected areas have been
established on the island to help preserve the bird’s habitat.

Many of the animals on O’Reilly covers are endangered; all of them
are important to the world. To learn more about how you can help,
go to animals.oreilly.com.

The cover image is an illustration by Karen Montgomery, based on
an antique engraving from Shaw’s Zoology. The cover fonts are URW
Typewriter and Guardian Sans. The text fonts are Adobe Minion
Pro and Myriad Pro Light; the heading font is Adobe Myriad Con‐
densed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Cover
	Copyright
	Table of Contents
	Preface
	A Winding Path
	The Road Ahead
	Before You Begin

	About This Book
	Conventions Used in This Book
	A Brief Aside

	Supplementary Material
	About the Examples

	O’Reilly Safari
	How to Contact Us
	Acknowledgments

	Part I. SVG on the Web
	Chapter 1. Graphics from Vectors
	Defining an SVG in Code
	Simple Shapes
	Standalone SVG
	Style and Structure
	Repetition Without Redundancy
	Graduating to Gradients
	Activating Animation
	Talking with Text
	The SVG Advantage
	Summary: An Overview of SVG

	Chapter 2. The Big Picture
	SVG and the Web Platform
	The Changing Web
	A Crystal Ball

	JavaScript in SVG
	Embedding SVG in Web Pages
	SVG as an HTML Image
	Interactive Embedded SVG

	Using SVG in HTML5 Documents
	Using SVG with CSS3
	Style Versus Graphics

	Summary: SVG and the Web

	Chapter 3. A Sense of Style
	CSS in SVG
	Style Declarations
	Overriding Styles
	Conditional Styles

	SVG in CSS
	Using SVG Images Within CSS
	Making Every File Count
	Using SVG Effects Within CSS

	CSS Versus SVG
	Styling Documents Versus Drawing Graphics
	CSS as a Vector Graphics Language
	Which to Choose?

	Summary: Working with CSS

	Chapter 4. Tools of the Trade
	Ready-to-Use SVG
	Click, Drag, Draw: Graphical SVG Editors
	Adobe Illustrator
	Adobe Photoshop
	Sketch
	Inkscape and Sodipodi
	Draw SVG
	Boxy SVG

	Bringing SVG Alive: SVG in the Web Browser
	Gecko for Firefox
	WebKit for Safari and iOS Devices
	Blink for Newer Versions of Chrome, Opera, and Android Devices
	Presto for Older Opera Versions and Opera Mini
	Trident for Internet Explorer and Other Windows Programs
	EdgeHTML for Microsoft Edge and Windows 10+ Programs
	Servo
	Other Dynamic SVG Viewers

	Markup Management: Code Editors
	Atom Plus SVG Preview
	Brackets Plus SVG Preview
	Oxygen XML SVG Editor
	Online Live Code Sites

	Ready-to-Use Code: JavaScript Libraries
	Raphaël and Snap.svg
	D3.js
	GSAP
	SVG.js

	Processing and Packaging
	Summary: Software and Sources to Make SVG Easier

	Part II. Drawing with Markup
	Chapter 5. Building Blocks
	Drawing Lines, from Here to There
	More Measurements and Calculations

	It’s Hip to Be Square (or Rectangular)
	Geometry as Style

	Cutting Corners
	Curved Corners

	Circular Logic
	Shapes in Stylesheets

	Summary: Basic Shapes

	Chapter 6. Following Your Own Path
	Giving Directions: The d Attribute
	Piecewise Paths

	Straight Shooters: The move-to and line-to Commands
	Finishing Touches: The close-path Command
	Hole-y Orders and Fill Rules
	Following the Grid: Horizontal and Vertical Lines
	Crunching Characters
	Short and Sweet Shapes: Polygons and Polylines
	Polygon Points

	Curve Balls: The Quadratic Bézier Command
	Beyond Simple Coordinates

	Smooth Operators: The Smooth Quadratic Command
	Paths Beyond SVG

	Wave Motion: The Cubic Bézier Commands
	Closing Curves

	Building the Arcs
	New Directions in Path Commands

	Summary: Custom Shapes

	Chapter 7. The Art of the Word
	When Text Isn’t Text
	Working with Web Fonts
	Typewriter Text
	Positioning Text with CSS

	Colorful Language
	Filling and Stroking Non-SVG Text

	Responsive Text Scaling
	Anchors and Alignment
	Switching Styles with <tspan>
	Adjusting the Typewriter
	Automatically Positioned Multiline SVG Text

	Full-Control Characters
	Twists and Turns: The <textPath> Element
	Sliding Text Along a Path with startOffset
	More Flexible Text Paths

	Measuring the Message
	Summary: Graphical Text Layout and Fonts

	Part III. Putting Graphics in Their Place
	Chapter 8. Scaling Up
	Coordinated Efforts
	Framing the View, with viewBox
	Selective Scaling

	Calibrating the Scales
	Scaling to Fit
	A Poor Fit (and How preserveAspectRatio Fixes It)
	Scaling to Fit

	Just-Right Sizing
	Autosizing Embedded SVG
	Resizing Inline SVG
	Preserving Aspect Ratios, with CSS Padding
	Aspect-Ratio Control in CSS

	Summary: Defining Coordinate Systems

	Chapter 9. A New Point of View
	Alternate Takes, with the <view> Element
	Rescaling on the Fly, with SVG View Fragments
	Cropping Any Image in a URL

	Interactive Views
	Packaged Deals
	Flat Pack Stacks
	Summary: Cropping Embedded SVG Files

	Chapter 10. Seeing Double
	Reduce, Reuse, Recycle
	The <use> Element Shadow DOM

	Symbolic Usage
	Pinpointing a Symbol

	File Management
	Enabling Cross-Origin SVG Assets

	Picture Perfect: Raster Images in SVG
	Smooth Scaling Photographs
	Easier Embedded Content

	Summary: Reusing Content

	Chapter 11. Transformative Changes
	A Simpler Scale
	Unbalanced Scales
	Reflecting on Transformations
	Transforming the transform Attribute

	New Origins
	Transformations with Units

	Turning Things Around
	Rotation Units and Adaptable Origins

	Skewed Perspective
	Enter the Matrix
	Summary: Coordinate System Transformations

	Part IV. Artistic Touches
	Chapter 12. Filling Up to Full
	Coloring Between the Lines
	The Rainbow Connection
	Controlling Colors, Consistently
	Coordinating Colors
	Variables for Every Property
	Water Colors
	Percentage Alpha

	Filling with More Than Solid Colors
	Serving Up New Paint
	Fallbacks for Fills
	New Fill Effects
	Picturing Paint
	Scaling Paint Servers
	The Boundaries of the Box

	Great Gradients
	Shared Structures
	Aligning Linear Gradients
	Transforming Gradients
	Radiating Radial Gradients
	Switching Focus
	CSS Gradients

	Patterns of Possibility
	All the Units to Use
	Dividing the Box
	Picture Perfect
	Patterned Prints

	Summary: The fill Property, Gradients, and Patterns

	Chapter 13. Drawing the Lines
	Different Strokes
	A Simple Stroke to Start
	Layered Lines
	Making the Connection with Line Joins
	New Line-Join Options
	Capping It Off with Line Caps

	Adjusting Stroke Appearance
	Anti-Anti-Aliasing for Crisp Lines
	Swapping Stroke and Fill
	Controlling Stroke Position
	Scaling Shapes Without Scaling Strokes

	A Dashing Design
	A Wide Array of Dashes (and Gaps Between Them)
	Better References for Dash Lengths
	Turning Dashes into Dots
	Dashed Borders Versus Dashed Strokes
	More Pleasing Dash Patterns, Made with Math
	Greater Control of Dash Position
	Starting Mid-Stride

	Painting Lines
	Painting in a Stroke Bounding Box

	Summary: Stroke Effects

	Chapter 14. Marking the Way
	Emphasizing Points
	Scaling to Strokes
	Orienting Arrows
	Automatically Coordinating Markers with Their Shapes

	Defining Dimensions
	Expanded Marker Position Options

	Summary: Line Markers

	Chapter 15. Less Is More
	Fading Away with the opacity Property
	The Clean-Cut Clip
	Clipping Paths Everywhere
	Creating a Custom Clipping Path
	Intersecting Shapes
	Clipping a clipPath
	Stretch-to-Fit Clipping Effects
	Shorthand Shapes
	clip Versus clip-path

	Hiding Behind Masks
	More Masks for More Content
	Who Was That Masked Graphic?
	Making a Stencil
	Easier Image Masks

	Summary: Clipping and Masking

	Chapter 16. Playing with Pixels
	The Filter Framework
	A Basic Blur
	Blurred Elements Versus Blurred Shadows
	Fast Filters from CSS Alone
	Filtering Images Within CSS

	Mixing Multiple Filter Operations
	The Chain of Commands
	Mixing and Merging
	Building a Better Blur
	Morphing Shapes into Strokes

	Drawing Out of Bounds
	We’re Going to Need a Bigger Boom
	Half-and-Half Filter Effects

	Blending with the Backdrop
	Blending Basics
	Premade Mixes
	Isolating the Blend Effect
	Filtering the Backdrop

	Summary: Filters and Blend Modes

	Part V. SVG as an Application
	Chapter 17. Beyond the Visible
	Titles and Tips
	Multilingual Titles

	Linking Labels
	Roles and Relationships
	Roles for Graphical Documents

	1,000 Words Are Worth a Picture
	Machine-Readable Metadata
	Summary: Metadata for Accessibility and Added Functionality

	Chapter 18. Drawing on Demand
	Linking It All Together
	Interactive Style Switches
	A Better Image Map
	Getting the Point(er) Across
	Targeting the Interaction
	The Big Event
	Counting Clicks
	Bubbling Out of Shadows
	Measuring Mouse Positions
	Capturing the Keyboard with JavaScript-Enhanced Links
	Controlling the Keyboard with tabindex and focus()

	Summary: Interactive SVG

	Chapter 19. Transitioning in Time
	Scalable Vector Animations
	Smoothly Switching Styles
	CSS Transitions
	CSS Keyframe Animations
	Benefits and Limits of Animating SVG with CSS
	Additive CSS Declarations

	Animations as Document Elements
	Animating Attributes, Declaratively
	Complex Animations
	Motion Paths in CSS
	Benefits and Limits of SVG/SMIL Animation Elements

	Scripting Every Frame
	Declarative Scripted Animations
	Triggering Regular Updates
	Calculating the Current Value

	Summary: Animation

	Chapter 20. Good Manners
	Planning Your Project
	Does Your Project Need SVG at All?
	Identify Your Browser Support Requirements
	Decide How SVG Will Integrate in Your Website
	Design for All Users

	Working with Graphical Editors
	Define Your Artboard or Drawing Size
	Structure Your Graphic
	Name Things
	Set Up Color Preferences for Web Use
	Simplify Paths
	Test Text Fallbacks, or Convert to Paths
	Consider the Backdrop
	“Unset” Styles
	Learn the Limits of Your Tool’s SVG Output
	Learn the Limits of SVG, Compared to Your Tool

	Coordinating Code
	Structuring Styles
	Sharing SVG Assets
	Selecting a JavaScript Library

	Test, Test, Test!
	Final Thoughts

	Index
	About the Authors
	Colophon

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

